T
Calcul 3 hautes performances

Calcul a hautes performances : de la modélisation a
I'implémentation

Camille Coti

LIPN, CNRS UMR 7030, SPC, Université Paris 13, France

18 février 2019

T

Calcul 3 hautes performances

Roadmap

Scientific computing

Parallel architectures

Programming parallel applications

Performance ?

T
Calcul 3 hautes performances

L Scientific computing

Roadmap

Scientific computing

T
Calcul 3 hautes performances

L Scientific computing

Introduction to scientific computing

Today : first lecture of the class
» Next Monday : Vittoria Rezzonico (EPFL) and Nicolas Grenéche (Paris 13)

Today's material (slides + code) can be found on my webpage

> wwyw.lipn.fr/"coti/cours

www.lipn.fr/~coti/cours

T
Calcul 3 hautes performances

L Parallel architectures

Roadmap

Parallel architectures
Evolution of the nodes
Big machines
How can you access such machines?

T

Calcul 3 hautes performances

L Parallel architectures

Parallel = several computing units

Can be several computation nodes
» Each controled by its own OS, have their own memory
> Interconnected by a (fast) network

Can be several processors

Scalability

» Several processors on a motherboard
> Share the central memory
» Interconnected by the system bus

Can be several cores

» Several cores on a processor
» Some caches are shared, some are private

Can be several instruction stream (hyperthreading)

Closeness

» Within a core
» ALU and caches are shared
» Each logical core has its own architectural states

T
Calcul 3 hautes performances

L Parallel architectures

Parallel execution models

How does it run in parallel? — Flynn’s taxonomy
» SISD : Single Instruction, Single Data
> Has some interest, but not what we are here for today
» MIMD : Multiple Instruction, Multiple Data

> The general case in parallel computing : run different instruction streams on
different data

» SIMD : Single Instruction, Multiple Data

> Run the same instruction on different data
> Vertor computing

» MISD : Multiple Instruction, Single Data
> Very specific usage, mostly for redundancy, not relevant for today's talk

Calcul 3 hautes performances

L Parallel architectures

MIMD : example

. Process states
'“Ssggcm"spo Pl - Step PO P1)

0 intc; doubled doubled; 0 | double| |double |
1 c=2; d=3.0; d =5.0; 1 3.0 5.0
2 c++; d/=20; d/=20; 2 15 25
3 c%2; d*=40; d+=1.0; 3 6.0 35

Calcul 3 hautes performances

L Parallel architectures

SIMD : example

Instructions

Process states

Step Instruction
0 int c;
1 c = getdata();
2 c++;
3 c%2;

Step PO P2
0 int
1 0
2 9]
3

Calcul 3 hautes performances

L Parallel architectures

Current machines’ architecture
Fast nodes

» Multi-core processors

» Several processors

» Accelerators
Specificities :

» Processors are slightly different from our
desktop computers’ CPU
> Bigger caches
> More cores
» ECCmemory support

» Fast interconnexion
> QuickPath Bus (Intel), HyperTransport (AMD)
> Not always a unique bus : crossbar, multiples busses...

Fast network

» Ethernet : out-of-band communications
» Fast network : application
> Low latency, high throughput
> InfiniBand, Myrinet, proprietary networks (Tofu, Sea Star...)

T
Calcul 3 hautes performances

L Parallel architectures

Evolution of the nodes

Hardware evolution

Explosion of the number of cores
» Several CPUs per node
» Advent of multi-core architectures
» What a core is is getting blurrier
Accelerators
» GPU, Cell
» Xeon Phi
> Pezy-SC2
Low latency networks
» Myrinet, InfiniBand
» Order of magnitude w.r.t. moving data on
the same node

> Latency x2
> Throughput / 2

Efforts on the energy consumption.

Calcul 3 hautes performances
L Parallel architectures

= Big machines

Fastest machines in the world

Top 500 : https://wuw.top500.o0rg
» Runs a benchmark (LINPAK) that performs typical scientific computation
operations

> Factor and solve a dense linear algebra system of equations
> Gaussian elimination with partal pivoting

» Used for statistics
> ldentify trends (architecture, size, network technology...)
> By country, by OS...
> Evolution over the years!

