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Abstract—Multiplex networks, a special type of multilayer
networks, are increasingly applied in many domains ranging
from social media analytics to biology. A common task in these
applications concerns the detection of community structures.
Many existing algorithms for community detection in multiplexes
attempt to detect communities which are shared by all layers.
In this article we propose a community detection algorithm,
LART (Locally Adaptive Random Transitions), for the detection
of communities that are shared by either some or all the layers in
the multiplex. The algorithm is based on a random walk on the
multiplex, and the transition probabilities defining the random
walk are allowed to depend on the local topological similarity
between layers at any given node so as to facilitate the exploration
of communities across layers. Based on this random walk, a
node dissimilarity measure is derived and nodes are clustered
based on this distance in a hierarchical fashion. We present
experimental results using networks simulated under various
scenarios to showcase the performance of LART in comparison
to related community detection algorithms.

I. INTRODUCTION

Many real world systems, including social and biological
ones, are often represented as complex networks capturing the
interacting nature of multiple agents populating the system [1].
The different agents are interpreted as the nodes of the
network, and the relations among them are encoded by the
edges of the network. An important aspect of network analysis
is the discovery of community structures defined as groups
of nodes that are more densely connected to each other than
they are to the rest of the network [2]. A large body of work
exists on community detection, and one such extensive review
of the area is given by [3]. One useful way to explore the
structural properties of a real network is to study the behavior
of a discrete-time random walk on it [4]. Random walks have
been successfully used to unfold the community structure
on a network; see, for instance, [5], [6] and [7]. The main
intuition behind these approaches is that a random walker that
jumps from node to node with preset transition probabilities
is expected to get “trapped” for longer times in denser regions
defining the communities.

A multiplex is a particular type of a multilayer network
where all layers share the same set of nodes but may have
very different topology [8]. The structure of the multiplex
allows for layers to be connected by inter-layer weights. These
weights represent some type of association between layers, and
can be specified either by using information extracted directly
from the multiplex or external data. There is a wide class of

real networks that can be represented by a multiplex. Some
examples are the social interactions between users with respect
to various social media or the different transportation means
between stations in a city; for a survey see [9]. One important
area of research on multiplex networks is community detection
since it can identify shared structures of nodes in the multiple
layers.

In this paper we investigate the task of detecting commu-
nities that may be shared by a subset of the layers in the
multiplex. Many multiplex community detection approaches
identify a community partition that best fits all given layers,
i.e. they detect communities shared by all layers. Some of
these methods collapse the information into a single layer and
then use traditional community detection algorithms for net-
works, [10], while other methods extend community detection
algorithms from one to multiple layers, [11], [12]. There exist
real-world systems, however, for which some communities
may be shared only by a subset of layers. Take genomic data
as an example, where groups of genes can be associated with
specific functional processes relevant to some tissues but not
to others [13]. Relatively few solutions exist to address this
problem of detecting communities in a subset of layers, [14],
[15], therefore we propose a new approach to tackle the issue.

The methodology we introduce in this paper is based on
a discrete-time random walk on the multiplex. A multiplex
random walk explores the network both within and between
layers according to some preset transition probabilities [16].
We offer a novel approach of adapting these transition proba-
bilities to depend on the local topological similarity between
any pair of layers, at any given node. By encouraging jumps
between nodes in different layers sharing similar topology,
and penalizing jumps involving nodes across layers that do
not share local topology, we aim to facilitate the exploration
of potential communities that may be shared across layers. The
resulting algorithm, called LART (Locally Adaptive Random
Transitions), defines a multiplex random walker that will spend
a longer time moving between nodes in communities which
are shared across layers. The random walk will also get
“trapped” in one layer for longer if a community is specific
to this layer. We take advantage of the properties of this
random walk to introduce a distance measure between nodes,
and an agglomerative clustering procedure is then used to
detect communities within and between layers. The resulting
algorithm can be considered as an extension of the WalkTrap



algorithm [5] to the multiplex framework.
The paper is organized as follows. In Section II, we provide

a concise literature review of multiplex community detec-
tion methods. Section III introduces the LART algorithm. In
Section IV we provide an illustrative example to distinguish
between communities shared by two or more layers (shared),
and communities that are specific to one layer (non-shared).
In Section V we compare the performance of the LART
algorithm and other multiplex community detection methods.
Our experimental results are based on networks simulated
under various scenarios for illustrative purposes. In Section VI
we provide concluding remarks and directions for future work.

