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Abstract—It is a common problem that cost of extracting
data for network analysis could be very high. Also sometimes
in the Internet is it hard to find graph with desired features
such as node degree or clustering level. Because of that graph
generators can than be very helpful. In the past bunch of models
of such generators was developed: random graphs, small worlds
and scale free networks. All of these generators were developed to
quickly and efficiently create networks with desired parameters.
However all of this models produce single layer graphs. Domain
of multiplexes or multilayer graphs has not already been so
deeply analysed, also because it is hard to collect multilayer data
among real datasets or there is hard to define what kind of
information layers exactly should represent. Proposed MuNeG
— Multilayer Network Generator can produce, based on set of
input parameters, multiplex networks - networks where each node
has its counterpart in each layer. The carried out experiments
proved that MuNeG graphs have different network and social
parameters depends on input values. This feature gives user a
very handful tool to generate multiplex networks on purpose of
social network or complex network analysis. Generator features,
input parameters and their influence on so called graph theory
measures such as: node degree, average shortest path, diameter
or clustering are described in the following article.

Keywords—Complex Networks, Network Generation, Synthethic
Dataset, Collective Classification

I. INTRODUCTION

Extracting network data can and very often is a very com-
plex and expensive task. Additionally once extracted network
has constant network features like: distribution of node degree,
number of triangles or clustering coefficient. It is known
that networks from different domains show different graph
properties. It is known problem to have a variety of graphs to
test newly designed methods in many environments, especially
when method is designed to be context free. Because of that,
methods of network generation gain recently more and more
followers.

One of the recent most popular problem is to analyse
multilayer graphs. In reality multilayer networks are repre-
sented by complex structures where data comes from different
sources. In this kind of networks, layer is represented by each
source. In social networks layers can represent types of social
relations like: family, friends, co-workers. Special types of
multilayer graph is a multiplex. Multiplex is a structure in
which each node has its counterpart in each layer. Nodes are
connected only within layer, connections between layers exist
only between couterparts [1].

Among the existing network generators, it is far from
seen once that also generates labeled nodes for collective

classification task in multilayer data. One published in [2]
provides flexible tool for generating heterogeneous networks
with classes, but this method is still single layer.

In this paper new multiplex network generator - MuNeG
has been proposed. MuNeG can generate a variety of complex
networks. It can be configured by a set of parameters, what
makes this method very flexible. The carried out experiments
prove that generation parameters have a significance influence
on network and social features of the graph, which makes
MuNeG a comfortable and context free tool.

II. RELATED WORK

This work is strongly connected to the theory of random
graphs. This topic initially was analysed by Erdős and Rényi
[3]. In their approach graph is generated by placing random
undirected edges between nodes. This model produces a graph
where node degree comes from binomial distribution and
number of edges is strongly dependent on defined number of
nodes.

Degree distribution as an input for random graph generation
was proposed in configuration model [4]. In this approach at
the beginning each node becomes set of initially not connected
edges. The number of edges comes from defined degree
sequence. Last step is to randomly connect nodes to "fulfil"
degree requirements. This model can generate every graph
from a given degree sequence with same probability.

Another group of models are small worlds. Approach
proposed by Watts and Strogatz [5] puts given number of
connected nodes on a ring. Each node is connected to k
nearest neighbors. Than with certain probability edges are
chosen to "rewired" process. First end of the edge stays
unchanged, but second end(new node) is chosen uniformly.
Such generated small worlds have small average shortest-
path and high clustering coefficient, which make this networks
similar to real-world social networks.

Last group of random graph models are scale-free net-
works. Such networks have a power-law degree distribution.
Method proposed by Barabási und Albert [6] generates grow-
ing network. Algorithm starts with a small network, than new
nodes are added to graph and they are being connected to
existing nodes with probability proportional to current node
degree. This kind of network tends to produce hubs—nodes
with a very high degree. Degree distribution of such nodes
comes from power-law and average shortest-path is growing
logarithmically.



As we can see, already many flexible and complex graph
models have been proposed. However there is a very limited
set of generators that produce multiplex networks labeled
nodes for classification task. Model proposed by Eldardiry and
Neville [2] produces graph with labels but this method is still
only single layer.

