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Introduction to scientific computing

Today : first lecture of the class
I Next Monday : Vittoria Rezzonico (EPFL) and Nicolas Grenèche (Paris 13)

Today’s material (slides + code) can be found on my webpage
I www.lipn.fr/~coti/cours

www.lipn.fr/~coti/cours
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Parallel = several computing units

Can be several computation nodes
I Each controled by its own OS, have their own memory
I Interconnected by a (fast) network

Can be several processors
I Several processors on a motherboard
I Share the central memory
I Interconnected by the system bus

Can be several cores
I Several cores on a processor
I Some caches are shared, some are private

Can be several instruction stream (hyperthreading)
I Within a core
I ALU and caches are shared
I Each logical core has its own architectural states
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Parallel execution models

How does it run in parallel ? → Flynn’s taxonomy
I SISD : Single Instruction, Single Data

I Has some interest, but not what we are here for today
I MIMD : Multiple Instruction, Multiple Data

I The general case in parallel computing : run different instruction streams on
different data

I SIMD : Single Instruction, Multiple Data
I Run the same instruction on different data
I Vertor computing

I MISD : Multiple Instruction, Single Data
I Very specific usage, mostly for redundancy, not relevant for today’s talk
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MIMD : example

Instructions
Step P0 P1 P2
0 int c ; double d double d ;
1 c = 2 ; d = 3.0 ; d = 5.0 ;
2 c++ ; d /= 2.0 ; d /= 2.0 ;
3 c%2 ; d *= 4.0 ; d += 1.0 ;

Process states
Step P0 P1 P2
0 int double double
1 2 3.0 5.0
2 3 1.5 2.5
3 1 6.0 3.5
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SIMD : example

Instructions
Step Instruction
0 int c ;
1 c = getdata() ;
2 c++ ;
3 c%2 ;

Process states
Step P0 P1 P2
0 int int int
1 2 3 8
2 3 4 9
3 1 0 1
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Current machines’ architecture
Fast nodes

I Multi-core processors
I Several processors
I Accelerators

Specificities :
I Processors are slightly different from our

desktop computers’ CPU
I Bigger caches
I More cores
I ECCmemory support

I Fast interconnexion
I QuickPath Bus (Intel), HyperTransport (AMD)
I Not always a unique bus : crossbar, multiples busses...

Fast network
I Ethernet : out-of-band communications
I Fast network : application

I Low latency, high throughput
I InfiniBand, Myrinet, proprietary networks (Tofu, Sea Star...)
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Evolution of the nodes

Hardware evolution

Explosion of the number of cores
I Several CPUs per node
I Advent of multi-core architectures
I What a core is is getting blurrier

Accelerators
I GPU, Cell
I Xeon Phi
I Pezy-SC2

Low latency networks
I Myrinet, InfiniBand
I Order of magnitude w.r.t. moving data on

the same node
I Latency x2
I Throughput / 2

Efforts on the energy consumption.
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Big machines

Fastest machines in the world
Top 500 : https://www.top500.org

I Runs a benchmark (LINPAK) that performs typical scientific computation
operations

I Factor and solve a dense linear algebra system of equations
I Gaussian elimination with partal pivoting

I Used for statistics
I Identify trends (architecture, size, network technology...)
I By country, by OS...
I Evolution over the years !

I First release in 1993, biannual (June at ISC, November at SC)
Other ranking systems

I HPCG (High Performance Conjugate Gradients)
http://www.hpcg-benchmark.org

I Krylov subspace solver
I Additive Schwarz, symmetric Gauss-Seidel preconditioned conjugate

gradient solver
I Sparse linear system, mathematically similar to usual PDE problems

I Green500 https://www.top500.org/green500
I Top500 data, energy efficiency

I Graph500 https://graph500.org
I Computations on weighted, undirected graphs (search, shortest path...)
I Relevant for 3D physics simulations, for example

https://www.top500.org
http://www.hpcg-benchmark.org
https://www.top500.org/green500
https://graph500.org
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Big machines

Top 500 : November 2018
I Rpeak is the theoretical peak
I Rmax is the LINPACK performance
I Rpeak and Rmax in TFlops/s, power in kW.