II. RELATED WORK

In recent years a handful of algorithms have been described
in the literature to address the problem of finding community
structures that are shared by all layers. A straightforward ap-
proach relies on a simple layer aggregation procedure whereby
all the layers are first collapsed into a single network so that
traditional algorithms for community detection can be used
afterward. The weights of the edges between any two nodes
in the aggregated network are defined as a linear combination
of the weights between those same nodes from each of the
layers [10], and different assignments of these weights have
been discussed in [10], [17], [18], [19]. Another direction
consists of applying a community detection algorithm to
each separate layer, and then combining all the resulting
partitions either by using cluster ensemble approaches [20]
or by merging communities across all layers such that each
multiplex community contains a predefined minimum number
of corresponding nodes [21].

Extensions of community detection algorithms from one to
multiple layers have also been proposed in an attempt to take
into account as much information as possible for each layer.
Two such examples rely on the extension of a function of
modularity Q [2]. In its original form, the modularity Q is
defined as the number of connections within a community
compared to the expected number of such connections in
an equivalent random network. In [11], Principal Modularity
Maximization concatenates the partitions obtained on each
separate layer by maximizing modularity Q. Using results
from Generalized Canonical Correlation Analysis, the authors
obtain the final partition by computing the top k eigenvectors
of the concatenated matrix. Another extension of modularity
Q for a multiplex network is proposed in [14]. In addition to
the usual interpretation of Q, this extension accounts for inter-
layer weights that exist between nodes in different layers. In
this way, communities that already exist in separate layers can
be coupled. The two methods in [11] and [14] are robust to
noise and variation in the layers.

The authors of [15] provide an extension to a flow-based and
information-theoretic algorithm known as Infomap [7]. The
information flow is modeled as a random walk with teleporta-
tion through the network. The best community partition over
the network is scored by minimizing the map equation, which
measures the description length of the random walker within

and between communities. In [15] Infomap is generalized for
multiplex networks by modifying some of the constraints in
the original map equation to allow for nodes in different layers
to be assigned to different communities.

Another method for multiplex community detection is the
top-bottom network partitioning approach [22], which uses a
cross-layer edge clustering coefficients to decide whether com-
munities should be split. In [12], a multi-objective optimization
algorithm iteratively maximizes the modularity of the current
layer while simultaneously maximizing the similarity between
the current and the previous layers. The authors of [23] extend
a seed-centric algorithm to fit the multiplex network by means
of multiplex centrality measures. Following their work on
subspace clustering methods used to detect a set of relevant
layers for each community, the authors of [24] use a search
tree for detecting communities. Starting from a seed node, the
proposed algorithm iteratively expands the communities with
respect to a quality function that can be specified by the user.

Since a multiplex can be represented as a third order tensor
[25], tensor decompositions have also been investigated for the
problem of community detection in multiple layers; some of
many such examples are [26], [27] and [28]. These methods
obtain the partitioning using different tensor factorizations.
They are advantageous since they are fast due to their closed-
form solution, although the number of communities needs to
be specified in advance.

III. METHODS

In this section, we first discuss how the inter-layer weights
at each node can be defined using a topological similarity
measure, and introduce a supra-adjacency matrix in which
within-layer and inter-layer connections are stored. We then
adapt the transition probabilities of a multiplex random walk
to depend on the local topological similarity between any pair
of layers at any given node, and briefly discuss their properties.
In order to group nodes into communities using the multiplex
random walk, we introduce a dissimilarity measure between
nodes that captures the community structure of the multiplex.
This measure considers two separate cases: when two nodes
from the same layer are compared, and when two nodes from
different layers are compared. Lastly we explain how these
distances are used to generate hierarchical clusters and detect
communities.

A. The supra-adjacency matrix

An L-layered multiplex network is a multilayer undirected
graph M = (V ;Ak)

L
k=1, where V is a set of nodes, where

|V | = N , and Ak is the N ×N adjacency matrix representing
the set of edges in layer Lk for k = 1, 2, ..., L. For any node
vi ∈ V , i = 1, 2, ..., N , we denote node vi in layer Lk by
vki . The connection between nodes vi and vj in Lk is given
by Aij;k = Aji;k. Nodes vi and vj in Lk are neighbors if
Aij;k = Aji;k = 1, otherwise Aij;k = 0. Furthermore, ∀k,
Aij;k = 0 for i = j. The weighted edge between nodes vki
and vli is the inter-layer connection denoted by ωi;kl ∈ R.
Inter-layer weights have been modeled in different ways in



the existing literature, and usually a fixed inter-layer value
ωi;kl = ω ∀i, k, l, is adopted. Different values of ω ∈ [0,∞)
have been considered to analyze how they affect the time
required for a random walk to cover all nodes in the mul-
tiplex, [16], [29]. In [14], ω ∈ (0, 1] is interpreted as uniform
coupling strength. Values of ω close to 1 encourage the same
community assignment of a node in two different layers, while
ω close to 0 does not support coupling of communities from
different layers.