> First release in 1993, biannual (June at ISC, November at SC)

Other ranking systems
» HPCG (High Performance Conjugate Gradients)
http://www.hpcg-benchmark.org
> Krylov subspace solver
> Additive Schwarz, symmetric Gauss-Seidel preconditioned conjugate
gradient solver
> Sparse linear system, mathematically similar to usual PDE problems
> Green500 https://www.top500.org/green500
» Top500 data, energy efficiency
> Graph500 https://graph500.org
> Computations on weighted, undirected graphs (search, shortest path...)
> Relevant for 3D physics simulations, for example

https://www.top500.org
http://www.hpcg-benchmark.org
https://www.top500.org/green500
https://graph500.org

Calcul 3 hautes performances
L Parallel architectures

= Big machines

Top 500 : November 2018

» Rpeak is the theoretical peak
» Rmax is the LINPACK performance
» Rpeak and Rmax in TFlops/s, power in kW.

Rank System Site Cores Rmax Rpeak Power
1 Summit DoE / ORNL (USA) 2,282,544 122,300.0 187,659.3 8,806
2 Sunway TaihuLight NSC Wuxi (China) 10,649,600 93,014.6 125,435.9 15,371
3 Sierra DoE/LLNL (USA) 1,572,480 71,610.0 119,193.6 -
4 Tianhe-2A NSC Guangzhou (China) 4,981,760 61,444.5 100,678.7 18,482
5 ABCI AIST (Japan) 391,680 19,880.0 32,576.6 1,649
6 Piz Daint CSCS (Switzerland) 361,760 19,590.0 25,326.3 2,272
7 Titan DoE / ORNL (USA) 560,640 17,590.0 27,1125 8,209
8 Sequoia DoE / LLNL (USA) 1,572,864 17,173.2 20,132.7 7,890
9 Trinity DoE / LANL / SNL (USA) 979,968 14,137.3 43,902.6 3,844
10 Cori DoE/LBNL/NERSC (USA) 622,336 14,014.7 27,880.7 3,939

Summit :

» IBM system, 4,608 nodes
» IBM POWER9 22C 3.07GHz processors (2/node)

v

v

v

NVIDIA Volta V100s (6/node)
» Memory : 512GB DDR4 + 96GB HBM2 / node, 1600GB NV
Dual-rail Mellanox EDR Infinibandnetwork

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Calcul 3 hautes performances
L Parallel architectures

= Big machines

Former number 1's

Name Dates #1 Nb cores Rmax

CM-5 06/93 1024 59.7 Gflops
Numerical Wind Tunnel 11/93 140 124.2 Gflops
Intel XP/S 140 Paragon 04/93 3680 143.40 Gflops
Numerical Wind Tunnel 11/94-12/95 167 170.0 Gflops
Hitachi SR2201 06/96 1024 232.4 Gflops
CP-PACS 11/96 2048 368.20 Gflops
ASCI Red 06/97 - 06/00 7264 1.068 Tflops
ASCI White 11/00 - 11-01 8192 4.9 - 7.2 Tflops
Earth Simulator 06/02 - 06/04 5120 35.86 Tflops
BlueGene/L 11/04 - 11/07 212992 478.2 Tflops
Roadrunner 06/08 - 06/09 129600 1.026 - 1.105 Pflops
Jaguar 11/09 - 06/10 224162 1.759 Pflops
Tianhe-1A 11/10 14336 + 7168 2.57 Pflops

K 06/11 - 11/11 548352 - 705024 8.16 - 10.51 Pflops
Sequoia 06/12 1572864 16.32 Pflops
Titan 11/12 552960 17.6 Pflops
Tianhe-2 6/13 - 11/15 3120000 33.9 Pflops
Sunway 6/16 - 11/17 10649600 93.0 Pflops
Summit 6/18 — 2282,544 122300.0

Calcul 3 hautes performances
L Parallel architectures

How can you access such machines ?