In this work new multiplex network generator with node
labeling will be presented and described.

III. MUNEG

MuNeG—Multilayer Network Generator is a flexible tool
which in one-liner generates multilayer networks with binary
labels. This labeling can be then (and successfully was [7])
used in collective classification [8].

Multiplex networks are special cases of multi-layer net-
works. Each node in multiplex has its counterpart in each layer
[1]. Multiplexes can be described as a extension of classic
graphs. Flat graph can be represented as pair G = (V,E),
where V is set of nodes and E is set of edges between nodes.
In the directed and weighted version of such graph, an edge
∀eij ∈ E : eij = (vi, vj , wij), vi, vj ∈ V, vi 6= vj and wij ∈ R
is a weight of edge vij . All nodes vi ∈ V are of the same
type and there exists only one edge from eij from vi to vj . In
multiplex case network is a tuple MG = (V, V L, E,EL,L),
where L is a set of distinct layers, each node vi ∈ V
has its own representation at each layer l ∈ L such that
vil ∈ V L, eijl = (vil, vjl, l, wijl). Node representations vil
from one layer l together with their edges, in fact, form
an uniplex network G = (V,E). Typically, layers represent
different source of relations. In social networks they can
represent types of relationships between humans, e.g. one layer
corresponds to friendships from Facebook whereas another to
professional links between co-workers and collaborators from
LinkedIn, see Fig. 1.

Figure 1. A multi-layer social network with two layers

MuNeG is an enhancement of Eldardiry model [2] to the
space of multiplexes. Generator is controlled by six parame-
ters:

• Number of nodes-NV

• Number of groups-NGr

• Group homophilly - pGr

• Probability that two nodes from same group are con-
nected - pin

• Probability that two nodes from different groups are
connected - pout

• Number of layers - L

Before the detailed definitions of probabilities pGr, pin and
pout, it is necessary to define some markings. Class label C
for each node has value from set {0, 1} As it was said MuNeG
can generate binary classes. Nodes in generated network are
collected in groups. Such collections represent constructions
similar to communities in social networks. Nodes in groups
are labeled alike to each other. Similarity between nodes in
group is related to group homophilly(pGr) described below.
Set T = {red, blue} contains possible group names. Each of
NGr group is either red or blue. Group color labeling Gri is
randomly assign with same probability:

p(Gri = blue) = p(Gri = red) = 0, 5 (1)

Homophilly is a measure how much nodes in social groups
tend to be similar to each other. In network generator proba-
bility pGr which represents group homophilly is used semanti-
cally as measure how probable is same labeling within group.
It can be represented as:

pGr = p(C = 0|Gr = red) = p(C = 1|Gr = blue) (2)

Probability pin is a conditional likelihood of edge existence
between nodes within group. Notation E = 1 means that edge
exists. This graph parameter can be represented as:

pin(Eij = 1) = p(E = 1|Gri = Grj) (3)

Last parameter pout is a conditional probability that edge
between nodes from different groups exists. It can be defined
similar to previous parameters:

pout(Eij = 1) = p(E = 1|Gri 6= Grj) (4)

With this set of parameters, MuNeG generation algorithm can
be presented in following pseudo code:

Algorithm 1 MuNeG
1: for each group g, 1 <= g <= NGr do
2: Choose a group color from p(Gr) (Eq 1)
3: end for
4: for each node n, 1 <= n <= NV do
5: Choose uniformly group assignment Grn
6: Choose a class Cn from pGr — p(C|Grn) (Eq 2)
7: end for
8: for each layer l, 1 <= l <= L do
9: for each node i, 1 <= i <= NV do

10: for each node j, i <= j <= NV do
11: if Gri = Grj then
12: Choose if edge exists in layer l from pin —

p(E|Gri = Grj) (Eq 3)
13: else
14: Choose if edge exists in layer l from pout —

p(E|Gri 6= Grj) (Eq 4)
15: end if
16: end for
17: end for
18: end for



In figure 2 result of MuNeG algorithm is presented. This
network was generated with following parameters:

• 200 nodes

• 5 groups(3 reds and 2 blues)

• 50% group homophilly

• 70% probability of edge existence within group

• 10% probability of edge existence between groups

• 1 layer

Figure 2. Graph generated by MuNeG - Groups are marked with numbers

In the figure it is clearly showed that generator parameters
have strong influence on features of the generated graph.
It can be seen that graph has 5 separate groups. Nodes
within groups are much more "squeezed" — there are more
connections inside groups, what comes from 70% probability
of connections. It can also be observed that there are much
less connections between groups, because probability of such
connections is only on 10% level.