Rank System Site Cores Rmax Rpeak Power
1 Summit DoE / ORNL (USA) 2,282,544 122,300.0 187,659.3 8,806
2 Sunway TaihuLight NSC Wuxi (China) 10,649,600 93,014.6 125,435.9 15,371
3 Sierra DoE/LLNL (USA) 1,572,480 71,610.0 119,193.6 -
4 Tianhe-2A NSC Guangzhou (China) 4,981,760 61,444.5 100,678.7 18,482
5 ABCI AIST (Japan) 391,680 19,880.0 32,576.6 1,649
6 Piz Daint CSCS (Switzerland) 361,760 19,590.0 25,326.3 2,272
7 Titan DoE / ORNL (USA) 560,640 17,590.0 27,112.5 8,209
8 Sequoia DoE / LLNL (USA) 1,572,864 17,173.2 20,132.7 7,890
9 Trinity DoE / LANL / SNL (USA) 979,968 14,137.3 43,902.6 3,844
10 Cori DoE/LBNL/NERSC (USA) 622,336 14,014.7 27,880.7 3,939

Summit :
I IBM system, 4,608 nodes
I IBM POWER9 22C 3.07GHz processors (2/node)
I NVIDIA Volta V100s (6/node)
I Memory : 512GB DDR4 + 96GB HBM2 / node, 1600GB NV
I Dual-rail Mellanox EDR Infinibandnetwork
I https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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Big machines

Former number 1’s
Name Dates #1 Nb cores Rmax
CM-5 06/93 1 024 59.7 Gflops
Numerical Wind Tunnel 11/93 140 124.2 Gflops
Intel XP/S 140 Paragon 04/93 3 680 143.40 Gflops
Numerical Wind Tunnel 11/94-12/95 167 170.0 Gflops
Hitachi SR2201 06/96 1 024 232.4 Gflops
CP-PACS 11/96 2 048 368.20 Gflops
ASCI Red 06/97 - 06/00 7 264 1.068 Tflops
ASCI White 11/00 - 11-01 8 192 4.9 - 7.2 Tflops
Earth Simulator 06/02 - 06/04 5 120 35.86 Tflops
BlueGene/L 11/04 - 11/07 212 992 478.2 Tflops
Roadrunner 06/08 - 06/09 129 600 1.026 - 1.105 Pflops
Jaguar 11/09 - 06/10 224 162 1.759 Pflops
Tianhe-1A 11/10 14 336 + 7 168 2.57 Pflops
K 06/11 - 11/11 548 352 - 705 024 8.16 - 10.51 Pflops
Sequoia 06/12 1 572 864 16.32 Pflops
Titan 11/12 552 960 17.6 Pflops
Tianhe-2 6/13 - 11/15 3 120 000 33.9 Pflops
Sunway 6/16 - 11/17 10 649 600 93.0 Pflops
Summit 6/18 → 2 282,544 122 300.0
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How can you access such machines ?

Access such machines
At Paris 13 / USPC

I Magi cluster
I Administrated and managed by Nicolas

Grenèche (you will meet him next week)
(awesome guy, very skilled, don’t hesitate
to ask for technical support)

I 50 compute nodes, 40 cores each
I 2 fat nodes, 512 GB memory each
I InfiniBand interconnect

National resources : GENCI (Grand Équipement National de Calcul Intensif)
I TGCC (Très Grand Centre de calcul du CEA)

I Joliot-Curie : 6,8 petaflop/s + 2,1 petaflop/s, 382 TB
I CINES (Centre Informatique National de l’Enseignement Supérieur)

I Occigen : 3,5 petaflop/s, 4 212 nodes, 85 824 cores, 283 TB
I IDRIS (Institut du développement et des ressources en informatique

scientifique)
I Jean Zay : 14 petaflop/s. “Scalar” part : 4.9 petaflop/s, 1528 nodes, 192

GB/node. “Converged” part : 9.02 petaflop/s, 261 nodes with 4 GPUs each

European resources : PRACE
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Architecture and some techniques

How to choose how to program for a parallel machine ?

Look at the architecture of the machine
I Shared memory ?
I Vector processing unit(s) ?

