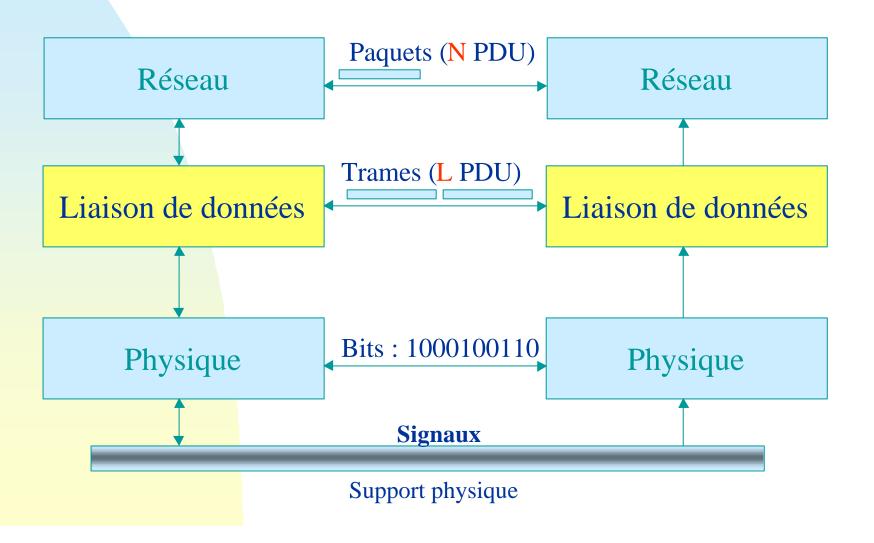
La couche liaison de données


Rushed KANAWATI

Département GTR - IUT de Villetaneuse © 2001 rushed.kanawati@lipn.univ-paris13.fr

Sommaire

- Problématique
- Liaison de données
- Protocoles
- Le protocole LAP-B
 - ◆ Format de trames
 - ◆ Type de trames
 - ◆ Règles d'échange
- Bibliographie

Problématique

Liaison de données

- Fournir les services nécessaires pour établir, maintenir et libérer une connexion
- Acheminer les trames sur la liaison physique
- Contrôler le flux de données afin d'éviter la saturation du récepteur
- Contrôler la correction de la transmission des données.

Protocoles de liaison de données

- Rappel : Un protocole définit
 - ◆ Le format des messages échangés
 - ◆ La sémantique des messages échangés
 - ◆ Les règles d'échange
- Messages échangés appelés Trames.
 - ◆ Trame = L PDU
 - ◆ L PDU = L SDU + L PCI

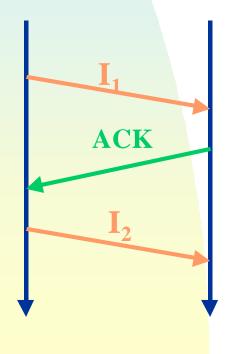
Trames: quelques généralités

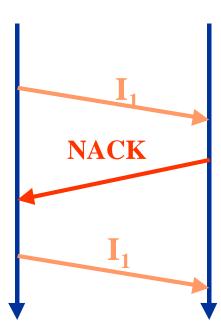
- Une trame est une suite de bits.
- Selon le protocole, elle peut être de taille fixe ou variable (mais bornée)
 - ◆ X25.2, Ethernet : Taille variable
 - ◆ ATM : Taille fixe (53 octets)
- Délimitation explicite ou implicite.
 - Utilisation de fanions de début et de fin de trame.
- La structure varie selon le protocole, mais souvent divisée en 3 parties : entête, données et terminaison.
- L'entête et la terminaison forment le L PCI

