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Abstract—We address the problem of finding local
patterns and local rules in an attributed graph. A
(global) closed pattern is the most specific attribute
pattern shared by the vertices of the (possibly sim-
plified) subgraph induced by some attribute pattern.
A local closed pattern is the maximal attribute pat-
tern associated to a particular dense region of this
subgraph. As such local regions, we are in particular
interested in k-communities of pattern subgraphs. In
this case we show that there is a closure operator such
that, given a pattern q subgraph and a k-community
in this subgraph, returns the local closed pattern
shared by all the members of the community. We then
consider how to generate triples (c, e, l) where c is a
(global) closed pattern whose subgraph contains e as
a k-community, and l is the corresponding local closed
pattern. This leads to implication rules expressing
what new attributes are specific of the k-community
e in the pattern c subgraph.
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closed pattern mining; knowledge discovery

I. Introduction
We address here the problem of discovering local

patterns in an attributed graph. Most previous work
focus on the topological structure of the graph, thus
ignoring the vertex properties, or consider constrained
local or semi-local patterns [1]. In [2] patterns on co-
variations between vertex attributes are investigated in
which topological attributes are added to the original
vertex attributes. In [3] the authors investigate the
correlation between the support set of an attribute set
and the occurrence of dense subgraphs. In this article,
we consider a graph G = (O, E) whose vertices are
described in some pattern language L. The patterns
occurrences in the vertex set O, i.e. their support sets, is
then submitted to connectivity constraints that reveals
various dense regions in the graph. In the standard closed
itemset mining approach developed in Formal concept
Analysis (FCA) [4], Galois Analysis [5], and Data Mining
(see for instance [6], a support-closed pattern, i.e. a
pattern which is maximal, in terms of specificity, within
the equivalence class of all patterns sharing the same
support set, is the maximum element of its equivalence
equivalence class and is easily computed using a closure
operator. Furthermore the equivalence classes lead to

implication rules that hold on the dataset under inves-
tigation.

In a previous work [7] the attributed graph G = (O, E)
is investigated in the following way: each pattern support
set e ⊆ O, as a set of vertices, induces a subgraph G(e)
of G, and this subgraph is then simplified by removing
vertices in various ways. The vertices of such an abstract
subgraph all satisfy some topological constraint, as for
instance belonging to a k-clique, and form the abstract
support set of the pattern. What happens here is that
the extensional space is then reduced to a part A of
2O, called a graph abstraction. Graph abstractions are
defined in such a way that applying a closure operator,
we obtain abstract closed patterns, i.e. the maximum
among patterns sharing the same abstract support set,
together with abstract implication rules corresponding
to inclusion of abstract support sets of patterns q and w
and denoted by 2Aq → 2Aw. In this article, given some
attribute pattern, we are interested in extracting local
support closed patterns, i.e. maximal attribute patterns
each associated to one dense subgraph, so allowing to
extract local implication rules particular to specific dense
groups of objects. Recently the closed pattern mining
methodology has been extended to local closed patterns:
they are obtained by applying a set of local closure oper-
ators [?]. The extensional space of local support sets is
then a confluence, i.e. a structure weaker than a lattice.
In the graph case, this means that from the support set
of some (closed) pattern c, various dense support sets
e1, . . . ek, called local support sets and belonging to F are
extracted and each associated to a local support closed
pattern , i.e. the most specific pattern li common to the
elements of the local support set ei. Again we obtain a
set of local implication rules corresponding to inclusion
of local support sets, but now such an implication is only
valid in the vicinity of some dense group of vertices m,
and we write them 2A

mq → 2A
mw. As we will see below

when investigating k-communities, it may be interesting
to define indirect local implication rules which are local
implication rules defined in a new vertex space. All these
forms of implication rules are related by an inference
order, stating R ` R′ whenever from validity of rule
R we may infer validity of rule R′. For instance, from



validity of standard rule q → w on a dataset O we may
infer, whatever is the abstraction A of 2O, the validity
of the corresponding abstract rule 2Aq → 2Aw. In the
same way from a valid global rule (possibly abstract) we
may validity of a local rule. In the latter case, let F ⊆ A
be a confluence of 2O, 2Aq → 2Aw be a valid abstract
implication, where the support set of w includes some
element m of F , then the local implication 2A