Look at the memory access patterns of your application
I Regular ? Irregular ?
I All the processes at the same time ?
I Unexpected remote data accesses ?
I VERY big ?
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Cache blocking

Cache blocking

Not parallel computing per se
I Work on your data by blocks that fit in caches
I Useful when the data is reused

I e.g. Matrix-matrix multiplication : O(n2) elements, O(n3) operations

Original loop :
for( i = 0 ; i < size ; i++ ) {

for( k = 0 ; k < size ; k++ ) {
for( j = 0 ; j < size ; j++ ) {

/* ... */
}

}
}

Blocked loop :
for( i = 0 ; i < size ; i+=block ) {

for( j = 0 ; j < size ; j+=block ) {
theblock1 = ( j+block < size ) ? block : (size-j) ;
theblock2 = ( i+block < size ) ? block : (size-i) ;
for( b = 0 ; b < theblock2 ; b++ ) {

for( c = 0 ; c < theblock1 ; c++ ) {
for( k = 0 ; k < size ; k++ ) {

/* ... */
}

}
}

}
}
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Cache blocking

Cache blocking : example

Take matmul.c.
I Implements several matrix-matrix multiplications in O(n3) operations
I Same computation algorithm, different memory access patterns

I Plain, naive pattern : naiveMatMul()
I Swapped loops to make the inner loop work on consecutive data :

swappedMatMul()
I Tiled for cache blocking : tiledMatMul()
I Tiled for cache blocking with swapped loops : tiledSwappedMatMul() and

tiledSwappedMatMul2()

Compare the functions, compile and execute.
I Takes the matrix size as a parameter : ./matmul 256 to work on 256x256

matrices.

Compare the execution times.

If you have PAPI on your computer : use matpul_papi.c
I If PAPI cannot access your counters :

sudo bash -c "echo ’-1’ > /proc/sys/kernel/perf_event_paranoid"

Compare number of cache misses.
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SIMD registers

Use SIMD registers

Your CPU has some SIMD registers
I Check the instruction set with cat /proc/cpuinfo

Vendor-specific
I Sorry AMD people, I will talk about Intel registers and instruction sets
I Some exist on AMD processors, some can be trivially transposed to AMD

Core idea :
I Stuff several data words in a single register
I Execute instructions on these registers

→ Single instruction executed on several data

How many data words ?
I MMX : 64 b
I SSE and AVX : 128 b
I AVX2 : 256 b
I AVX-512 : 512 b
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SIMD registers

Compiler-based vectorization

Modern compilers are already vetorizing whatever they can detect
I Loops on consecutive data...

Take vector.c. It is a very simple loop performing the same operation on
consecutive data.

I Dump the assembler code with gcc -S vector
I Loop at the generated code and search for SIMD registers
I Try with different optimization options : -O0, -O3...

However, compilers cannot guess everything
I Take matrix_novect.c
I Dump the assembler code
I Look for vector operations

I Reminder : double is on 64 bits, float is on 32 bits, xmm[0...15] registers
contain 64 bits

I Change double for float, etc
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SIMD registers

Manual vectorization

First possibility : optimize your assembly code
I Just use the SIMD registers like other registers, but put multiple things in

them
I Dedicated load/store instructions

I Example : MOVNTDQA is “Load Double Quadword Non-Temporal Aligned
Hint”

Other possibility : use intrinsics in C and C++ code
I Registers : __m256d, __m256i, __m256s...
I Load operations : toto = _mm256_loadu_pd( .... ), toto =

_mm256_set_pd( .... )....
I Store operations : _mm256_storeu_pd( .... )...
I Add, multiply...
I With FMA instructions : Fused Multiply and Add

Documentation :
https://software.intel.com/sites/landingpage/IntrinsicsGuide

https://software.intel.com/sites/landingpage/IntrinsicsGuide
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SIMD registers

Intrinsics : example

Example : take matrix_avx.c
I Corresponds to matrix_novect.c with vectorization using intrinsics
I Loop : i+=4 → 4 by 4
I a and b are SIMD registers that contain elements from the matrix
I b contains contiguous data : filled with _mm256_loadu_pd()
I a contains non-contiguous data : filled with _mm256_set_pd()
I c contains random-generated values
I The computation is made by _mm256_add_pd() and _mm256_mul_pd()
I The final result is stored by _mm256_storeu_pd()

Compilation :
I Option -march=ative is the easiest one
I Some other options : -mavx, -mfma...
I #include <x86intrin.h> gets you all the headers you need
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SIMD registers

Intrinsics : exercise

Exercise : Implement a matrix-matrix multiplication using SIMD intrinsics

I Just start with the plain, simple pattern
I If available on your CPU, try FMA.
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Shared memory

Shared memory architecture

Particularity : the processing units access some shared memory
I Processing units ?