Access such machines
At Paris 13 / USPC
» Magi cluster

» Administrated and managed by Nicolas
Grenéche (you will meet him next week)
(awesome guy, very skilled, don't hesitate
to ask for technical support)

» 50 compute nodes, 40 cores each

» 2 fat nodes, 512 GB memory each
» InfiniBand interconnect .
National resources : GENCI (Grand Equipement National de Calcul Intensif)
» TGCC (Trés Grand Centre de calcul du CEA)
> Joliot-Curie : 6,8 petaflop/s + 2,1 petaflop/s, 382 TB
» CINES (Centre Informatique National de I'Enseignement Supérieur)
> Occigen : 3,5 petaflop/s, 4212 nodes, 85824 cores, 283 TB
» IDRIS (Institut du développement et des ressources en informatique
scientifique)
> Jean Zay : 14 petaflop/s. “Scalar” part : 4.9 petaflop/s, 1528 nodes, 192
GB/node. “Converged"” part : 9.02 petaflop/s, 261 nodes with 4 GPUs each

European resources : PRACE

T
Calcul 3 hautes performances

Progr ing parallel i

Roadmap

Programming parallel applications
Architecture and some techniques
Cache blocking
SIMD registers
Shared memory
Programming on GPUs
Distributed memory
Distributed shared memory

T

Calcul 3 hautes performances
"

Progr ing parallel
I

L Archi and some i
:

How to choose how to program for a parallel machine?

Look at the architecture of the machine
» Shared memory ?

» Vector processing unit(s) ?

Look at the memory access patterns of your application
» Regular? Irregular?
» All the processes at the same time?
» Unexpected remote data accesses?
» VERY big?

T

Calcul 3 hautes performances

Progr ing parallel

L Cache blocking

Cache blocking

Not parallel computing per se
» Work on your data by blocks that fit in caches
» Useful when the data is reused

> e.g. Matrix-matrix multiplication : O(n?) elements, O(n?) operations

Blocked loop :
for(i =0 ; i < size ; i+=block) {
Foss . for(j =0 ; j < size ; j+=block) {
Orlglnal |00p ' theblockl = (j+block < size) ? block : (size-j) ;
for(i =0 ; i < size ; i++) { theblock2 = (i+block < size) ? block : (size-i) ;
for(k = 0 ; k < size ; k++) { for(b = 0 ; b < theblock2 ; b++) {
for(j =0 ; j < size ; j++) { for(¢ = 0 ; c < theblockl ; c++) {
/* .. %/ for(k = 0 ; k < size ; k++) {
} /* ox/
} }

Calcul 3 hautes performances
Programming parallel applications

L Cache blocking

Cache blocking : example

Take matmul.c.
» Implements several matrix-matrix multiplications in O(n?) operations

» Same computation algorithm, different memory access patterns

> Plain, naive pattern : naiveMatMul ()

> Swapped loops to make the inner loop work on consecutive data :
swappedMatMul ()

> Tiled for cache blocking : tiledMatMul ()

> Tiled for cache blocking with swapped loops : tiledSwappedMatMul () and
tiledSwappedMatMul2 ()

Compare the functions, compile and execute.

» Takes the matrix size as a parameter : ./matmul 256 to work on 256x256
matrices.

Compare the execution times.
If you have PAPI on your computer : use matpul_papi.c

» If PAPI cannot access your counters :
sudo bash -c "echo ’-1’ > /proc/sys/kernel/perf_event_paranoid"

Compare number of cache misses.

Calcul 3 hautes performances
"

Progr ing parallel
- SIMD registers

Use SIMD registers

Your CPU has some SIMD registers

» Check the instruction set with cat /proc/cpuinfo
Vendor-specific

> Sorry AMD people, | will talk about Intel registers and instruction sets

» Some exist on AMD processors, some can be trivially transposed to AMD
Core idea :

» Stuff several data words in a single register

» Execute instructions on these registers

— Single instruction executed on several data

How many data words ?
» MMX : 64 b
» SSE and AVX : 128 b
» AVX2:256 b
» AVX-512:512 b

Calcul 3 hautes performances
Programming parallel applications
= SIMD registers

Compiler-based vectorization

Modern compilers are already vetorizing whatever they can detect

» Loops on consecutive data...