mq → 2A
mw

is valid.
First, we describe the case in which the confluence is

the set of vertex subsets inducing connected subgraphs
of some attributed graph. Figure I, we display a graph
whose vertices represents pupils on a school in the West
of Scotland, edges represent friendship relations and
vertex attributes concern substance use and sporting
activity1. As a running example we consider the empty
pattern whose support set is the whole vertex set O and
start from a graph abstraction that deletes from a sup-
port set the pupils that do not belong to any friendship
triangle in the subgraph induced by the support set of
some pattern q (here the empty pattern).The subgraph
induced by the remaining (colored or dark) vertices in
Figure I is made of 4 connected components. At that
point, the corresponding abstract closed pattern reveals
what attributes have in common the pupils in this
abstract support set. Now, we are interested in knowing
whether in each of the two connected components whose
size is at least 4 there is some additional attributes
shared by their members. The set of attributes shared
by all the pupils in such a connected component is
a local support closed pattern. However, the largest
connected component is clearly made of distinct dense
parts, i.e. communities, we would like to consider when
defining local closed patterns. For that purpose, we can
generalize the local closed approach in order to detect
the k-communities (see [8]) of the subgraphs induced
by support sets of patterns. Figure I displays the 5 3-
communities of size at least 4 found in the whole graph
of West Scotland pupils.

Each of these k-community is associated to a local
closure of the empty pattern. For instance, the red
3-community {1, 10, 11, 14, 15, 16} of the whole graph
has C12, D34m as its local closed pattern. Because the
global closed pattern here also is the empty pattern
(there is no item common to the vertices in all these
communities), this leads to the local rule:

21,10,11,14,15,16 {} → 21,10,11,14,15,16{C12, D34m}
stating that {C12, D34m} is a pattern common to all the
pupils of this 3-community: in this community the pupils
have no cannabis consumption (C12) but a moderate
to high alcohol consumption (D34m).This can also be
rewritten as

1http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
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Figure 1. The original friendship graph of a group of West
Scotland pupils. When excluding vertices not belonging to any
triangle (the empty circles) we found 4 connected components, two
of which have size at least 4. The pupils belonging to the same
connected components of adjacent triangles in the derived graph
share the same color. We only consider here such 3-communities
when their size is at least 4.

211,15,16 {} → 211,15,16{C12, D34m}
meaning that all pupils belonging to the same 3-
community as the pupils triangle 11, 15, 16 in the whole
triangle graph share the pattern {C12, D34m}.

We are interested here in finding a basis of these local
implication rules, representing what additional knowl-
edge is provided by looking at implications that hold in
the dense vicinity of particular vertices. This leads to
the following mining problem:
• Find the set of all k-communities, of size at least s,

generated from the subgraph of G induced by the
support set of some pattern of L and compute, for
each k-community e, the corresponding local closed
pattern l together with all local rules 2ec→ 2el \ c
where c is a closed pattern whose local closure is l.

A direct way to solve the mining problem is a
top-down search in the pattern space and consists in
extending a separate and conquer algorithm, namely
PARAMINER [9], to output with no repetition these
(c, e, l) triples. Complete description of the direct algo-
rithm is outside the scope of this article, however we
describe the general idea of the algorithm in Section V.

II. Closed patterns, abstractions and
confluences

In order to make the article as self-contained as pos-
sible, we firs recall definitions and results about closure
operators and recall that support closed patterns are ob-
tained as the images of a closure operator. We then dis-
cuss abstractions, and abstract support closed patterns,
also obtained applying a closure operator. When applied

1We note implication rules indifferently 2ec → 2el or, as in this
example, 2ec → 2el \ c.



to the set of vertex subsets of some attributed graph,
graph abstractions constrain the extensional space to
vertex subsets satisfying some property. More recently
abstractions have been generalized to weaker structures
called confluences. Graph confluences will allow to con-
strain the extensional support sets to dense parts of the
graph.

