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Abstract—Identification of important actors in social networks
is a hard task but with various interesting applications such as
in information recommendation or for viral marketing. Existing
centrality measures evaluate the importance of an actor in
considering only the structural positions regardless of prior
information on these actors such as their popularity, accessibility
or behavior. A few measures have been proposed for weighted net-
works, notably the three common measures of centrality: degree,
closeness, and betweenness. However, these extended versions
have solely focused on the weights of ties and not on the attributes
of nodes. This article proposes generalizations that combine these
both aspects. We present a set of measures, based on conventional
centrality indicators, suited to weighted attributed graphs where
the nodes are characterized by attributes. We illustrate the
benefits of this approach on real attributed graphs. Experiments
have validated the contribution of the links weights and attributes,
especially for the detection of information broadcasters in social
networks.

I. INTRODUCTION

Several indicators like the centrality measures, initially
developed in social network analysis, allow to identify the
actors which play an important role in a network. The ad-
vantage of these measures is their ease of implementation
and the possibility to leverage local information rather than
to exploit the whole graph. However, they have been designed
for networks represented by simple graphs where the actors
correspond to the nodes and their relationships to the links.
Nowadays, social networks become more complex. In such
context, we propose to improve the identification of important
actors by leveraging not only the structural properties of the
network but also information describing these actors.

Thus, the aforementioned networks, in particular infor-
mation networks, can be represented by attributed weighted
graphs where each node is associated with features that can
be used to asses its importance or influence. Exploiting this
additional information on actors in propagation models, has
been efficient. Therefore, we suggest that these attributes
can also be integrated in centrality measures, giving rise to
new definitions more suited for attributed graphs. To identify
prevalent important or influential actors in complex networks,
our aim is to adapt the classical centrality indicators to handle
graphs where weighted links quantify the relations between
nodes and features describe the nodes.

The sequel of the article is organized as follows. Section
2 is dedicated to related works. Section 3 describes the
introduced measures and section 4 presents experiment results
conducted on real co-publication networks which confirm the
efficiency of the proposed measures.

II. RELATED WORKS

In the literature, the problem of identifying important or
influential actors in a network has been explored in two main
directions, firstly with diffusion models and secondly with
indicators which characterize the position of an actor in the
network from different points of view.

The methods in the first family dedicated to the study
of propagation in social networks, are based on the word-of-
mouth principle that the behavior or the opinion of an actor
depends strongly on those of his close social circle ([1], [2]).
The problem can be formulated as a discrete optimization
problem, known as Influence Maximization which consists in
finding a set of nodes (referred to as seeds) such that under the
influence model, the expected number of nodes activated by
the seeds is the largest possible. Kempe et al. have proved
that this optimization problem is NP-hard, and proposed a
Greedy Approximation Algorithm applicable to all propagation
models ([3]), which guarantees that the influence spread is very
close to the optimal influence spread, under the submodularity
assumptions. Following the same idea, several works have
exploited complementary information on nodes and obtained
best results ([4], [5], [6], [7]). Consequently, even if these
diffusion models are beyond the scope of this paper, we retain
from these researches, the idea that the actors characteristics
allow to improve the evaluation of their importance.

The second kind of approaches to detect important actors,
less costly in time processing, consist in characterizing the
role or the position occupied by an actor in the network
by means of centrality indicators ([8], [9]). These measures
allow to compare the position of an actor relatively to others
from different ways. Thus, the degree centrality characterizes
individuals with important number of links i.e. direct neighbors
while the closeness centrality those that can easily reach other
members of the network. The betweenness centrality allows to
identify actors that are more likely to be intermediary between
other actors in the network. Finally, the eigenvector centrality
and its variant, the pageRank, detect the most influential actors
who are connected to other important and highly connected
members of the network. These measures can be computed
on network represented as a directed or undirected graph. For
example, the degree centrality can be defined by considering
all neighbors of a node, its successors or its predecessors.
Some measures can be applied to weighted or unweighted
graphs. Thus, the eigenvector centrality is defined for graphs
with weighted edges and in that case, the edge weight can be
interpreted as the intensity of interactions between two nodes.
Likewise the degree and the closeness centralities have been



defined for weighted graphs ([10], [11]).