Take vector.c. It is a very simple loop performing the same operation on
consecutive data.

» Dump the assembler code with gcc -S vector
> Loop at the generated code and search for SIMD registers
» Try with different optimization options : -00, -O3...

However, compilers cannot guess everything

> Take matrix_novect.c

v

Dump the assembler code

v

Look for vector operations

> Reminder : double is on 64 bits, float is on 32 bits, xmm]0...15] registers
contain 64 bits

v

Change double for float, etc

Calcul 3 hautes performances
Programming parallel applications
= SIMD registers

Manual vectorization

First possibility : optimize your assembly code
> Just use the SIMD registers like other registers, but put multiple things in
them

» Dedicated load/store instructions
> Example : MOVNTDQA is “Load Double Quadword Non-Temporal Aligned
Hint”

Other possibility : use intrinsics in C and C++ code
> Registers : __m256d, __m256i, __m256s...

» Load operations : toto = _mm256_loadu_pd(....), toto =
_mm256_set_pd(....)....

> Store operations : _mm256_storeu_pd(....)...

» Add, multiply...

» With FMA instructions : Fused Multiply and Add

Documentation :
https://software.intel.com/sites/landingpage/IntrinsicsGuide

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Calcul 3 hautes performances
Programming parallel applications
= SIMD registers

Intrinsics : example

Example : take matrix_avx.c
» Corresponds to matrix_novect.c with vectorization using intrinsics
» Loop: i+=4 — 4 by 4
> a and b are SIMD registers that contain elements from the matrix
> Db contains contiguous data : filled with _mm256_loadu_pd ()
> a contains non-contiguous data : filled with _mm256_set_pd ()
» c contains random-generated values

» The computation is made by _mm256_add_pd () and _mm256_mul_pd ()

v

The final result is stored by _mm256_storeu_pd ()

Compilation :
» Option -march=ative is the easiest one
» Some other options : -mavx, -mfma...

> #include <x86intrin.h> gets you all the headers you need

T
Calcul 3 hautes performances

Progr ing parallel i

- SIMD registers

Intrinsics : exercise

Exercise : Implement a matrix-matrix multiplication using SIMD intrinsics

» Just start with the plain, simple pattern
» If available on your CPU, try FMA.

T

Calcul 3 hautes performances
"

Progr ing parallel
L Shared memory

Shared memory architecture

Particularity : the processing units access some shared memory

» Processing units?

> Sometimes threads, not always
> Can also be processes

Low level of abstraction :

» Programming with POSIX threads (pthread_create(),
pthread_join()...) or processes (created with fork() and exec())

» Communication via segments of shared memory : POSIX shm framework,
Boost.Interconnect segments...

» See for example threads.c

... But some tools exist to simplify thread management !

Calcul 3 hautes performances
Programming parallel applications

L Shared memory

OpenMP

Annotation-based language
» Few modifications in the code
» Compilation directives
> Start with #pragma : If the compiler does not support OpenMP, it is not
enabled and the program works sequentially

Parallel region Parallel region

|
fork - join fork join
L S

Master’thread -
]

A LOT of documentation can be found here :
https://computing.1llnl.gov/tutorials/openMP

https://computing.llnl.gov/tutorials/openMP

Calcul 3 hautes performances
"

Progr ing parallel
L Shared memory

What is OpenMP 7

Set of functions, environment variables and compiler directives
» High level programming

» The compiler is strongly involved

OpenMP compiler
» Uses compiler directives

> In charge with generating the threads, sharing work between threads, data
location

OpenMP library
» Provides a run-time environment

> In charge with dynamic functions, at run-time

Environment variables
> Allows the user to set some parameters at run-time (number of threads...)