A. Preliminaries
Definition 1: Let E be an ordered set and f : E → E

a self map such that for any x, y ∈ E, f is monotone,
i.e. x ≤ y implies f(x) ≤ f(y) and idempotent, i.e.
f(f(x)) = f(x), then:
- If f(x) ≥ x, f is called a closure operator
- If f(x) ≤ x, f is called an interior operator.
In the first case, an element such that x = f(x) is

called a closed element.
A well known result on closure operators on lattices

has the following dual variant:
Property 1: Let T be a lattice. A subset A of T is the

range p[T ] of some interior operator on T , if and only if
A is closed under join. The interior operator p : T → T
is then defined as p(x) = ∨{a∈A|a≤x}a and A is a lattice.
When T is a power set, as 2O, the meet and joins
operator simply are the intersection ∩ and union ∪
operators. The intuition is that p(x) is the greatest
element of A included in x.

In data mining the set of occurrences of a pattern q,
belonging to some pattern language L, as 2I , is known as
the support set ext(q) of pattern q and a pattern q is said
support-closed whenever it is a maximal pattern among
those sharing the same support set. Now, whenever there
is a unique support closed pattern corresponding to a
given support set e, as it is the case in the itemset
mining framework, an intension function int(e) returns
this support-closed pattern, and the map int ◦ ext is a
closure operator. This leads to a connection between the
two spaces, L and 2O called a Galois connection, defining
closure operators on both space.

Projected or abstract Galois lattices have been re-
cently defined by noticing that applying an interior op-
erator on 2O [10], [11] we obtain again closure operators:
Property 2: Let X and L be two lattices, (int, ext)

be a Galois connection on (X, L) and p be an interior
operator on X, and A = p[X] the associated abstraction,
we have that (int, p ◦ ext) is a Galois connection on
(A, L), i.e.:

f = int ◦ p ◦ ext is a closure operator on L,
The abstract support set of pattern q is obtained as

p ◦ ext(q). What happens here is that a new equiva-
lence relation is defined such that q ≡A w whenever
p ◦ ext(q) = p ◦ ext(w), each equivalence class of which
corresponds to some element e of A and has a maximum,
i.e. a unique abstract support closed pattern. Note that,

as p is monotone, whenever ext(q) ⊆ ext(w), i.e. q → w
is valid we also have p ◦ ext(q) ⊆ p ◦ ext(w), i.e. the
abstract implication 2Aq → 2Aw is also valid. We say
that from q → w we infer 2Aq → 2Aw.

Now to introduce locality in the closure framework, we
have to consider confluences which are structures weaker
than lattices investigated in [12] and close to confluent
families introduced by Mario Boley and co-authors [13]2.
Extensional confluences restrict the extensional space

2O or A to a subset F . In this case the support set e
of a pattern q is projected, through interior operators,
on various smaller and disjoint local support sets {ei}.
We obtain then local closure operators fi, each leading
to a local closed pattern: fi(q) is then the most specific
pattern shared by objects in the local support set ei.
We define hereunder confluences through a characteristic
property:
Property 3: Let X be a lattice and F ⊆ X, F is a

confluence of X if and only if for any x, y, t in F with
x ≥ t and y ≥ t, we have that x ∨ y belongs to F .
A confluence is associated to a set of interior operators

each defined on an up set Xt = {x ∈ X|x ≥ t} of X
Lemma 1: Let F be a confluence of a lattice X,
• the mapping pt : Xt → Xt such that pt(x) =
∨q∈F t∩Xx

q, is an interior operator and pt[Xt] = F t.
• if q ≤ t, and x ∈ Xt, then pt(x) = pq(x)
A consequence of this result is that we only need

the minimal elements of F ,min[F ], to characterize a
confluence, i.e. F is a confluence of X if and only if for
any x, y in F with x ≥ m and y ≥ m, where m is a
minimal element of F , we have that x∨ y belongs to F .
Inclusion of local support sets define local implication

rules, denoted 2A
t q → 2A

t w and whenever F ⊆ A,
2Aq → 2Aw is valid and t ⊆ ext(w) we also have that
2A

t q → 2A
t w is valid.

Of course some valid abstract implications are not
valid implications and some valid local implications are
not valid abstract implications. As a result abstract and
local rules add some new knowledge to what can be
directly observed from the support sets of patterns.