Protocoles de liaison de données

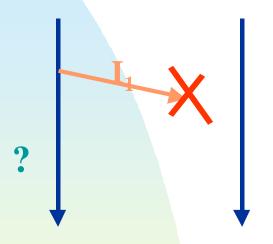
- 1960 : BSC (Binary synchronous communication) IBM
 - Protocole orienté caractère
 - Synchronisation en continue
- 1970 :SDLC (Synchronous Data Link Control) IBM/ANSI
 - ◆ Orienté trame
- 1976-80 : HDLC (High Data Link Control) ISO
 - ◆ Protocole orienté bit
 - ◆ ISO 3309 (format), ISO 4335 (HDLC), ISO 7776 (LAP-B), ISO 7448 (MLP) ISO 8471 (HDLC équilibré)
- 1985 : Liaison de réseaux locaux

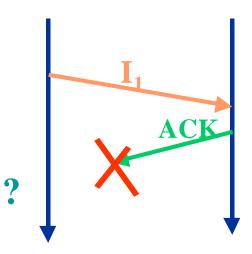
— ...

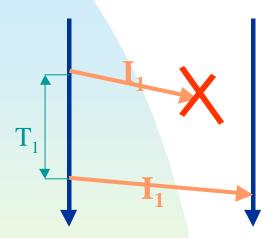

Exemple: le protocole LAP-B

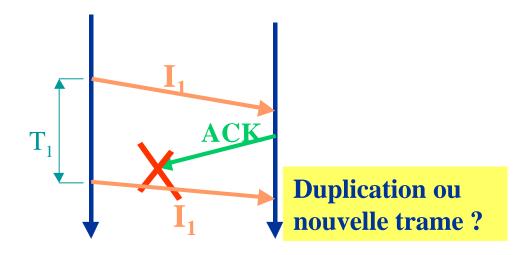

- Sous ensemble de la spécification HDLC
- Repris par l'UIT-T pour les réseaux de commutation X25.2 (le réseau Numéris)
- Connexion en mode connecté.
 - Rappel : protocole en 3 phases (connexion, échange, déconnexion)
 - ◆ Contexte partagé entre les extrémités de la liaison.
- Ce protocole offre un service de transmission fiable entre les deux exterminés de la liaison.
- Connexion full duplex et équilibrée.

Transmission fiable?


- Problème : Garantir la réception correcte, sans duplication et dans l'ordre des informations transmises.
- Eléments de solution
 - ◆ Utilisation d'un code polynomial.
 - → Polynôme générateur : G(x) = x¹⁶ + x¹⁵ + x² + 1.
 - Utilisation de technique d'acquittement positif et négatif.
 - ◆ Numérotation de trames.


- Chaque trame envoyée doit être acquittée par le récepteur.
- L'acquittement peut être positif (ACK) ou négatif (NACK)


Problème 1:



- **Solution**: Armer un temporisateur T₁ après l'envoi d'une trame d'information.
- Si T₁ expire avant la réception d'un acquittement (+ ou -), l'émetteur renvoi la même trame d'information.

Problème 2:

- Solution : Numérotation de trames (identification).
- Un bit alterné suffit pour lever l'ambiguïté

Problème 3 :

- ◆ Si chaque trame doit être acquittée par une trame spécifique et d'une manière individuelle l'efficacité de la liaison sera très faible.
- ◆ La plupart de temps les extrémités de la liaison seront en état d'attente d'acquittement.

Solutions:

- ◆ Piggypacking: le récepteur peut acquitter une trame d'information reçue par l'envoi d'une autre trame d'information.
- ◆ Anticipation : l'émetteur peut envoyer w trames sans avoir un acquittement.
- ◆ Acquittement groupé : Le récepteur peut acquitter par une seule trame un groupe de trames reçues.

- Numérotation de trames d'information
- Acquitter la trame N c'est acquitter toutes les trames précédentes 1..N

- L'acquittement peut être explicite ou implicite
- Chaque trame d'informations est identifiée par un numéro.
- La numérotation de trames est faite modulo 2ⁿ où n est le nombre de bits utilisés pour représenter les numéros de trames.
- Selon le protocole LAP B, n = 3