In this work, the inter-layer weights ωi;kl reflect the similar-
ity in local topology between vki and vli, and is defined as the
number of edges that the two nodes have in common between
layers, i.e.

ωi;kl := |Ni,k ∩Ni,l|

where Ni,k := {vkj : Aij;k = 1} is the set of edges for vki . It
follows that ωi;kl ∈ [0, N − 1].

TheM network has an associated (NL×NL) block matrix
called the supra-adjacency matrix A∗. The diagonal blocks
are the adjacency matrices Ak, and the off-diagonal blocks
are the inter-layer connection diagonal matrices Wkm, namely
Wkm = diag(ω1;km, ω2;km, ..., ωN ;km). Thus A∗(i,k)(j,l) indi-
cates the connection between node vki and node vlj .

The A∗ matrix is used to define the multiplex random walk
on M. In order to define a random walk that is well-suited
for exploring the whole multiplex, however, we require A∗
to be “well-behaved”, i.e. connected and non-bipartite [4]. A
network is connected if there exists a path between any two
pairs of nodes, and is bipartite if it can be divided into two
disjoint sets such that no links connect two nodes in the same
set. A∗ is not necessarily connected since we may have inter-
layer connections ωi;kl = 0. Since Aii;k = 0 for ∀i, k, A∗ may
be also bipartite. We introduce a new supra-adjacency matrix
A obtained from A∗ by replacing the entry Aj with Aj + εI
and Wij with Wij + εI; here I is the N ×N identity matrix
and 0 < ε ≤ 1. The positive weights on the main diagonal of
A make the multiplex non-bipartite, while the positive weights
in the off-diagonal blocks’ main diagonals make the multiplex
connected. Both A and A∗ clearly have the same topology. We
use A to define the transition probabilities in the next section.

B. Locally Adapted Random Transition Probabilities

A discrete-time random walk on M should be allowed to
move within and across layers. The structure of M allows
four possible moves that a random walker can make when
in node vki : when it stays in the same layer Lk, it can either
stay at vki or move to a neighboring node vkj ; when it jumps to
another layer Ll, it can either make a step to its corresponding
node, vli, or move to a different one, vlj . The corresponding
transition probabilities associated to these four possible moves
are defined as

P(i,k)(i,k) :=
A(i,k)(i,k)

κi,k

P(i,k)(i,l) :=
A(i,k)(i,l)

κi,k

P(i,k)(j,k) :=
A(i,k)(j,k)

κi,k

P(i,k)(j,l) :=0

(1)

where κi,k is the multiplex degree of node vki in A defined
as κi,k :=

∑
j,lA(i,k)(j,l). In this formulation, the transition

probabilities depend on the topological similarity between
layers.

The rationale for these definitions is as follows. When vki
and vli have several common neighbors, it may be possible that
both nodes belong to a community shared by those two layers,
Lk and Ll; in this case ωi;kl is high, and in turn P(i,k)(i,l)

is also high in order to encourage this type of move. In the
extreme case when the local topology of vi is exactly the same
across all L layers, then

L∑
l=1;l 6=k

P(i,k)(i,l) = (L− 1)/L

and
∑

j P(i,k)(j,k) = 1/L. In this setting, for L = 2, the
random walker will be equally likely to stay at the current
layer Lk or explore the other layer; for L > 2, the random
walker will have higher probability to move to Ll, l 6= k,
rather than staying in the current layer Lk. On the contrary,
when a node vki belongs to a community which is specific
only to Lk, we expect that ωi;kl, l 6= k will be small; in this
case,

∑
l 6=k P(i,k)(i,l) ≈ 0, and the random walker will remain

“trapped”’ for longer time in the region of the community on
the current layer Lk since

∑
j P(i,k)(j,k) ≈ 1. When a node vki

is disconnected in Lk, the random walker will either stay in the
current layer with probability proportional to A(i,k)(i,k) = ε
or move to any other Ll, l 6= k with probability proportional
to
∑

lA(i,k)(i,l) = ε(L− 1).
We note that in a multiplex there exist inter-layer con-

nections only between corresponding nodes. Therefore the
probability to move from a node vki to other nodes vlj for
i 6= j and k 6= l is zero since there cannot exist a direct move
where there is no connection.