MuNeG is an open-source graph generator implemented
in Python [9]. Because of issues, that Python has with "for"
loops, code was cythonized [10], what leads to performance
gain. Whole code is available in Github: https://github.com/
Adek89/multiplex/tree/master/MuNeG.

In the next section parameters of the model, based on
generated graphs will be analysed.

IV. PROPERTIES OF THE MODEL

Depending on domain from which network is derive, graph
can have different properties. Is is easy to imagine that social
network can have different features that network of web pages
or network of sensors. To analyse MuNeG generated graphs

features, some popular measures from graph theory and social
network analysis were chosen:

• Node degree

• Number of edges

• Clustering coefficient

• Number of triangles

• Average shortest path(ASP)

• Diameter

In figures 3-20 selected properties of the model were presented
depends on graph generation features. Experiments shows that
networks generated by the model can be used in many domains
to simulate real graphs.

A. Node degree and number of edges

The node degree(deg(v)) represents number of edges
which are connected to the node(vertex). Degree has a big
influence on graph and node parameters. Worthy of notice are
following features [11]:

• In most graphs node degree is not equal. Each graph
has maximum(∆(G)) and minimum(δ(G)) degree.

• If in graph each node has equal degree, then graph
is named regular and degree is analysed in terms of
graph, not node feature.

• Isolated are these vertices, with degree 0

• Nodes with degree 1 are named leafs or end nodes.
Edge connected to such vertex is named pendant

• When in each subgraph of a graph exists node with
degree at most k, then such parent graph is called k-
degenerated graph

Degree sequence is a non-increasing sequence of node
degrees [12]. However such sequence in general do not identify
real graph. It means that there are another graphs, that can
have same degree sequence. Not all sequences of decreasing
positive integers can be a degree sequence of a real graph.
From degree sum formula [13]:∑

v∈V

deg(v) = 2|E| (5)

it is known that if sum is odd then sequence cannot be a degree
sequence of a real graph. Converse is also not straightforward.
If sum of sequence is even that from such sequence multigraph
can always been constructed, but finding of simple graph from
even sum is more challenging. This problem is named as
graph realization problem [14], another problem of finding or
estimating all graphs from degree sequence is a problem from
graph enumeration domain [15].

Degree distribution is a probability distribution of nodes
degrees over the analysed network. Such distribution is very
important in social network analysis and is very helpful on
studying real and theoretical networks. For example earlier
mentioned random graphs have binomial or Poisson degree
distribution [4]. However real network distributions are differ-
ent. Real networks have distribution where majority of nodes



have low degree, but there exist few nodes with very high
value(hubs). As it can be imagined, distribution is skewed to
the side of low degrees. Some social network are approxi-
mately similar to power-law represented by scale-free networks
of Barabási [6].

The carried out experiments produced 300000 generated
graphs from MuNeG. Research showed strong influence of
generator parameters on generated model. In experiments
following configurations(combinations) were tested:

• NV = {100, 500, 1000}

• NGr = {2, 3, 4, 5, 6, 7, 8, 9}

• pGr = {50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%,
90%, 95%, 100%}

• pin = {50%, 60%, 70%, 80%, 90%}

• pout = {1%, 5%, 10%, 20%, 30%, 40%, 50%}

• L = {2, 3, 5, 6, 8, 10, 13, 21}

All results presented below are averaged numbers among all
experiments. In Fig. 3 it is shown that number of generated

Figure 3. [Node degree] Number of layers

layers is proportional to node degree. This result can be simply
interpreted. Each node has its counterpart in each layer and
according to pseudo code each edge existence is calculated in
each layer separately. That leads to conclusion that node degree
in each layer is similar(it comes from same distribution).
Number of edges is also layer number depending(see fig. 5).
Reason for such behaviour is the same like in fig. 3

Figure 4. [Node degree] Probability of edge existence betweeen groups

In fig. 4 very interesting feature is shown. On horizontal
axis probability of edge existence between groups is presented.