The vertices characteristics are not considered in previous
researches, except in [12] which is probably the most related
work to our own article. Indeed, the authors considered the
case of attributed graphs where categorical attributes like the
gender or the month of birth are used to define groups of
nodes. They extend classical centrality measures by using
two well-known metrics: the E-I homophily index [13], and
the Gould and Fernandez brokerage metrics [14]. Specifically,
the E-I index is seen as a partitioning degree centrality and
thereby is generalized to other centrality measures such as
the closeness centrality and the eigenvector centrality, leading
to the definition of a closeness E-I and an eigenvector E-I.
Likewise, the betweenness centrality is extended using the
Gould and Fernandez brokerage measures which divide the
ego network into five memberships. This approach is then
generalized to the whole network.

In contrast with the work of [12], the approach proposed in
this article, handles numerical attributes that are more likely
to characterize the importance or the influence of an actor.
These attributes are processed as a prior information, given
under the form of numeric measures related for example to
the fame, the experience or the notoriety of the actor. For
example in the domain of scientific publications, the nodes
attributes can be expressed by the number of publications
(or co-publications), the number of collaborators (students,
Phd, etc.), the number of associated scientific projects or
institutions, the number of active years or the number of
rewarded papers in a scientific area. In the context of online
social networks, the attributes values can be for instance the
age of the user account, the frequency of account activity, the
number of different terminal equipments used to access the
account, etc. In a movies network, the attributes characterizing
an actor can be the number of movies he played in, the total
budget of the movie or the actor’s income, the number of prize
awarded, etc.

To the best of our knowledge, none of the classical cen-
trality measures allows to exploit these contextual information
in addition to the relational information in attributed graphs,
and this is what we aim to achieve in the next section.

III. MEASURING INFLUENCE BY CENTRALITY INDICATOR

An information network can be represented as an attributed
graph G = (V,E) where V is the set of nodes and E ⊂
V ×V is the set of edges. We suppose that each node vi ∈ V
is associated to a numerical vector Y i = (yi1, y

i
2, . . . , y

i
L)
T

describing its attributes ([15]). In the following, yil is the value
of the attribute l ∈ L observed for the node vi and wi its global
weight computed by means of the norm of the vector Y i, thus
wi = ‖Y i‖. wij denotes the weight of the edge between node
vi and node vj and describes the intensity of their relation.

The nodes attributes yil , considered in this work, correspond
to prior information that indicates the notoriety or importance
of an actor, independently of the structure or the topology of
the network. Thus, their choice depend strongly on the nature
of the studied network.

In order to compare the relative position occupied by
a node in a simple graph, several centrality measures have

already been defined: degree centrality, closeness centrality,
betweenness centrality or prestige centrality (eigenvector cen-
trality and pagerank). In the following, we propose to extend
these measures, initially defined for simple graphs, so as to
take into account features or weights characterizing the nodes
and the links.

A. degree centrality

The degree centrality measures the relative importance
of a node by counting its direct links in the graph, after
normalization by the size of the network (Degree(vi)) [8].
This measure, based on the local structure around the node i.e.
its neighborhood, is the simplest way to measure the centrality.
Degree centrality has been extended to the case of weighted
and directed graphs [10]. In a directed network, a node may
have a different number of outgoing and incoming ties, and
therefore, the degree is split into out-degree (degout) and in-
degree (degin), respectively.

Degree(vi) =
deg(vi)

|V | − 1
(1)

In a weighted graph, the degree centrality is defined by
means of links weights as follows:

WEDegree(vi) =
∑

vj∈out(vi)

wij (2)

where wij is the weight of the edge between node vi and
node vj , out(vi) is the set of successors vj of node vi ∈
V . In [11] another degree centrality measure is proposed for
weighted graphs:

WEOpsahlDegree(vi) =

(degout(vi))
(1−α) ·

 ∑
vj∈out(vi)

wij

α

(3)

where the tuning parameter α ∈ [0, 1] is used to set the
relative importance of the number of ties compared to the ties
weights and is equal to 0, 5 to get a balance between links and
their weights.