I Sometimes threads, not always
I Can also be processes

Low level of abstraction :
I Programming with POSIX threads (pthread_create(),

pthread_join()...) or processes (created with fork() and exec())
I Communication via segments of shared memory : POSIX shm framework,

Boost.Interconnect segments...
I See for example threads.c

... But some tools exist to simplify thread management !
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Shared memory

OpenMP
Annotation-based language

I Few modifications in the code
I Compilation directives

I Start with #pragma : If the compiler does not support OpenMP, it is not
enabled and the program works sequentially

Master thread

fork

Parallel region

join fork

Parallel region

join

Master thread

A LOT of documentation can be found here :
https://computing.llnl.gov/tutorials/openMP

https://computing.llnl.gov/tutorials/openMP
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Shared memory

What is OpenMP?

Set of functions, environment variables and compiler directives
I High level programming
I The compiler is strongly involved

OpenMP compiler
I Uses compiler directives
I In charge with generating the threads, sharing work between threads, data

location

OpenMP library
I Provides a run-time environment
I In charge with dynamic functions, at run-time

Environment variables
I Allows the user to set some parameters at run-time (number of threads...)
I In charge with everything specific for a given execution : hardware binding,

stack size, etc
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Shared memory

Example : loop parallelization

Global maximum on a table
Algorithm 1: Sequential computation of the maximum of a table

begin
Data: Table of size N containing positive integers tab[]
Result: Integer MAX
MAX = 0;
for i← 0 to N do

if tab[i] > MAX then MAX = tab[i];

Parallelization of the for loop
I “Slice” the range on which the computation is made
I Slices are divided between threads
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Shared memory

OpenMP annotations

Parallel sections
I #pragma omp parallel : beginning of a parallel section (fork)
I #pragma omp for : parallel for loop

Synchronizations
I #pragma omp critical : critical section
I #pragma omp barrier : synchronization barrier

Data visibility
I Private = visible only by this thread
I Shared = visible by all the threads
I By default :

I Variables declared inside a parallel region is private
I Variables declared outside are shared

#pragma omp parallel private (tid) shared (result)
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Shared memory

Compilation and execution

Headers #include <omp.h>
Compilation Enable OpenMP with an option of the compiler

I For gcc : -fopenmp

Reminder : if the option is not enabled, the annotations are ignored (not the
functions).
Execution Number of threads :

I By default : the environment discovers how many cores are available and
uses them all

I Set by the user using the environment visible $OMP_NUM_THREADS
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Shared memory

OpenMP parallel region
The parallel region is declared using

#pragma omp parallel

Every thread executes what is inside of the structured block
I Warning : the opening brace must be at the beginning of the line
I Branching (e.g. goto) to the inside or the outside of a parallel region are

forbidden

Hello World 0.1
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
int main(){

printf("Hello from outside\n" );
#pragma omp parallel

{
printf("Hello World !\n" );

}
return EXIT_SUCCESS;

}
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Shared memory

Variable scope

Defining variable scope

#pragma omp parallel private ( tid, numthreads )
#pragma omp parallel private ( a, b ) shared ( c, d )

Threads are identified by their rank :

I Thread number : omp_get_thread_num()
I Number of threads in the parallel program : omp_get_num_threads()

I Can be set by the OMP_NUM_THREADS environment variable and the
omp_set_num_threads() function
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Shared memory

Using a shared variable
Hello World 2.0
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
int main(){

int numthreads, tid;
#pragma omp parallel private( tid ) shared ( numthreads )

{
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);
if( 0 == tid ) {

numthreads = omp_get_num_threads();
}

}
printf("Number of threads = %d\n", numthreads);
return EXIT_SUCCESS;