III. Local closures and local implications
In the example that follows, we define a graph conflu-

ence by considering a non-directed graph.
Example 1: Let O = {1, 2, 3, 4}, G = (O, E) be a

graph whose vertex set is O and edge set is E. Let
F ⊆ 2O be the set of vertex subsets inducing connected
subgraphs of G. F is a confluence whose set of minimal
elements is M = {{1}, {2}, {3}, {4}}, i.e. the set of
singletons of 2O. The union of two vertex subsets each

2The two definitions differs on the following point the empty
itemset belongs to any confluent family while a confluence may
have several minimal elements.



inducing a connected subgraph of G that contains a
given singleton s is a vertex subset obviously inducing a
connected subgraph of G: s connects the two subgraphs,
and therefore F is a confluence of 2O. The projection p{s}
projects then any vertex subset S containing s on the
connected component of G(S) containing s. The up set
F {s} is then the set of vertex subsets inducing connected
subgraphs containing s and the union of all these F {s}

represents the whole set of connected subgraphs of G.
For the sake of simplicity we will further write singletons
{s} as s and subsets as words as for instance 123. The
subset F 1+3 = F 1 ∪ F 3 representing vertex subsets
inducing connected subgraphs containing vertices 1 or
3 also is a confluence. Figure 2 displays the diagram of
F 1+3.
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Figure 2. The Hass diagram of a family F of connected sub-
graphs each generated by a vertex subset of the original graph
whose vertex subset is {1, 2, 3, 4} and whose edges form the square
{12, 23, 34, 14}. We only display here the part F 1+3 = F 1 ∪ F 3 of
F , which also has the confluence structure: F 1 and F 3 both are
lattices whose join operator is the set theoretic union and therefore
F 1+3 is a confluence.

We have then a result stating that the set int[F ] of
intensions of a confluence F , i.e. local support closed
patterns, is obtained by joining the ranges of a set of
local closure operators. We first need to define these local
closure operators:
Property 4: Let e be an element of X = 2O, Lint(e)

be the down set of L whose maximum is int(e) and
Xe be the upset of X whose minimum is e, F be
a confluence on X, e an element of F and pe the
corresponding interior operator on Xe, then fe = int ◦
pe ◦ ext is a closure operator on Lint(e)

fe is a called a local closure operator with respect to
e.

When considering a given (possibly abstract) closed
pattern c with respect to 2O, whose local support set
e contains m, and whose corresponding local closed
pattern in F is l, we have that the implication rule
2mc → 2ml holds. The set of such 2mc → 2ml local

implications, with c 6= l, represents (a basis for) the local
knowledge deriving from the reduction of the extensional
space from 2O to the confluence F .

IV. Graph abstractions and graph
confluences

We consider that the set of objects O is the set of
vertices of a graph G = (O, E) whose edges represents
relation between objects. A vertex is labelled with an
element from a language of patterns L. From now on,
without loss of generality, we will consider a set of
attributes (or items) X and 2X as the pattern language.

A. Graph abstractions
Following proposition 1 an abstraction A ⊆ 2O is

defined as a part of 2O closed under union and can
equivalently be defined as p[2O] where p is an interior
operator on 2O. The following Lemma defines a way to
build abstractions:
Lemma 2: Let P : O × 2O → {true, false} be

such that i) P (x, e) implies x ∈ e and ii) e ⊆
e′ and P (x, e) implies P (x, e′), then the iteration of the
function q defined as q(e) = {x ∈ e|P (x, e)} reaches
a fixed-point and the operator p defined as p(e) =
fixed− point(q, e) is an interior operator. P is then
called the characteristic property of the corresponding
abstraction.

A graph abstraction is defined through a characteristic
property P (x, e) which expresses some minimal connec-
tivity requirement of the vertex x within the induced
subgraph Ge, as for instance the degree ≥ k-graph
abstraction Adegree≥k that states that a subset of vertices
e belongs to Adegree≥k whenever d(x) ≥ k for all x in Ge.
We give hereunder two characteristic properties of graph
abstractions we are interested in:

1) cc ≥ s: x has to belong to a connected component
of size at least s in Ge

2) k-clique: x belongs to some k-clique of Ge.
It is interesting to note that we can combine two (or

more) abstractions A1 and A2. For instance, we may
consider abstract subgraphs whose vertices both belong
to a k-clique and to a connected component exceeding a
minimal size s.