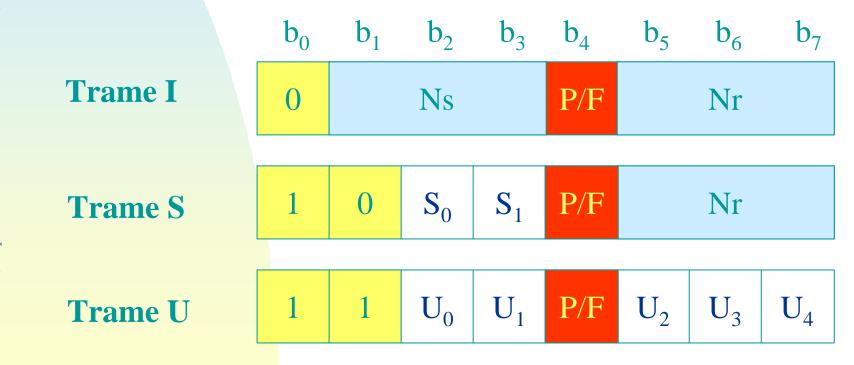
Format des trames (LAP-B)

8 bits	8 bits	8 bits	Taille variable	16 bits	8 bits	
01111110	Adresse	Contrôle	Données	FCS	01111110	

- Taille minimale d'une trame : 6 octets
- Problème : garantir l'unicité des fanions.
- Solution :
 - ◆ A l'émission, insérer un 0 après chaque séquence de cinq 1 consécutifs.
 - ◆ A la réception, enlever les 0 après les séquences de cinq 1 consécutifs.
 - ◆ Les 0 insérés sont appelés bits de transparence.

Bits de transparence : illustration

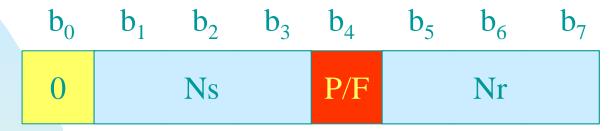
- Soit le N PDU (ou le L SDU) suivant : 10101111 10111111 11111001
- La couche 2 va former son L PDU en ajoutant les informations du L PCI au L SDU
- La couche 2 émet donc la séquence :


01111110 xxxxxxxx xxxxxxx 1010111110011111101001

Types de trames

- Rappel : LAP B est un protocole de transmission fiable qui opère en mode connecté :
 - ◆ Trames de gestion de la liaison (U)
 - Demande de connexion, acceptation, refus, libération de la connexion
 - ◆ Trames d'informations (I)
 - Trames de transmission effective des données.
 - ◆ Trames de supervision de la transmission (S)
 - Acquittements : positifs et négatifs
- Trois types: 2 bits suffisent pour les distinguer

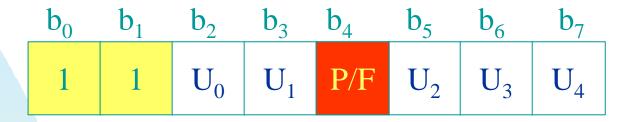
Types de trames : définitions


Le champs contrôle définit le type de la trame.

Le bit P/F

- On dit que le bit P/F est positionné s'il a la valeur 1.
- Par pure convention de notation on dit :
 - ◆ Un bit P/F positionné a la valeur P si la trame est une trame de commande.
 - ◆ Un bit P/F positionné a la valeur F si la trame est une trame de réponse.
 - ◆ L'émetteur d'une commande exige une réponse immédiate.
 - ◆ En recevant une trame avec le bit P/F positionné, la signification de ce bit dépend du contexte local.
 - → F si le récepteur a déjà envoyé une commande
 - → P si aucune commande n 'est envoyée.

Trames d'informations (I)


- N_s: Numéro de la trame d'information
 - ◆ 3 bits donc numéro module 8
- N_r: Numéro de la prochaine trame d'information attendue
 - ◆ Numérotation modulo 8
 - ◆ Une trame acquitte toutes les trames de numéros strictement inférieur à N_r
- Notation : I_{Ns, Nr}