}

Warning : pay attention to mutual exclusion on shared variables
I Here : only one threads writes in the shared variable, which is read only

and the end of the exeuction of all the threads
I Several ways to control mutual exclusion and causal ordering between

operations
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Shared memory

Mutual exclusion and synchronization

Ensure mutual exclusion :
I Defining critial sections : constructor critical
I Locks : type omp_lock_t
I Atomicity : constructor atomic

Differences :
I Useability, syntax
I Restrictions : exceptions, how can we get out of it...
I Ease of use, likelyhood to write bugs

Synchronization between threads :
I Explicit barrier : #pragma omp barrier
I The compiler adds implicit barriers : end of a parallel region, end of a loop,

end of a single region...
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Shared memory

SIMD in OpenMP

OpenMP has some SIMD extensions

#pragma omp simd
for(int n=0; n<8; ++n) an += bn;

Can be passed a clause :
I Collapse, reduction....
I Information about the scope of the variables...
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Shared memory

Tasks in OpenMP

Task-oriented paralelism :

I Pieces of computation that are independant from each other
I A task is executed by a thread
I If no thread is available : the task is queued and executed later

How to use this model : create the tasks, they are executed by threads from
the pool

I Independant computations
I Can be recursive

Adn wait for the end of their execution.

#pragma omp task

Synchronisstion : wait for the end of the tasks

#pragma omp taskwait
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Shared memory

Example : Fibonacci
Warning : this example is meant only for education purpose, it gives very poor
performance.

I Very few computations, a lot of interactions between the threads
int fib(int n){

int i, j;
if ( n < 2 ) return n;
else {

#pragma omp task shared(i) firstprivate(n)
i = fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fib(n-2);

#pragma omp taskwait
return i+j;

}
}

Initial call :
#pragma omp parallel shared(n)

{
#pragma omp single

printf ("fib(%d) = %d\n", n, fib(n));
}
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Shared memory

Data dependency
Shared variables between tasks

I As usual, shared, firstprivate, lastprivate
I Watch for shared vatiables

I Critical sections, etc

I The returned value can be used
Data dependency between threads can be defined

for (int i = 0; i < T; ++i) {
#pragma omp task shared(x, ...) depend( out: x) // T1

foo(...);
#pragma omp task shared(x, ...) depend( in: x) // T2

bar(...);
#pragma omp task shared(x, ...) depend( in: x) // T3

toto(...);
}

I T1 ≺ T2, T3
I T2 // T3

From these informations, the run-time environment buids a DAG and schedules
the tasks.
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Shared memory

Using OpenMP to program on GPU

OpenMP can be used with some extensions to program GPUs : the OmpSs
model

#pragma omp target device ({ smp | cuda })

More information : https://pm.bsc.es/ompss

https://pm.bsc.es/ompss
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Programming on GPUs

Programming on GPUs

GPUs are great
I A lot of processing units
I High bandwidth local memory

... but GPUs have some restrictions
I Mostly vector-based computation
I Need to move data back and forth between the host and the device
I Slow double precision computations

Can be programmed using
I Cuda
I OpenCL
I SYCL...
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Programming on GPUs

Architecture

On a GPU, a core has a very specific architecture
I One instruction stream
I Multiple ALUs

Consequence : all the threads on a core must execute the same instruction
I Conditional branches are executed sequentally
I No gain...

Therefore, performant on vector-like computation patterns
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Programming on GPUs

Cuda : example

Example provided by Nvidia’s documentation : take add.cu

Unified memory can be accessed from the GPU or the CPU
I Allocated by cudaMallocManaged
I Freeed by cudaFree

The function to execute on the GPU is called a kernel
I Definition starts with __global__
I Vectorized automatically or manually
I Started by add«.....» : provides the device number
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Programming on GPUs

StarPU

What is StarPU

I Task-based execution system
I Write tasks (defined by “codelets”) providing data dependencies between

tasks
I StarPU infers the DAG (statically or at run-time)
I StaPU schedules the tasks on the available resources, i.e. on the CPU and

the GPUs.