Our transition probabilities in (1) may be represented as an
NL × NL transition matrix P of the random walk process,
which may also be written as

P := D−1A

This representation is useful for showing the stationary prop-
erties of the random walk. Here D is the NL × NL di-
agonal matrix defined by the multiplex node degrees, i.e.
D(i,k)(i,k) := κi,k and D(i,k)(j,l) = 0 for i 6= j or k 6= l.
The resulting transition matrix P is stochastic since 0 ≤
P(i,k)(j,l) ≤ 1,∀i, j, k, l, and

∑
(j,l) P(i,k)(j,l) = 1 for every

(i, k). Let the probability distribution

p(t) =
[
p(i,k)(t)

]N,L

i=1;k=1

be the vector of probability values for all nodes in the network,
where p(i,k)(t) is the probability of finding the random walker
in node vki after t steps. The dynamics of the probability
distribution p(t) is given by:

p(t+ 1) = p(t)P = p(0)Pt. (2)



It follows that the probability to start in node vki and reach
node vlj in t steps is given by Pt

(i,k),(j,l). A stationary distri-
bution of P satisfies the equation:

p∗ = p∗P, (3)

with
∑

(i,k) p
∗
(i,k) = 1 and 0 ≤ p∗(i,k) ≤ 1 for all (i, k), see [4].

It can be proved that P is irreducible and aperiodic since it is
defined by A, which is connected and non-bipartite. Therefore
the existence and uniqueness of the stationary distribution
p∗ is guaranteed by the Perron-Frobenius Theorem [4]. The
stationary distribution corresponds to the left-eigenvector of P
associated with eigenvalue 1, and is obtained as

p∗(i,k) =
κi,k∑
j,l κ(j,l)

.

There are two implications of the stationary distribution,
which we need to consider in order to introduce a dissimilarity
measure between nodes in the multiplex. First, as the number
of steps t tends to infinity, the probability of being on a node
vlj depends only on the degree of the node vlj regardless of
what the starting node is, i.e.:

lim
t→∞

Pt
(i,k)(j,l) → p∗(j,l) =

κj,l∑
h,m κh,m

, ∀(i, k). (4)

Second, the stationary distribution satisfies the time-
reversibility property of the chain:

κi,kPt
(i,k)(j,l) = κj,lPt

(j,l)(i,k), ∀(i, k),∀(j, l). (5)

These are standard results; see [4].
The convergence to the stationary distribution implies that

for large t all rows of the matrix Pt approach the station-
ary distribution (4), thus the whole multiplex becomes one
community. On the other hand, for smaller t the random
walk captures local community structures (a fact also observed
in [5] and [7]), therefore we use short random walks to detect
communities as desired.

The time-reversibility property (5) implies that even if the
probability to reach vlj in t steps starting from vki is high,
it does not follow that the probability to reach vki in t steps
starting from vlj is high. Therefore, it is insufficient to compare
nodes vki and vlj only through Pt

(i,k)(j,l) or Pt
(j,l)(i,k). For this

reason we use the NL-dimensional vector of probabilities

Pt
(i,k)(·,·) =

[
Pt
(i,k)(h,m)

]L,N

m=1,h=1

available for a node vki to define its dissimilarity to any other
node.

C. Node dissimilarity matrix

In this section we introduce an NL×NL node dissimilarity
matrix S(t) which depends on the multiplex random walk of
length t. This matrix contains all possible distances between
any pair of nodes, both within and between layers. These
distances are defined such that, when two nodes belong to the
same community, their distance is low, regardless of whether
they are in the same layer or not; conversely, the distance

between two nodes is large when they are not in the same
community, again regardless of the layers they are in.

In order to define the elements of the dissimilarity matrix
S we need to consider two separate cases: in the case when
we compare two nodes in the same layer, they are in the same
community if they ”see” in a similar way the rest of the nodes
in the current layer and all nodes in the other layers.

Another case is when we compare two nodes in two separate
layers Lk and Ll; they will be in the same community only
if such a community is shared by both layers. Therefore, they
will “see” in a similar way all nodes both in their respective
layers Lk and Ll and in each other’s layers Ll and Lk.