Trames de supervision (S)

b_0	\mathbf{b}_1	b_2	b_3	b_4	b_5	b_6	b_7
1	0	S_0	S_1	P/F		Nr	

- **RR** (Recieved & Ready) [00]: Acquittement
 - ◆ Acquitter les trames dont le numéro < Nr</p>
- RNR (Recieved & Not Ready) [10]: contrôle de flux
 - ◆ Acquitter les trames dont le numéro <Nr</p>
 - ◆ Interdire la transmission des trames suivante
- REJ (Reject) [01]
 - ◆ Acquitter la réception des trames < Nr</p>
 - ◆ Demander la retransmission des trames >= Nr
- Notation : RR_{Nr}, RNR_{Nr} REJ_{Nr}

Trames de gestion (U)

- SABM [11110]
 - ◆ Demande de connexion.
- UA [00110]
 - ◆ Trame de confirmation de connexion
- DISC [11010]
 - ◆ Libération de la connexion
- FRMR[11011]
 - ◆ Rejet de trames

Contexte d'une liaison

- Définition : Ensemble des valeurs décrivant la configuration et l'état de la liaison.
- La configuration est définie par un ensemble de constantes.
- La configuration est identique aux deux extrémités de la liaison.
- Les variables décrivent l'état de la liaison du point de vue d'une extrémité.
- La partie variable du contexte est différente d'une extrémité à l'autre

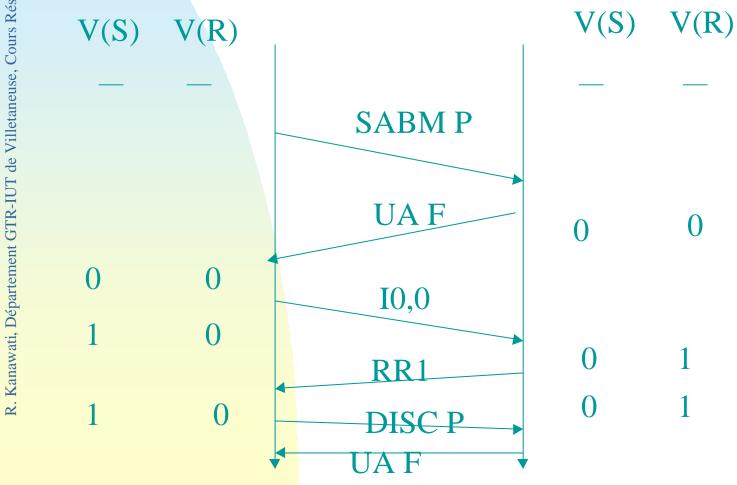
Contexte : la partie constate

- Le polynôme générateur utilisé pour la détection des erreurs.
- T1 : délai de garde
- T2 : délai d'acquittement.
- T3: délai d'établissement de la liaison
- N1: taille maximale d'une trame
- N2 : nombre maximum de rémission d'une trame
- W: valeur de l'anticipation

Contexte : partie variable

Chaque extrémité met à jour les variables suivantes :

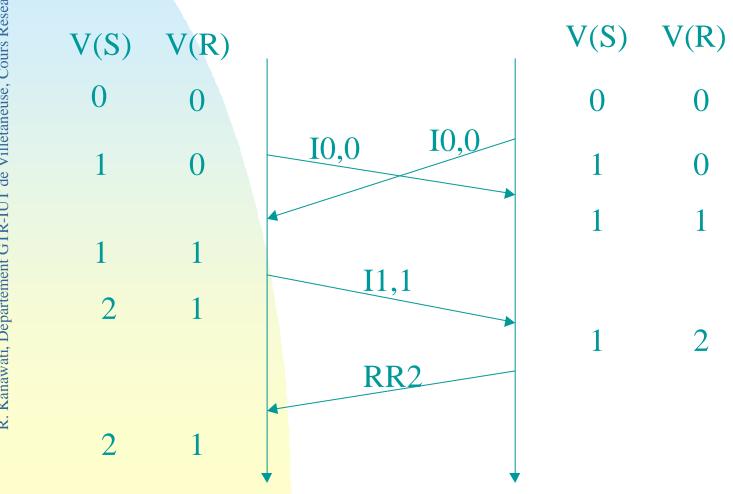
- V(S)
 - ◆ Numéro de la prochaine trame d'information à émettre.
- V(R)
 - ◆ Numéro de la prochaine trame à recevoir.
- DN(R)
 - ◆ Numéro du dernier acquittement reçu.
- Valeurs initiales
 - \lor V(S) = V(R) = DN(R) = 0