B. Graph confluences
A graph confluence is a confluence of 2O where O is the

vertex set. The simplest graph confluence, called a cc-
confluence is obtained by considering only vertex subsets
inducing connected subgraphs as exemplified above: for
any vertex v, and any vertex subset e ⊆ O, p{v}(e) is
the connected component of G(e) that contains v.

In what follows, we will consider a family T ⊆ 2O, and
consider T as the vertex set of a derived graph GT =
(ET , T ). We consider then the cc-confluence F of 2T as



the extensional space and search for the corresponding
local closed patterns. The corresponding local support
sets are afterwards transformed into support sets in 2O.
Let u : 2T → 2O be such that u(eT ) = ∪t∈eT

t. u(eT )
is called the flattening of eT . We consider then the two
maps extT and intT defined as follows:
• extT : L→ 2T with extT (p) = {t|t ⊆ ext(p)}
• intT : 2T → L with intT (eT ) = int ◦ u(eT )

extT (p) represents the support set of p in T when
considering that p occurs in t whenever p occurs in
all elements of t as a subset of O. Conversely intT (eT )
represents the greatest pattern in L whose support set
in T includes eT , i.e. whose support set in O contains, as
subsets, the elements of eT . We have then the following
result when flattening the (local ) support sets so found
in F :
Property 5: Let F be a confluence of 2T and U = u[F ],

where u is the flattening operator on O, then
• intT [F ] = int[U ]
• Let (eT , l) a local (local support set, local closed

pattern) pair and eT ≥ m ∈ min[F ], then u(eT )
is the greatest element of u[F m] among elements e
such that int(e) = l.

Note that we may as well start from an abstract
extension on 2T deriving from an abstract extension on
2O and preserve the equivalence between intT [F ] and
int[U ].

Now, a k-community in a graph G is the flattening (in
the sens defined above) of a connected component when
considering the graph GT derived by considering the
family T of k-cliques of G. Therefore, int[U ] is the set of
most specific patterns each occurring in a k-community
induced by the support set of some pattern.
Example 2: Let G = (O, E) be the graph displayed

on the left part of Figure 3. Each vertex of G belongs
to some triangle in G, therefore G is the same as
its triangle abstraction. Each vertex has an itemset
included in {a, b, c} as a label. The set of triangles is
T = {t0, t1, t2, t3, t4, t5, t6, t7} and form a triangle graph
GT displayed on the right part of Figure 3. An edge
relates any pair of triangles sharing two vertices in
G, as for instance (t0, t1). Each triangle in GT has as
its itemset the intersection of the itemsets of its three
vertices in G. For instance, the description of t1 in
GT is ac = abc ∩ ac ∩ ac. The vertex subsets inducing
connected subgraphs of GT form the confluence F T =
{{t0}, {t1}, {t0, t1}, {t2}, {t3}, {t2, t3}, {t4}, {t5}, {t4, t5},
{t6}, {t7}, {t6, t7}}. We do not consider in this example
the empty pattern.

The support set of the pattern a is ext(a) =
{t0, t1, t2, t3, t6, t7}. The local support with respect to
t0 is pt0({t0, t1, t2, t3}) = {t0, t1}, i.e. the connected
component containing {t0} of the subgraph induced by

ext(a).
• f0(a) = f1(a) = ac, f2(a) = f3(a) = ab, f6(a) =

f7(a) = ab

In the same way, the pattern b whose support set is
ext(b) = {t2, t3, t4, t5}. leads to the following local closed
patterns:
• f2(b) = f3(b) = ab, f4(b) = f5(b) = bc, f6(b) =

f7(b) = ab

Note that ab appears both as a local closed pattern
resulting from a with respect to f2, f3 and f6, f7, and
as a local closed pattern resulting from b with respect
to f2, f3 and again to f6, f7. Now, as both a and b are
closed patterns with respect to 2T , we obtain various
triples in the form (a, eT , l) and (b, eT , l) corresponding
to local implications in the form 2eT

a → 2eT
l and

2eT
a → 2eT

l. The former, for instance, also rewrites
as 2{ti}a → 2{ti}l where ti is any element of eT . This
leads to the following sets of local implications:
• 2{t2}a → 2{t2}ab, 2{t3}a → 2{t3}ab, equivalent to