In the case of attributed graphs, we introduce three
variants of these measures WNDegree, WNEDegree and
WNEOpsahlDegree corresponding respectively to weighted
or not weighted graphs:

WNDegree(vi) = wi ·Degree(vi) (4)

WNEDegree(vi) = wi ·WEDegree(vi) (5)

WNEOpsahlDegree(vi) = wi ·WEOpsahlDegree(vi)
(6)

B. Closeness centrality

Closeness is defined as the inverse of the farness, which
in turn, is the sum of distances to the other nodes. According
to the definition, a node is considered as important if it can
rapidly reach the other nodes of the graph ([9], [16]). The usual
measure is defined by the inverse of the sum of the geodesic
distances of a given node to others nodes:



CCentr(vi) =
1∑

vj∈V
j 6=i

|ShortPath(vi, vj)|
(7)

where ShortPath(vi, vj) denotes the shortest path between
node vi and node vj and |ShortPath(vi, vj)| is the length
of this path (number of links in the path). Conventionally,
|ShortPath(vi, vj)| is set to |V | or ∞ if such path does not
exist so that two nodes which belong to different components
do not have a finite distance between them.

For weighted graphs, a variant that incorporates the links
weights using Dijsktra algorithm is proposed in [11] but it
is time-consuming and consequently not suited for online
applications. For this reason, we propose to compute the sum
of the normalized geodesic distances between a given node vi
and the other nodes of the network:

CWECentr(vi) =
∑
vj∈V
j 6=i

∑
e∈ShortPath(vi,vj)

w(e)

|ShortPath(vi, vj)|
(8)

where w(e) is the weight of the link e ∈ E in the path. If
such path does not exist, the numerator term has a null value
and |ShortPath(vi, vj)| is set to |V | or ∞. For an attributed
network, we propose to compute the closeness centrality in
one of the following ways, depending whether the graph is
weighted or not:

CWNCentr(vi) = wi · CCentr(vi) (9)

CWNECentr(vi) = wi · CWECentr(vi) (10)

C. Betweenness centrality

According to the betweenness measure, a node is impor-
tant, if it is located on a great number of geodesics paths
between the other nodes. Formally, it is equal to the number
of shortest paths between all pairs of nodes that pass through
that node ([9], [8]):

BCentr(vi) =
∑

(vk,vj)∈V×V
i6=k 6=j

|gkj(vi)|/|gkj | (11)

where gkj(vi) (respectively |gkj(vi)|) is the set of the shortest
paths (respectively the cardinality of the set of shortest paths)
between nodes vk and vj that pass through vi and gkj
(respectively |gkj |) is the set of all shortest paths (respectively
the cardinality of the set of shortest paths) between the nodes
vk and vj . Thereby, the more there are paths passing through
a node the more it is important. The nodes with a high
betweenness play an important role into the communications
or transfers in the network since they control the flow between
non adjacent nodes.

We adapt this measure for weighted graphs in the following
manner:

BWECentr(vi) =
∑

(vk,vj)∈V×V
i6=j 6=k

∑
S∈gkj(vi)

∑
e∈S

w(e)∑
S∈gkj

∑
e∈S

w(e)
(12)

where w(e) is the weight of the link e ∈ E in a shortest path
S ∈ gkj between the two nodes vk and vj .