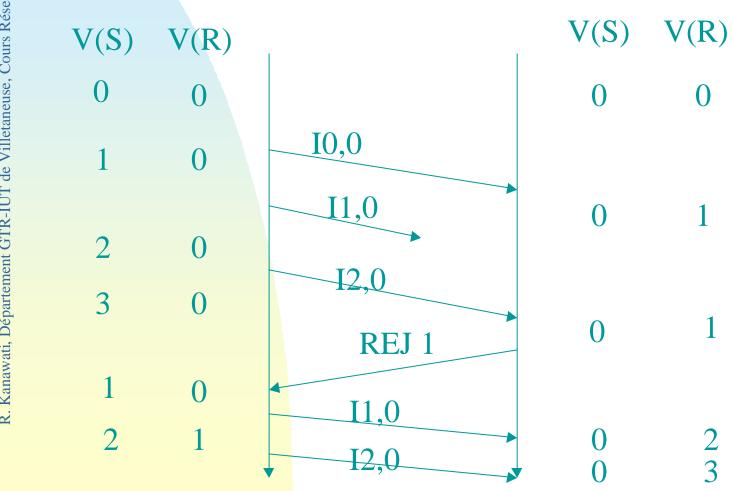

- Emission d'une trame d'information (I) :
 - ◆ Envoi d'une trame I_{V(S),V(R)}
 - Mémoriser cette trame
 - \bullet V(S) = V(S) +1 mod. w
 - ◆ Armer le temporisateur T₁
 - ◆ Désarmer T₂

- Réception d'une trame I_{x,y} :
 - ◆ Si détection d'une erreur Alors
 - Ignorer la trame reçue
 - ◆ Si la trame est invalide Alors
 - ◆ Envoyer une trame U: FRMR
 - ◆ Si X ≠ V(R) Alors /* trame inattendue */
 - → Envoyer une trame S : REJ _{V(R)}

- Réception d'une trame I_{x,y} (suite)
 - ◆ Si X == V(R)
 - → Armer T2
 - traiter la trame I
 - + V(R) = V(R)+1 Modulo w
 - + Si DN(R) \leq Y < V(S) Alors
 - désarmer les temporisateurs T1 associés aux trames dont le numéro est compris entre DN(R) et Y
 - DN(R) = Y

- Réception d'une trame RR_y
 - ◆ Si DN(R) ≤ Y < V(S) Alors</p>
 - désarmer les temporisateurs T1 associés aux trames dont le numéro est compris entre DN(R) et Y
 - → DN(R) = Y
- Réception d'une trame REJ_y
 - Si DN(R) ≤ Y < V(S) Alors</p>
 - désarmer les temporisateurs T1 associés aux trames dont les numéros sont compris entre DN(R) et Y
 - → DN(R)=Y
 - → Emettre les trames dont les numéros sont compris


Connexion, envoi d'une trame puis déconnexion


Transfert unidirectionnel avec anticipation (w=4)

R. Kanawati, Département GTR-IUT de Villetaneuse, Cours Résea	V(S)	V(R)		V(S)	V(R)	DN(R)
neuse, Co	0	0		0	0	0
e Villeta			I0,0			
R-IUT d	1	0	I1,0	0	1	0
ment GT	2	0	I2,0	0	2	0
, Départe	3	0	—————————————————————————————————————	0	2	0
Kanawati			RR 3	0	2	2
R. F	3	0				
			+			

Transfert bidirectionnel avec anticipation (w=4) & Piggypacking

Transfert bidirectionnel avec anticipation (w=4) & perte

Pour en savoir plus

- G. Pujolle, Les réseaux, Eyrolles, 1995. Chapitre 5.
- A. Tanenbaum, Réseaux, InterEditions, 1997. Chapitre 3.
- P. Rolin et. al. Les réseaux : principes fondamentaux, Hermes 1997. Chapitre 5