Same layer: when vki and vkj are in the same layer, their
dissimilarity is defined as:

S(t)(i,k)(j,k) :=

√√√√√ N∑
h=1

L∑
m=1

(
Pt
(i,k)(h,m) − P

t
(j,k)(h,m)

)2
κ(h,m)

=

=
∥∥∥D− 1

2Pt
(i,k)(.,.) −D

− 1
2Pt

(j,k)(.,.)

∥∥∥ (6)

where ‖.‖ is the Euclidean norm. The distance S(t)(i,k)(j,k) is
small when two nodes from the same layer, vki and vkj , are in
the same community, since the probabilities to reach any other
node in layer Lk starting from vki or vkj will be approximately
equal, Pt

(i,k)(h,k) ' P
t
(j,k)(h,k),∀h = 1, 2, ..., N . Moreover,

the probabilities to reach any other node in any other layer
Ll, l 6= k, starting from vki or vkj will be also almost equal,
Pt
(i,k)(h,l) ' P

t
(j,k)(h,l),∀h = 1, 2, ..., N,∀l 6= k.

Different layers: When vki and vlj are in two different layers,
Lk and Ll, we define the dissimilarity as:

S(t)(i,k)(j,l) :=
√
s1 + s2 + s3

where

s1 :=

N∑
h=1

(
Pt
(i,k)(h,k)
√
κ(h,k)

−
Pt
(j,l)(h,l)
√
κ(h,l)

)2

s2 :=

N∑
h=1

(
Pt
(i,k)(h,l)
√
κ(h,l)

−
Pt
(j,l)(h,k)
√
κ(h,k)

)2

s3 :=

N∑
h=1

L∑
m=1;
m 6=k,l

(
Pt
(i,k)(h,m) − P

t
(j,l)(h,m)

)2
κ(h,m)

.

This definition follows the usual approach to norm definition
in Euclidean space.

This distance S(t)(i,k)(j,l) is small when vki and vlj are
in the same community. The value of s1 is small when the
probabilities to reach any node in layer Lk starting from vki
are approximately equal to the probabilities to reach any node
in layer Ll starting from vlj , Pt

(i,k)(h,k) ' P
t
(j,l)(h,l),∀h =

1, 2, ..., N . The value of s2 is small when the probabilities to
reach any node in layer Ll starting from vki are approximately
equal to the probabilities to reach any node in layer Lk starting
from vlj , Pt

(i,k)(h,l) ' P
t
(j,l)(h,k),∀h = 1, 2, ..., N . We see that

if vki and vlj are in the same community, then both s1 and s2
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Fig. 1. Three-layered multiplex network: There is a one-to-one correspondence between nodes in all three layers L1, L2 and L3. Each community has its
own node color, and community borders are indicated by shadows which are labeled with respect to the community. Grey nodes represent nodes with no
community assignment. Community C1 (red) exists only in L1, while community C3 (black) is shared only in L2 and L3, it does not exist in L1. The
communities C2 (green), C4 (yellow), C5 (blue) and C6 (orange) are shared by all three layers. Communities C7 (pink) and C8 (light blue) are communities
specific to L1, but the nodes forming these two communities regroup into two other communities C9 (dark green) and C10 (purple) which are shared by L2

and L3. See further discussion on the structure of the different communities in Section V.

are small. However, if vki and vlj do not belong to the same
community, both s1 and s2 are large. The value of s3 is small
when the probabilities to reach any node in another layer Lm,
m 6= k, l, starting from vki or vlj are approximately equal,
Pt
(i,k)(h,m) ' P

t
(j,l)(h,m),∀h = 1, 2, ..., |V |,∀m 6= k, l.

It can be verified that S is symmetric, non-negative, homo-
geneous and satisfies the triangle inequality.

D. Agglomerative clustering

We use agglomerative clustering to merge nodes in com-
munities, since such a method allows us to use the topology
of the multiplex and ensure that the obtained communities
are connected. The algorithm starts by assigning each node in
each layer to its own community, and then it iteratively merges
nodes based on the average linkage criterion using the distance
matrix S. In order to ensure that each community, if any is
detected, is connected, we impose the criterion that only nodes
and communities having at least one within-layer or inter-
layer connection between them can be merged. Furthermore,
we use the multiplex modularity QM proposed in [14] to
choose the best partition as this criterion takes into account
both the within-layer and inter-layer connections of a detected
community.