When the nodes are described by a set of attributes, the
measure is weighted by the node’s weight wi, leading to
different definitions depending whether the graph is weighted
or not:

BWNCentr(vi) = wi ·BCentr(vi) (13)

BWNECentr(vi) = wi ·BWECentr(vi) (14)

D. Eigenvector centrality and PageRank

Eigenvector centrality is based on the idea that the score of
a node is higher if it is connected to nodes having a high score
than if it is connected to nodes with a low score ([17], [18]).
Usually, the eigenvector centrality is recursively computed by
the following formula:

EV Centr(vi) =
1

λ1
·
∑
vj∈V

aij · EV Centr(vj) (15)

where A = {aij} is the adjacency matrix of the graph and λ1
is the largest eigenvalue obtained as solution of the equation
AX = λX . The measure EVWNECentr is computed on the
weighted adjacency matrix for the weighted graphs.

The PageRank is a variant of eigenvector centrality ([19],
[18]). It was initially introduced to measure the popularity of
Web pages and is usually defined by the equation:

PRankCentr(vi) =(1− β)W0

+β
∑
vj∈V

aji
PRankCentr(vj)

deg(vj)
(16)

where W0 is generally fixed uniformly and is equal to 1
|V | for

all nodes.

In the case of attributed graph, we adopt a custom for-
mulation PRankWNECentr of the PageRank ([20], [21]) in
which the nodes weights wi computed on the attributes are
used instead of the uniform weights.

IV. EXPERIMENTATION

Several experiments have been carried out on real attributed
networks so as to evaluate the benefits of the proposed mea-
sures.

A. Dataset

For experimentations, we used the dataset from [4] which
allows to generate graphs with ground truth. It has been
extracted from the Arnetminer academic research system 1 and
concerns 640134 authors and 1554643 co-publications on dif-
ferent topics and we have chosen three of them: Data mining,
Information Retrieval (IR) and Bayesian Network. Formally,
for a chosen research topic, we obtain a graph G = (V,E)
where the set of nodes V represents the authors and each
author vi is characterized by an attribute wi corresponding
to his number of publications. The set E of edges represents
the co-publication links weighted by the number of articles
wij co-written by the two authors vi and vj .

1http://www.arnetminer.org.



TABLE I. STATISTICS ON THE CO-PUBLICATIONS GRAPHS.

Graphs number of Nodes number of edges
Data-Mining 679 1687
Information Retrieaval (IR) 657 1907
Bayesian Network 554 1238

As shown in Table I, the graph associated to the Data
Mining topic is an undirected graph with 679 nodes and 1687
edges. The graph dedicated to Information Retrieval has 657
nodes and 1907 edges and for the Bayesian Network topic, it
has 554 nodes and 1238 co-publication links.

B. Evaluation

To assess the centrality measures defined in section III, we
consider two other indicators as ground truth references of the
author’s influence: the H-index and the number of Citations of
an author. These indicators are extracted from Arnetminer 2.
The H-index (HIRSCH index) [22] is an index used to estimate
the rank of research scientists: an author has an index of h if
h of his publications have at least h citations and the other
publications have not more than h citations each.

Thereby, after obtaining centrality measures for the authors,
we are able to compare the ranking of the authors according to
a given measure with those provided by the two ground truth
indicators: the H-index and the number of Citations. For each
indicator, we chose to assess the top 20 best ranked authors. To
determine the accuracy of a centrality measure, we compute
the Jaccard index between the ordered list obtained with the
centrality measure and the list ordered either by the H-index
or the number of Citations.

Otherwise, we use also the Precision and Recall rates
to evaluate the ranking provided by each centrality measure.
As the total number of authors returned by each measure is
equal to the number of influential authors defined by H-index
(or number of Citations), the Precision and Recall rates are
identical.

C. Results and analysis

Table II, Table III and Table IV show the results (Jaccard
index, Precision/Recall) of the experiments, conducted respec-
tively on the three graphs (Data-Mining, Information Retrieval
(IR) and Bayesian Networks), for the five families of centrality
measures (18 measures): Degree, Closeness, Betweenness,
PageRank and Eigenvector. The results are computed by
means of conventional centrality measures and by the proposed
variants, denoted (*) in the tables, that take into account the
weights of the links and the attributes of the nodes.

The score of the majority of centrality measures is better
when compared to H−index than to the number of Citations,
notably in terms of Precision/Recall in the three graphs.