2{t2,t3}a→ 2{t2,t3}ab
• 2{t6}a→ 2{t6}ab, 2{t7}a→ 2{t7}ab,
• 2{t2}b→ 2{t2}ab, 2{t3}b→ 2{t3}ab,

2
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Figure 3. On the left we have a graph of objects each described as
an itemset included in {a, b, c}. This graph represents the triangle
abstraction of some input graph. On the right, the graph GT whose
vertices are the triangles of G. The itemset describing a vertex in
GT is the intersection of the itemsets describing the elements of
the corresponding triangle in G.

C. Experiments
In our experiments we use the CORON software [14]

to compute frequent closed patterns, according to some
frequency threshold, then apply a set of PYTHON func-
tions as a post processing3. Starting from the set of
frequent (possibly abstract) closed patterns C we then
compute for each such pattern c ∈ C the subgraph
induced by its (abstract) support set, extract the var-
ious connected components {e1, ..., ek} that are large
enough, compute the corresponding local closed patterns

3The corresponding software is to be found in https://lipn.
univ-paris13.fr/~santini/ .



{c1, ..., ck} and output the corresponding triples. By ap-
plying the l 6= c constraint we select the triples express-
ing some new local knowledge and the corresponding
local implication rule basis. When we are interested in
computing k-communities, we start from the k-clique
graph abstract closed but we also have to build the
k-clique graph GT , where T is the set of k-cliques in
G, and compute the local closures corresponding to
the subgraphs of GT induced by the connected compo-
nents of our abstract closed patterns, and output the
corresponding triples, where the local support sets are
flattened to be expressed as subsets of O.
1) Teenage Friends and Lifestyle Study’s dataset: The

dataset is denoted as s50-1 and is a standard attributed
graph dataset4. It represents 148 friendship relations
between 50 pupils of a school in the West of Scotland,
and labels concern the substance use (tobacco, cannabis
and alcohol) and sporting activity. Values of the cor-
responding variables are ordered. The binarization pro-
cess consists in defining variables representing the value
intervals. T stands for Tobacco consumption and has
values 1 (no smoking), 2 (occasional) and 3 (regular).
C stands for cannabis consumption and has values 1
(never tries) to 4, D stands for alcohol consumption and
has values 1 (does not drink) to 5, and S stands for
sporting activity and has two values 1 (occasional) and
(2) regular. A binary variable represents an interval, as
for instance C23 that has value 1 whenever the value of
C is in [2, 3]. For sake of simplicity we have merged the
two highest values in variables T,C and D. For instance
values 4 and 5 in alcohol consumption are merged into
a 4m (4 and more) value. The binary attributes allow to
represent any interval: for instance D=2 is obtained as
{D12,D23m}.

We want to answer to the question: "what knowledge
can be extracted when considering groups of pupils
sharing some pattern and connected by friendship re-
lationships?". For that purpose, we computed the local
abstract closures associated to the cc-confluence repre-
senting 3-communities in subgraphs of the triangle graph
GT derived from the original graph and the "support≥ 4"
constraint on O.

We recall (see Figure I) that the graph GT is originally
made of 8 connected components which only 5 satisfy the
minimal size of 4 in O. From an original set of 166 global
closed patterns computed on O, 109 became infrequent
when applying the local closure, and 57 leads to one of
the 14 frequent local closed patterns found in F .
The local closure of the global pattern {S2} leads to 3

local patterns belonging to 3 separate connected compo-
nents of GT . The 3 corresponding local abstract patterns
are namely {S2, C1, T1}, {S2} and {S2, C12, D4m}.