IV. SHARED AND NON-SHARED COMMUNITIES:
ILLUSTRATIVE EXAMPLES

To provide a complete evaluation of the performance of
LART, we introduce some illustrative examples meant to
represent shared and non-shared communities. Figure 1 shows
examples of different shared and non-shared communities and
how their structures can be influenced by noise or the nature
of the data used to obtain the networks. The specificity of the
data can result in groups of nodes that belong to the same
community although there might not be clear connectivity

patterns between them. These are discussed in more detail
in the following two sections.

A. Shared communities

A shared community is a set of nodes for which several (but
not necessarily all) layers provide topological evidence that
these nodes form the same shared community. An example is
a set of nodes that form densely connected communities in
each of the several layers in Figure 1. The nodes that form C3
(black) are densely connected in both layers L2 and L3. They
do not form a community in L1 so C3 is shared only in L2

and L3. A similar example are communities C9 (dark green)
and C10 (purple) both of which are shared by L2 and L3.

Detecting shared communities can help uncover hidden
structures that could otherwise go undetected when consid-
ering each layer separately. Two such examples are communi-
ties C2 (green) and C4 (yellow) both of which are shared in all
three layers. Here we observe the disjoint node subsets in C2
present in L1 and L2, and similarly, disjoint subsets in C4
present in L2 and L3. In such cases, the communities might
be disjoint by chance or as a result of measurement errors.

Detecting shared community structures can also be helpful
when we try to distinguish true signal from noise. Consider as
an example communities C5 (blue) and C6 (orange). In L1 and
L3, C5 and C6 are clearly disjoint and they are respectively
shared by L1 and L3. However, in L2 there are high white
noise levels between C5 and C6.

B. Non-shared communities

A non-shared community is a set of nodes which have
a densely connected structural pattern specific to one layer.
For example, the nodes that form community C1 (red) are
densely connected in L1, but the same nodes do not form any
communities in L2 or L3.



There can also exist various structural patterns between
nodes in different layers. Therefore, same sets of nodes
can form non-shared communities in one layer, and shared
communities in other layers. For example, non-shared com-
munities C7 (pink) and C8 (light blue) are specific for L1.
However, the union of these nodes is the same as the union
of the nodes forming C9 and C10 in L2 and L3.

V. EXPERIMENTAL RESULTS

In this section we present our experimental results based on
simulated networks. We consider five different scenarios of
shared and non-shared communities in synthetic multiplexes.
LART is compared to other multiplex community detection
methods: multiplex modularity maximization (MM) [14], Prin-
cipal Modularity Maximization (PMM) [11], and two methods
for combining partitions obtained on the separate layers using
community similarity measures, topological overlap ST ([3])
and Normalized Mutual Information (NMI) SM ([20]).

A. Simulation settings

We consider five different scenarios each one describing
a different pattern of shared and non-shared communities as
discussed earlier:

Scenario S1: We consider both shared and non-shared
communities, for three layers L = 3. The motivation for this
scenario are communities C1 and C3 with reference to Fig-
ure 1. The layers in which the communities exist are randomly
sampled, and the set of nodes forming these communities do
not form other communities in other layers. The number of
nodes on the layers is uniformly sampled from 30 ≤ N ≤ 90.

Scenario S2: We consider communities shared by three
layers, L = 3. The motivation for this scenario are commu-
nities C2 and C4 with reference to Figure 1. For each shared
community, two layers are selected randomly. In these two
layers the set of nodes forming the community is randomly
split in two or three disjoint subsets. The number of nodes on
the layers is uniformly sampled from 60 ≤ N ≤ 80.

Scenario S3: We consider communities shared by three
layers, L = 3. The motivation for this scenario are commu-
nities C5 and C6 with reference to Figure 1. For two shared
communities, randomly select one layer in which, first, the
within-community edge probability of the two communities
is uniformly sampled from 0.10 ≤ p ≤ 0.20, and, second,
white noise levels are added between the two communities
with probability uniformly sampled from 0.10 ≤ p ≤ 0.20.
The number of nodes on the layers is uniformly sampled from
60 ≤ N ≤ 80.