We can observe that for the Data-Mining graph, the best
score according to the Jaccard index and the Precision/Recall
rate are obtained by the authority measures, i.e. the conven-
tional pageRank (PRankCentr) and the eigenvector central-
ity variant (EVWNECentr*) if we consider the H-index as
ground truth. If the number of Citations is taken as ground

2http://arnetminer.org/person-ranklist/hindex/89.

truth, the best scores are provided by the conventional degree
centrality measures in the weighted graph (WEDegree and
WEOpsahlDegree) and the new measures (WNEDegree* and
WNEOpsahlDegree*) as well as EVWNECentr*. This result
emphasizes the contribution of the links weights (number of
co-publications between authors) and the preponderance of the
authority measures to infer the influence of an author in the
Data-Mining graph.

For the Information Retrieval graph, the variant measure
WNDegree* of degree centrality obtains the best accuracy
compared to the reference indicators (H-index and number of
Citations). Moreover, it is followed by other measures which
take also into account the nodes attributes (WNEOpsahlDe-
gree*, CWNCentr*, BWNCentr*, BWNECentr*), including
the variant CWNCentr* of the closeness indicator which gives
generally low scores.

In the Bayesian Network graph, the highest accuracy
is obtained by the three variants WNEDegree*, WNEOp-
sahlDegree* and BWNCentr* compared to the two reference
indicators (H-index and number of Citations). Thus, we can
conclude that the weights and attributes allow to improve the
ability to infer the influential authors.

In conclusion, the proposed variants are more suited than
the usual measures to infer the influential users in weighted
graphs with attributes. We must notice that the closeness
centrality and its variants give generally the lowest scores
because they are not well adapted for the studied graphs. In
contrast, the degree centrality variants, especially WNEDe-
gree* and WNEOpsahlDegree* that incorporate the links
weights and nodes attributes, give generally a good estimation
of the authors influence in the three graphs and are efficient in
terms of processing times. In fact, they have the advantage
of being computed locally and consequently, they can be
rapidly obtained compared to the other measures. For the
other measures (betweenness and eigenvector), the results
are improved when the weights of the links are considered,
particularly if the H-index is used as ground truth. Moreover,
this improvement is more important if we take into account the
attributes that describe the nodes, in addition of the weights
of the links.

The computing complexity of the proposed variants is of
the same order of magnitude as those of the classical centrality
measures. In fact the new variants of degree, pagerank and
eigenvector centralities exhibit processing times equivalent as
those of their corresponding measures designed for unweighted
graphs without attributes. For the degree centrality, the sum is
computed over numerical weights instead of binary weights.
For the eigenvector and pagerank centralities, the same itera-
tive process is conducted to reach a final stationary distribution.
For the closeness and betweenness centrality, the computing
process is more complicated and the challenge is to compute
the shortest paths between every pair of nodes. For these
variants, we also need to get the cumulative weights of the
shortest paths and then their average, and this is done in a
linear time compared to conventional algorithms. This yields
to an overall complexity that is in the same order of magnitude
as for a simple graph.



TABLE II. SCORE RESULTS OF INFLUENCE MEASURES ON DATA-MINING GRAPH.

Jaccard (H-Index) Jaccard (Citations) P/R (H-Index) P/R (Citations)
Degree 0.3333 0.1765 0.5 0.3
WNDegree(*) 0.3333 0.1765 0.5 0.3
WEDegree 0.3333 0.2121 0.5 0.35
WEOpsahlDegree 0.3333 0.2121 0.5 0.35
WNEDegree(*) 0.3793 0.2121 0.55 0.35
WNEOpsahlDegree(*) 0.3793 0.2121 0.55 0.35
CCentr 0.3333 0.1765 0.5 0.3
CWNCentr(*) 0.3333 0.2121 0.5 0.35
CWECentr(*) 0.0 0.0256 0.0 0.05
CWNECentr(*) 0.25 0.1765 0.4 0.3
BCentr 0.3333 0.1429 0.5 0.25
BWNCentr(*) 0.3793 0.1765 0.55 0.3
BWECentr(*) 0.2903 0.1765 0.45 0.3
BWNECentr(*) 0.3793 0.1765 0.55 0.3
PRankCentr 0.4286 0.1765 0.6 0.3
PRankWNECentr(*) 0.2903 0.1765 0.45 0.3
EVCentr 0.2121 0.1111 0.35 0.2
EVWNECentr(*) 0.4286 0.2121 0.6 0.35