4http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm

More formally we have the following local implication
rules:

221,25,31,32,34,37 {S2} → 221,25,31,32,34,37 {C1, T1} ,
211,19,26,27,29,30,33 {S2} → 211,19,26,27,29,30,33 {} ,
210,11,15,16 {S2} → 210,11,15,16 {C12, D4m} .
Overall, if a pupil do sports regularly and is member

of a 3-community larger than 4 pupils, then
• We learn from the first local implication rule that

she also never smokes neither tobacco nor cannabis
if she belongs to the 21, 25, 31, 32, 34, 37 community
(a very responsible community),

• We do not learn anything from the second local im-
plication rule, concerning the 11, 19, 26, 27, 29, 30, 33
community as the local closed pattern is identical to
the global from which it derives.

• We learn from the last local implication rule that
she also never smoke cannabis or tried it just once
but drinks alcohol at least once a week if she belongs
to the 10, 11, 15, 16 community ( a less responsible
community).

It should be noticed that pupil number 11 belongs to
the communities corresponding to the two last implica-
tion rules. It illustrates that the knowledge extracted is
only indirectly related to individuals: the knowledge is
extracted at a coarser level, the level of k-cliques, and
a same individual may belong to two k-cliques in two
different communities.

V. A direct algorithm to compute the set of
(c, e, l) triples

A drawback of the indirect approach used in our
experiments is that we need to first apply on the (non
abstract) closed pattern a global frequency constraint
which may prohibit to address large problems. We pro-
pose here a direct approach to solve Problem I men-
tioned above and output with no repetition the (c, e, l)
triples w.r.t. a graph GT and satisfying a frequency con-
straint on the object set O. For that purpose, we consider
a Divide and Conquer algorithm designed to efficiently
compute closed itemsets as described in [13] and adapted
in [15]. The general idea is to use a Divide and Conquer
strategy in order to avoid outputting and specializing
patterns computed earlier during the enumeration. The
original algorithm described in [13] is correct whatever is
the closure operator, and may the be applied to compute
abstract closed pattern, provided that the corresponding
interior operator is applied to the support set of the
pattern to close before intersecting the descriptions of its
objects. The original algorithm was shown as polynomial
delay, i.e. the delay between outputting two support
closed patterns was polynomial in the dataset size. This
basically relies on the fact that each closure computation
is polynomial and that whenever a closed pattern is



avoided (as previously output) the whole branch in the
search tree is pruned.

Regarding local closures computation, we use the same
algorithm, except that we compute the local closures of
each closed pattern C and prune the branch whether
C has no frequent local closed pattern. Otherwise,
each frequent local closed pattern L deriving from C
is associated to its local support set e, together with
C. This algorithm ensures that each triple (C, e, L) is
enumerated once. Note that the same local support set
e may be enumerated several times, associated with
various closed patterns C, C ′.. but always with the same
local closed pattern L.

VI. Conclusion
We have addressed the question of local knowledge

to extract from an attributed network, associating to
a pattern local support sets, i.e dense parts of the
subgraph induced by its support set, and therefore local
closed patterns. We have shown that the set of all k-
communities associated to attribute patterns form a
set of local support sets, to which are associated local
closed patterns and local implication rules. We have
experimented these ideas using a post processing of the
set of closed patterns found on the dataset of attributed
vertices, and then proposed a polynomial delay algo-
rithm to enumerate the set of triples (closed pattern,
local support set, local closed pattern) from which a
basis of local implication rules is extracted.

The central idea is that the notion of support set, i.e.
the set of objects in which some pattern occurs, has to be
constrained according to the graph structure. The result
is not only a set of abstract and local patterns, but also
local knowledge, expressed here as abstract and local
implication rules. The article proposes a way to extract
all k-communities of all pattern subgraphs of an original
graph G, and related local knowledge as local implication
rules, by considering a derived graph in which vertices
are k-cliques. This can straightforwardly be extended to
any derived graph obtained by considering a particular
family T of vertex subsets as new vertices of the derived
graph. However, the basic idea, i.e. defining communities
as dense parts of pattern subgraphs and associating to
each a most specific pattern shared by the community,
can be extended to any way of defining communities.
What proposes the present article is a framework in
which the computation of pattern subgraphs commu-
nities and related local knowledge is efficient using a
generic algorithm.
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