As it can be observed, node degree is increasing when proba-
bility of such existence is >= 10%. By < 10% node degree is
stable. So to generate simple graphs with small node degree,
such connection probability should be low.

Figure 5. [Number of edges] Number of layers

Figure 6. Degree rank plot of exampled graph

In fig. 6 degree sequence of exampled graph(500 nodes, 9
groups, 50% probability of edge existence within group, 1%
probability of edge existence between groups, 2 layers) was
plotted. As it can be seen degree distribution in this case is
similar to normal, but with small standard deviation.

B. Clustering coefficient and number of triangles

Clustering coefficient is a measure of a node tendency
to cluster together with other nodes. There are two types of
clustering coefficient: global and local. Global measure is a
feature of the graph and is dependent on number of triangles
in whole graph. To define global clustering coefficient term
of triplet should be defined. Triplet is a set of three nodes
connected by 2(open triplet) or 3(closed triplet) edges. Global
clustering can be defined as:

C =
3 ∗ number_of_triangles

number_of_connected_triplets
(6)

Measure is also named as transitivity of the graph [16]

In fig. 7 number of triangles depending on number of layers
in generated multiplex is presented. This feature is directly
connected with method of edge generation. Each edge is in
layer generated independently.



Figure 7. [Number of triangles] Number of layers

Figure 8. [Number of triangles] Number of groups

In fig. 8 it can be observed that increasing number of
groups leads to lower number of triangles. It proves that
generated groups tend to be more independent when there are
lower number of nodes inside.

Figure 9. [Number of triangles] Probability of edge existence between
groups

In fig. 9 probability of connection between groups was
drawn on horizontal axis, while number of triangles is pre-
sented on vertical one. Results are similar to fig. 4. When
probability is lower than 10% graphs are very similar. Also
number of triangles is almost equal, than when probability is
greater than 10% feature of number of triangles is increasing
dramatically(almost 5 billions difference!).

Local clustering coefficient is a node measure, how strong
its neighborhood tends to be a clique. Measure was introduce
by Watts and Strogatz by checking if network is a small world
[5]. It can be calculated from number of triangles through node
and node degree:

cv =
2 ∗ T (v)

deg(v)(deg(v)− 1)
(7)

, where T (v) is a number of triangles through node v. As it
was mentioned this local measure have a big influence of a

small-world differentiation from random graph. Small-worlds
have bigger clustering than random graph built from same node
set, while both constructions have same average shortest path
length.

Figure 10. [Clustering] Number of layers

MuNeG generated graph present in average high
clustering(> 0.6). But this measure is also depending on
generation parameters. Similar to number of triangles, clus-
tering is increasing by increasing number of layers(fig. 10)
and decreasing by decreasing number of coloured groups(fig.
11).

Once more probability of edge existence between groups
gives the most interesting outcome(fig. 12). By probability
smaller than 10% clustering has the biggest value(near 1), then
by probability exactly 10% turn up sudden decrease. From that
point clustering is slowly growing up and finally by 50% is
equal once more almost to 1. It can be explained in following
manner. By probability lower than 10% in the network exists
big clustering within the groups. Then after 10% clustering
outside groups takes over the domination in the network.

Figure 11. [Clustering] Number of groups

Figure 12. [Clustering] Probability of edge existence between groups



C. Average shortest path

Average shortest path is another measure that describes
topology of the network. It represents average path length
along all shortest paths between all nodes in graph. More
formally it can be defined as:

a =
∑

v,k∈V

d(v, k)

n(n− 1)
(8)

, where d(v, k) is a length between nodes v and k and n is
number of nodes in the graph. Semantically average shortest
path characterises networks that supports short and fast transfer
of information like closely bind nodes in sensor network or
small worlds in social network domain [17]. Because of that
this parameter is one of the most important in all generators
from random graph, through Watts and Strogatz model and in
Barabási scale free networks. Although big influence on model,
average shortest path is independent on number of nodes in the
graph, what also will be presented in MuNeG charts. On fig.