A codelet describes a computation kernel
I A task is the application of a codelet on data
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Programming on GPUs

Defining a codelet

Two parts :
I Defining the kernel itself

The prototype must be as follows :

void cpu_func(void *buffers, void *cl_arg)
{

printf("Hello world\n");
}

I Defining the codelet

Provide information on the kernel, its in/out buffers....

struct starpu_codelet cl =
{

.cpu_funcs = { cpu_func },

.nbuffers = 0
};
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Programming on GPUs

Submitting the task

To execute a task :
I Create the task and set the codelet

struct starpu_task *task = starpu_task_create();
task->cl = &cl;

I Submit it to the StarPU scheduling system

starpu_task_submit(task);

More documentation at :
http://starpu.gforge.inria.fr/doc/html/index.html

http://starpu.gforge.inria.fr/doc/html/index.html
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Distributed memory

Distributed memory

The programmer is in charge with data locality

I Each process has its own memory space
I Explicit data movements
I Need an communication library : set of functions, routines... to move data

and handle information about the processes’ organization
I And a run-time environment to start the parallel processes on the

distributed resources and orchestrate the resources

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM
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Distributed memory

Message Passing Interface
Considered as the de facto interface for programming parallel distributed
programs

I Huge set of routines
History

I First call for contributions : SC 1992
I 1994 : MPI 1.0

I Basic point-to-point communications
I collective communications

I 1995 : MPI 1.1 (clarifications)
I 1997 : MPI 1.2 (clarifications and corrections)
I 1998 : MPI 2.0

I Dynamic process management
I RDMA

I 2008 : MPI 2.1 (clarifications)
I 2009 : MPI 2.2 (corrections, few additions)
I MPI-3.0 (September 2012) and MPI-3.1 (June 2015).

I Non-blocking collective operations
I MPI SHM
I a LOT of other sections
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Distributed memory

Process naming system

Processes that communicate together belong to the same communicator :
I All the processes are in MPI_COMM_WORLD
I Everyone is alone in its own MPI_COMM_SELF
I MPI_COMM_NULL does not contain any process

Other communicators can be created at run-time

Processes are designated by their rank
I Unique in a given communicator

I Rank in MPI_COMM_WORLD = absolute rank in the application

I Used to send/receive messages
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Distributed memory

Deployment of the application
Start mpiexec starts the processes on the remote machines

I Start = execution of a program on a remote machine
I The binary executable must be accessible on the remote machine

I Can execute a different binary depending on process ranks
I "True" MPMD

I Command-line parameters are transmitted

Input / outputs / signals are forwarded
I stderr, stdout, stdin are forwarded to the start-up process (mpiexec)
I MPI-IO for I/O

Finalization
I mpiexec returns when all the processes are done
I Or when one process has exited abnormally (crash, failure...)

Using a batch scheduler
I Everything is done by the batch scheduler
I Start the application, outputs in files...
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Distributed memory

Communication model

Asynchronous
I Communication time : finite, unbounded

Communication modes
I Small messages : eager

I The sender sends the message on the network and returns as soon as the
message is transferred to the network layer

I If the receiver is not in a receive call, the message is bufferized
I When the receiver enters a receive call, it starts looking in its buffers, to

check whether the message is already here
I Big messages : rendez-vous

I The sender and the receiver must be in the communication call
I Rendez-vous mechanism :

I Send a small fragment
I The receiver acknowledges
I Send the rest of the message

I The sender returns only once it has sent all the message. The receiver is
receiving the message : no bufferization.
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Distributed memory

Hello world in MPI

Initialization of the MPI library
I MPI_Init( &argc, &argv );

Finalization
I MPI_Finalize( );

If a process exits before MPI_Finalize( );, it will be considered as an
abnormal exit

These two functions are MANDATORY ! !