TABLE III. SCORE RESULTS OF INFLUENCE MEASURES ON INFORMATION RETRIEVAL (IR) GRAPH.

Jaccard (H-Index) Jaccard (Citations) P/R (H-Index) P/R (Citations)
Degree 0.25 0.2121 0.4 0.35
WNDegree(*) 0.4286 0.3333 0.6 0.5
WEDegree 0.25 0.2121 0.4 0.35
WEOpsahlDegree 0.2903 0.25 0.45 0.4
WNEDegree(*) 0.2903 0.2121 0.45 0.35
WNEOpsahlDegree(*) 0.3793 0.2903 0.55 0.45
CCentr 0.25 0.2121 0.4 0.35
CWNCentr(*) 0.3793 0.2903 0.55 0.45
CWECentr(*) 0.0 0.0 0.0 0.0
CWNECentr(*) 0.2121 0.1765 0.35 0.3
BCentr 0.1765 0.1429 0.3 0.25
BWNCentr(*) 0.3793 0.2903 0.55 0.45
BWECentr(*) 0.25 0.2121 0.4 0.35
BWNECentr(*) 0.3793 0.2903 0.55 0.45
PRankCentr 0.25 0.2121 0.4 0.35
PRankWNECentr(*) 0.3793 0.25 0.55 0.4
EVCentr 0.25 0.2121 0.4 0.35
EVWNECentr(*) 0.2903 0.25 0.45 0.4

TABLE IV. SCORE RESULTS OF INFLUENCE MEASURES ON BAYESIAN NETWORKS GRAPH.

Jaccard (H-Index) Jaccard (Citations) P/R (H-Index) P/R (Citations)
Degree 0.2121 0.1429 0.35 0.25
WNDegree(*) 0.3333 0.25 0.5 0.4
WEDegree 0.25 0.1765 0.4 0.3
WEOpsahlDegree 0.2903 0.2121 0.45 0.35
WNEDegree(*) 0.3793 0.2903 0.55 0.45
WNEOpsahlDegree(*) 0.3793 0.2903 0.55 0.45
CCentr 0.2121 0.1765 0.35 0.3
CWNCentr(*) 0.3333 0.25 0.5 0.4
CWECentr(*) 0.0526 0.0256 0.1 0.05
CWNECentr(*) 0.2903 0.2121 0.45 0.35
BCentr 0.2903 0.25 0.45 0.4
BWNCentr(*) 0.3793 0.3333 0.55 0.5
BWECentr(*) 0.25 0.25 0.4 0.4
BWNECentr(*) 0.3333 0.25 0.5 0.4
PRankCentr 0.3333 0.25 0.5 0.4
PRankWNECentr(*) 0.25 0.2121 0.4 0.35
EVCentr 0.1111 0.0811 0.2 0.15
EVWNECentr(*) 0.3333 0.25 0.5 0.4

V. CONCLUSION

In this article, we propose a set of centrality measures to es-
timate the importance of the actors in complex social networks.
These variants, induced from the classical centrality measures,
exploit not only the network structure but also incorporate
weights that evaluate the strength of the relationships between
the actors and attributes which describe these last ones. A
serie of experiments was carried out on three co-publications
graphs. These experiments confirm the interest of these new
measures to identify actors considered as the most influent
in their research field. The results show that these variants,

suited for weighted attributed graphs, are more efficient than
the usual measures, in particular the weighted variants of the
degree centrality, with processing times in the same order of
magnitude as those required by the classical measures.
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