Figure 13. [ASP] Number of layers

13-16 results of average shortest path along graphs generated
from MuNeG. As is can be observed values of ASP are small:
1.0 < ASP < 1.5. Because of that MuNeG generated graphs
are good to simulate close connected complex networks or in
social domain they are more similar to small worlds.

Figure 14. [ASP] Number of groups

In fig. 13 and 14 influence of number of layers and
number of groups is analysed. As it can be seen value of
ASP is rather independent from this two parameters, but it
is worth mentioned that with bigger number of layers ASP is
decreasing. Such inconsistency can be explained by method of
calculation. Because API natively do not support calculation
of ASP between layers, each layer had to be calculated
independently and all ASPs where than averaged. This graph
shows that this way is not correct and can lead to false

Figure 15. [ASP] Number of nodes

conclusions. Number of group in fig 14 shows that bigger
complexity of the graph leads to longer ASP.

In fig. 15 an evidence that number of nodes has no
significant influence on ASP. Another interesting conclusion
comes from 16. Once more before 10% marker of probability
of edge existence between nodes, network shows no complex-
ity(ASP=1), than after 10% measure reaches its peek and than
slowly decreasing that at level of 50% value once more is 1.
Reason here is exactly the same like for fig. 12

Figure 16. [ASP] Probability of edge existence between groups

D. Diameter

To define diameter correctly it is necessary to introduce
some definitions from graph theory.

Geodesic distance [18] between nodes is a number of edges
in a shortest path between them.

Eccentricity ε(v) of a node v is simply the biggest geodesic
distance from node to any other node in the graph.

Than diameter d of the graph is maximum eccentricity in
the network. Formally:

d = max
v∈V

ε(v) (9)

Diameter value has similar influence on network features like
average shortest path. Very interesting is problem of diameter
degree [19]. Briefly degree diameter problem is a problem of
finding the largest graph with diameter k and largest node
degree d. Size of such graph is upper bounden by Moore bound
[20].

In fig. 17 ot can be observed that with growing network
complexity parameter is decreasing. It means that if number
of groups is bigger then diameter is more similar to ASP.



Figure 17. [Diameter] Number of layers

Figure 18. [Diameter] Number of groups

Once more number of layers has unexpected influence on
diameter(fig. 18. Reason for that here is exactly the same like
in fig. 13.

Figure 19. [Diameter] Probability of edge existence within group

In fig. 19 influence on diameter by probability of edge
existence within group is presented. When in groups there
are more edges then diameter is decreasing. It means that
eccentricity of the graph is lower when groups inside are better
connected.

Figure 20. [Diameter] Probability of edge existence between groups

In fig. 20 once more probability of edge existence between
groups shows that before 10% marker network is less complex
than on the right side of this point. However diameter by
probability > 10% is similar and near value of 2.

V. CONCLUSIONS AND FUTURE WORK

Parameter of graph homophilly has no influence on anal-
ysed parameters of the network. It was proved that this
parameter has only influence in task of collective classification
on such generated graphs, but this task is out of scope of this
article. However feature of generating labeled data is very rare
among all available network generators.

As it can be observed, only small set of possible MuNeG
parameters was checked in experiments. Especially number of
generated nodes was not so much tested. Tests of very complex
networks with bigger amount of nodes are still an open tasks.

Another issue are social measures like clustering or aver-
age shortest path. After experiments show upproblems, that
MuNeG can generate only dense connected networks with
short path and diameter. Clustering also showed that usually
graph generated by MuNeG tend to has high value. It is hard to
prepare input parameters to generate network with clustering
< 0.5.

However MuNeG generator is a flexible tool which makes
possible to generate:

• Social networks similar to small worlds

• Complex and densely connected networks

• Graph with different node degree

• Labeled network data

and possibly many more, because not all parameters values
was tested.

All this networks are multiplexes. Thanks MuNeG already
tested phenomenas in single layer domain, can be easily proved
in multilayer graphs. Because it is often hard to collect such
well defined multiplexes, MuNeG tool can be very helpful in
researching this already not so good checked domain. Tool is
completely open source and everybody is invited to developed
it and to test in more complex and demanding tasks.
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