Scenario S4: We consider both shared and non-shared
communities in three layers, L = 3. The motivation for this
scenario are communities C7, C8, C9 and C10 with reference
to Figure 1. Randomly select two layers in which sets of nodes
form shared communities. In the third layer, the same set of
nodes form non-shared communities. The topological struc-
ture of the non-shared communities is simulated to resemble
bipartite sets with edge probability p = 0.4. The number of
nodes in the layers is N = 80.
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Fig. 2. Heat map of transition probabilities for a random walk of length
t = 9 steps on the multiplex network in Figure 1: the order of nodes in each
layer is the same, and the order is determined by the communities that nodes
belong to. In each block, the order of the transition probabilities follows the
order of communities C1, C2, C3, C4, C5, C6; communities C7 and C8 are
in L1, while communities C9 and C10 are in L2 and L3. The probabilities
to move between layers are much higher for communities that are shared by
two layers (C3). Also the probabilities to get “trapped” in a layer-specific
community are higher than those to move to another layer (C1 in L1 only).

Scenario S5: We consider both shared and non-shared
communities in four layers, L = 4, where communities can
be shared by no more than three out of the four layers.
The motivation for this scenario are all communities of the
multiplex in Figure 1. The communities are a mixture of the
patterns considered in Scenarios 1 to 4. The number of nodes
on the layers is sampled from 150 ≤ N ≤ 180.

B. Comparative performance

Each community (or indicated disjoint subsets of nodes
in a community) has a uniformly sampled within-community
edge probability, 0.25 ≤ p ≤ 0.40 (unless explicitly stated
otherwise). For each one of the five scenarios, we randomly
generate 100 synthetic multiplexes. Each multiplex is simu-
lated using the following steps: first, we randomly sample the
number of nodes and communities in the multiplex; second,
each community is assigned the same set of nodes in the
different layers; third, in each layer the edges between the
nodes in these sets are simulated according to the community
structure of the respective scenario. Last but not least, on
each layer noise is added to represent the random connections
between the communities.

The multiplexes generated in each simulation were analyzed
using the LART algorithm. For each multiplex, we select
the length of the random walk t using the rule of thumb
proposed in [5] which states that for dense networks t = 3 is
sufficient to explore the local topology of the network. Since



TABLE I
PERFORMANCE OF COMPETING ALGORITHMS IN FIVE SIMULATED SCENARIOS

NMI index (mean±std.dev.) FM index (mean±std.dev.)

Simulation Scenario Simulation Scenario

Algorithm S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

LART 0.85± 0.05 0.95± 0.05 0.94± 0.07 0.84± 0.07 0.88± 0.08 0.80± 0.12 0.97± 0.04 0.97± 0.05 0.78± 0.12 0.80± 0.14

Fixed1 0.70± 0.11 0.86± 0.10 0.88± 0.13 0.79± 0.03 0.68± 0.02 0.72± 0.20 0.91± 0.11 0.87± 0.10 0.70± 0.01 0.57± 0.02

MM 0.80± 0.07 0.90± 0.07 0.79± 0.11 0.73± 0.04 0.82± 0.07 0.70± 0.19 0.93± 0.06 0.85± 0.1 0.71± 0.03 0.75± 0.11

Fixed2 0.64± 0.14 0.97± 0.05 0.88± 0.11 0.68± 0.02 0.66± 0.02 0.55± 0.30 0.92± 0.10 0.97± 0.06 0.65± 0.03 0.57± 0.03

ST 0.78± 0.07 0.70± 0.05 0.68± 0.08 0.77± 0.06 0.75± 0.08 0.72± 0.17 0.78± 0.07 0.72± 0.06 0.61± 0.06 0.65± 0.12

SM 0.78± 0.01 0.70± 0.05 0.68± 0.09 0.77± 0.05 0.75± 0.08 0.72± 0.17 0.78± 0.09 0.72± 0.06 0.61± 0.08 0.66± 0.11

PMM 0.62± 0.13 0.97± 0.04 0.99± 0.02 0.69± 0.01 0.73± 0.16 0.56± 0.23 0.97± 0.04 0.99± 0.01 0.66± 0.01 0.66± 0.21

we work with multiplex networks, we consider t = 3L where
L is the number of layers in the multiplex. In this way, we
allow enough steps for the random walker to explore the local
topology of each node in all layers. We provide an illustrative
example of the transition probabilities for a short random
walk of length t = 9 on a three-layered multiplex network,
Figure 2. This figure shows that multiplex random walks of
length t = 3L capture the local community structures of the
multiplex. We fix ε = 1 which is equivalent to adding a self-
loop to each node in every layer.