How many processes are there on the application ?
I MPI_Comm_size( MPI_COMM_WORLD, &size );

What is my rank ?
I MPI_Comm_rank( MPI_COMM_WORLD, &rank );
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Hello World in MPI

Full code

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main( int argc, char** argv ) {
int size, rank;

MPI_Init( &argc, &argv );

MPI_Comm_size( MPI_COMM_WORLD, &size );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
fprintf( stdout, "Hello, I am rank %d in %d\n",

rank, size );

MPI_Finalize();

return EXIT_SUCCESS;
}
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Hello World en MPI

Compiler : mpicc
I Wrapper around the C compiler of the system
I Provides paths to mpi.h and the MPI library
I Roughly equivalent to

gcc -L/path/to/mpi/lib -lmpi -I/path/to/mpi/include

mpicc -o helloworld helloworld.c

Execution with mpiexec
I Provide a list of hosts in a (machinefile)
I Number of processes to start

mpiexec –machinefile ./machinefile -n 4 ./helloworld
Hello, I am rank 1 in 4
Hello, I am rank 2 in 4
Hello, I am rank 0 in 4
Hello, I am rank 3 in 4
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About Python

Python bindings exist, but are non-official
I Not part of the standard
I For instance : mpi4py (high quality)

from mpi4py import MPI

The Python script still needs an interpreter :

$ mpiexec -n 8 python helloWorld.py

Particularity with Python : neither MPI_Init nor MPI_Finalize
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Example in Python

Communicators : MPI.COMM_WORLD, MPI.COMM_SELF, MPI.COMM_NULL

#!/bin/python

from mpi4py import MPI

def main():
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
print "hello from " + str( rank ) + " in " + str( size )

if __name__ == "__main__":
main()
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Peer-to-peer communications

Two-sided communications can be :
I Blocking : MPI_Send, MPI_Recv
I Buffered : MPI_Bsend, MPI_Brecv
I Non-blocking : MPI_Isend, MPI_Irecv
I Buffered, non-blocking : MPI_Ibsend, MPI_Ibrecv
I Asynchronous : MPI_Asend, MPI_Arecv
I Returns only if the matching receive has been posted : MPI_Ssend
I Can be used only if the matching receive has been posted : MPI_Rsend

One-sided communications :
I MPI_Put, MPI_Get
I Asynchronous, non-blocking
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Communications

Data
I buff : send / receive buffer
I count : number of elements, of type datatype
I datatype : type of the communicated data

I Use MPI data types
I Ensures portability (including 32/64 bits, heterogeneous environments...)
I Standard data types, new ones can be defined (derived data types)

Process identification
I Use the couple communicator / rank
I Reception : can use a wildcard

I MPI_ANY_SOURCE
I After completion of the reception, the sender can be found in the status

Communication identification
I Use a tag
I Reception : can use a wildcard

I MPI_ANY_TAG
I After completion of the reception, the tag can be found in the status
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Ping-pong
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main( int argc, char** argv ) {
int rank;
int token = 42;
MPI_Status status;

MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
if( 0 == rank ) {

MPI_Send( &token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD );
MPI_Recv( &token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &status );

} else {
if( 1 == rank ) {

MPI_Recv( &token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status );
MPI_Send( &token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD );

}
}
MPI_Finalize();

return EXIT_SUCCESS;
}
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Ping-pong

Remarks
I For each send, there is always a matching receive

I Same communicator, same tag
I Sender’s rank and receiver’s rank

I Rank used to determine what need to do
I Integers are sent : → MPI_INT

Frequent mistakes
I The data type and number of elements must be the same in the send and

the receive calls
I The receiver expects to receive what was sent

I Matching MPI_Send et MPI_Recv
I Two MPI_Send or two MPI_Recv = deadlock !
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Ping-pong illustated

I Rank 0 sends a token
I Rank 1 receives it and sends it back to rank 0
I Rank 0 receives it.

if( 0 == rank ) {
MPI_Send( &token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
MPI_Recv( &token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &status );

} else if( 1 == rank ) {
MPI_Recv( &token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status );
MPI_Send( &token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

P0

P1

recv(&t, P0)

send(&t, P1)

send(&t, P0)

recv(&t, P1)
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How communications are actually made

Every process (sender or receiver) has a
buffer corresponding to the message

I Memory must be allocated both
on sender’s side and receiver’s side

I We do not send more elements
than the available space

Data must be linearized (marshalled) in
the buffer

I We send a buffer, a table of
elements, a row of bytes...

send( P1, &addr )

recv( P0, &addr )

addr

addr

P0

P1
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Some communication patterns : master-workers

Data distribution : the master distributes input data to the workers
I The master demultiplexes the input data, multiplexes the results
I The slaves do not communicate with each other