Using the same simulated data, we also test the MM and
the PMM algorithms. For MM, we use the supra-adjacency
matrix A∗ as input. The multiplex modularity QM used by
both LART and MM needs the specification of a resolution
parameter γ. In our application, we consider γ = 1. PMM
is designed to find a shared community structure for all
layers. Since PMM uses the k-means algorithm to merge
communities, we obtain results for different values of cen-
ters k = 1, 2, ...10, and record the best ones only. Since
LART reduces to WalkTrap for L = 1 (with the exception
of the linkage criterion), we add two methods where best
partitions are initially identified separately in each layer using
WalkTrap. Then the similarity between communities in the
different layers is assigned using either ST , which is based on
the relative overlap between communities, or SM , which is
based on the NMI between two communities. Any clustering
method can be used to merge communities between layers
with respect to the resulting similarities, and in this work we
use affinity propagation [30] since it does not require a priori
knowledge about the number of clusters. Finally, we consider
each multiplex network, but with fixed weights, ωi;kl = ω
∀i, k, l. We use both LART and MM to detect communities in
such a setting, and present results for ω = 1 since it provides
good comparative results for detecting communities shared
by several layers. We annotate these two applications with
Fixed1 for the LART framework and Fixed2 for the MM
framework.

The partitions obtained from the competing algorithms are
assessed using two different relative performance measures:
the generalized Fowlkes-Mallows Index (FM) [31], and the
NMI measure [20]. Both measures take values between 0 and
1, and they are equal to 1 when the true communities are

correctly identified. The comparative analysis results for NMI
and FM are summarized in Table I. For each of the 5 scenarios,
the average results (± std. dev.) over the 100 simulated
multiplex networks are presented for each of the algorithms.
We use the two-sided Kolmogorov-Smirnov statistic to test
against the null hypothesis that the results obtained from two
different methods come from the same distribution. If there is
enough evidence to reject the null hypothesis, we assume that
the difference between two methods is statistically significant.

The relative performance of LART when detecting commu-
nities shared across all layers is very competitive. Scenarios
S2 and S3 are cases in which the communities are shared
across all layers. These scenarios are favorable for methods
that find communities shared across all layers and are designed
to be robust to noise. The results suggest this is the case since
PMM performs slightly better relative to the other methods.
This is true when an appropriate number of center k has
been selected. Fixed2 also performs better than LART for S3
since the MM framework for fixed weights is well designed
to detect communities shared across all layers. Furthermore,
the performance of methods that combine partitions obtained
on the separate layers, ST and SM , is poor compared to the
other methods.

Scenarios S1, S4 and S5 show the main strength of LART.
LART is better able to detect layer specific communities and
communities that are shared across several but not all layers.
Furthermore, the results from S4 show that the method distin-
guishes between different topological structures of communi-
ties in different layers. The weaker performance for Fixed1
and Fixed2 show the gains introduced by locally adapting
inter-layer weights ωi;k,l. We produce additional simulations
for ω = 0.5 and ω = 0.1 which are not included here. The
obtained results for ω = 0.5, 0.1 are lower than the presented
ones for ω = 1. The only exception is S4 for which weaker
couplings ω = 0.5, 0.1 show better performance than ω = 1
for the MM framework.

Additionally, we obtain results for varying parameter γ =
0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5 in the case of
LART and MM (and ω = 1, 0.5, 0.1). Results not included
here show that there exist values of γ 6= 1 for which the
performance of both LART and MM improves with respect
to their performance for γ = 1. However, even when the best



results are selected and compared, the performance of LART
for S1, S4 and S5 is higher than the performance of MM. In
addition, there exist γ values for which MM with ω = 1 and
ω = 0.5 performs without error for S2 and S3.

VI. CONCLUSIONS

We distinguish between shared and non-shared community
structures on a multiplex, and propose the LART algorithm
which is designed to detect both types of communities. The
algorithm takes advantage of the complex multiplex structure,
and adapts the transition probabilities of the random walk to
depend on the topological similarity between layers at any
given node.

One advantage of LART is that it requires the definition
of only one parameter t which determines the length of the
random walk. The value of t can vary within some boundaries
as long as the random walks are short enough to explore
only the local community structure. Therefore, future work is
required to adopt an exact way of choosing a range of suitable
values for t.

Even so, LART performs very well in detecting commu-
nities shared by a subset of layers, and it is competitive to
methods that detect communities shared by all layers. Future
work would include comparison to other methods mentioned
in the review section. The method will be further implemented
to real world systems to showcase the benefits of the LART
algorithm.
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