Efficiency : the master manages queues for the input data and the results
I Sequential part of the computation
I Communications : master ↔ slaves
I The slaves do not work when they are waiting for data or when they are

sending their results

The slaves only take actual part of the computation
I Can give a good speedup at large scale (slaves >> master) if they do not

communicate often
I Not very efficient with only a few processes
I Might cause a bottleneck on the master
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Master-slave

Master

Slave 1

Slave 2

Slave 3

Slave 4

Slave 5

Static load balancing :
I Data distributed using MPI_Scatter
I Results gathered using MPI_Gather

Example : masterworker3.c
Dynamic load balancing :

I Pull mode : the slaves ask for work
I The master sends chunks one by one

Example : masterworker1.c,
masterworker2.c
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Some communication patterns : domain decomposition

Process grid : the data is sliced, a process is

1D decomposition
The data is sliced in bands

0 1 2 3

2D decomposition
The data is sliced in rectangles : more
scalable

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
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Ghost region

Boarder between sub-domains
I An algorithm can need values of neighboring points to compute the new

value of a point
I Image processing (gradient...), cellular automata...

I Replicate data around the border
I Each process keeps a bit of data from the neighbors
I Updated at the end of the computation
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Exercise : data exchange between neighbors

Write a parallel program using MPI that :
I Initializes a matrix on each process
I Exchange a ghost region

Using a 1D and a 2D decomposition.

You can start from cart_comm.c : the program extracts communicators from a
2D process grid.
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OpenSHMEM

Other communication and memory model
I Shared heap
I One-sided communications

Memory model : symmetric heap

I Private memory vs shared memory (heap)
I Memory allocation in the shared heap is a collective communication

P0 P1 P2

Private
memory

Symmetric
heap

Static global
objects

Symmetric
objects
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OpenSHMEM : Example

Allocation in the shared heap :
I shmalloc function
I Warning : collective

Data movements :
I Fonctions shmem_*_put, shmem_*_get
I One function for each data type

short* ptr = (short*)shmalloc( 10 * sizeof( short ) );
if (_my_pe() == 0) {

shmem_long_put( ptr, source, 10, 1 );
}
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Global Address Space

Concept of global address space :
I Program distributed memory just like shared memory
I Participation from the compiler
I The union of the distributed memories is seen by the programmer as a

shared memory

In practice :
I The programmer declares the visibility of his/her variables : private (by

default) or shared
I Arrays : The programmer declares the size of the blocks that will be

placed on each process
I The compiler is in charge with :

I Distributing the shared variables in the memory of the processes
I Translating remote accesses (a = b) into communications

Issues related to the fact that the memory is distributed are not seen by the
programmer.
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Examples
PGAS languages :

I Unified Parallel C (UPC), Titanium, CoArray Fortran

a

P0

a

P1

a

P2

partagé

privé

int a ;

shared int x ;

x

int a = x ;

memcpy
get get
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UPC : Example

Example :
I A variable x is shared, and therefore accessible from all the processes

I The compiler will place it in the memory of a process of its choice.

I Process 0 (called thread in UPC terminology) initializes it to 42.
I A global barrier makes sure that all the processes have reached this point

of the program.
I All the processes read the value of x and put it into a private variable of

their own.
I The compiler generates inter-process network communications (in all

likelihood get)

shared int x;
int a;
if( 0 == MYTHREAD ) {

x = 42;
}
upc_barrier;
a = x;
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A few words on performance evaluation
Speed-up

I

Sequential application profiling
I PAPI : Performance API
I Hardware counters
I Counts operations, cache hits/misses, erroneous branch predictions...
I http://icl.utk.edu/papi/

General profiling
I VTune
I A lot of information, including vector performance
I https://software.intel.com/en-us/vtune

Parallel applications profiling
I Tau : profiling and tracing http://tau.uoregon.edu
I EZtrace : modular http://eztrace.gforge.inria.fr
I mpiP : lightweight, time spent in MPI routines

http://mpip.sourceforge.net

http://icl.utk.edu/papi/
https://software.intel.com/en-us/vtune
http://tau.uoregon.edu
http://eztrace.gforge.inria.fr
http://mpip.sourceforge.net
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