> In charge with everything specific for a given execution : hardware binding,
stack size, etc

Calcul 3 hautes performances
Programming parallel applications

L Shared memory

Example : loop parallelization

Global maximum on a table

Algorithm 1: Sequential computation of the maximum of a table

begin
Data: Table of size N containing positive integers tabl]
Result: Integer MAX
MAX =0;
for i <~ 0 to N do
| if tab[i] > MAX then MAX = tab[i];

Parallelization of the for loop
» “Slice” the range on which the computation is made

» Slices are divided between threads

Calcul 3 hautes performances

Progr parallel i

L Shared memory

OpenMP annotations

Parallel sections

> #pragma omp parallel : beginning of a parallel section (fork)
» #pragma omp for : parallel for loop
Synchronizations

> #pragma omp critical : critical section

> #pragma omp barrier : synchronization barrier
Data visibility

» Private = visible only by this thread

» Shared = visible by all the threads
» By default :

> Variables declared inside a parallel region is private
> Variables declared outside are shared

#pragma omp parallel private (tid) shared (result)

T
Calcul 3 hautes performances
"

Progr ing parallel
L Shared memory

Compilation and execution

Headers #include <omp.h>
Compilation Enable OpenMP with an option of the compiler
» For gcc : -fopenmp
Reminder : if the option is not enabled, the annotations are ignored (not the

functions).
Execution Number of threads :

» By default : the environment discovers how many cores are available and
uses them all

» Set by the user using the environment visible $0MP_NUM_THREADS

Calcul 3 hautes performances

Progr ing parallel i

L Shared memory

OpenMP parallel region
The parallel region is declared using

#pragma omp parallel

Every thread executes what is inside of the structured block
» Warning : the opening brace must be at the beginning of the line

» Branching (e.g. goto) to the inside or the outside of a parallel region are
forbidden

Hello World 0.1

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
int main(){
printf("Hello from outside\n");
#pragma omp parallel
{

printf("Hello World !\n");

return EXIT_SUCCESS;

Calcul 3 hautes performances

Progr ing parallel i

L Shared memory

Variable scope

Defining variable scope

#pragma omp parallel private (tid, numthreads)
#pragma omp parallel private (a, b) shared (c, d)

Threads are identified by their rank :

» Thread number : omp_get_thread_num()
» Number of threads in the parallel program : omp_get_num_threads ()

> Can be set by the OMP_NUM_THREADS environment variable and the
omp_set_num_threads() function

Calcul 3 hautes performances
"

Progr ing parallel
L Shared memory

Using a shared variable
Hello World 2.0

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main(){
int numthreads, tid;

#pragma omp parallel private(tid) shared (numthreads)
{

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n", tid);

if(0 == tid) {

numthreads = omp_get_num_threads();

}
¥
printf ("Number of threads = %d\n", numthreads);
return EXIT_SUCCESS;

Warning : pay attention to mutual exclusion on shared variables

> Here : only one threads writes in the shared variable, which is read only
and the end of the exeuction of all the threads

» Several ways to control mutual exclusion and causal ordering between
operations

Calcul 3 hautes performances
"

Progr ing parallel
L Shared memory

Mutual exclusion and synchronization

Ensure mutual exclusion :
» Defining critial sections : constructor critical
> Locks : type omp_lock_t

> Atomicity : constructor atomic

Differences :
» Useability, syntax
» Restrictions : exceptions, how can we get out of it...

» Ease of use, likelyhood to write bugs

Synchronization between threads :
» Explicit barrier : #pragma omp barrier

» The compiler adds implicit barriers : end of a parallel region, end of a loop,
end of a single region...

Calcul 3 hautes performances
"

Progr ing parallel

L Shared memory

SIMD in OpenMP

OpenMP has some SIMD extensions

#pragma omp simd
for(int n=0; n<8; ++n) an += bn;

Can be passed a clause :
» Collapse, reduction....

» Information about the scope of the variables...

Calcul 3 hautes performances
"

Progr ing parallel
L Shared memory

Tasks in OpenMP

Task-oriented paralelism :
> Pieces of computation that are independant from each other
» A task is executed by a thread

» If no thread is available : the task is queued and executed later

How to use this model : create the tasks, they are executed by threads from
the pool

» Independant computations
» Can be recursive

Adn wait for the end of their execution.

I#pragma omp task

Synchronisstion : wait for the end of the tasks

I#pragma omp taskwait

Calcul 3 hautes performances

Progr ing parallel i

L Shared memory

Example : Fibonacci
Warning : this example is meant only for education purpose, it gives very poor
performance.
» Very few computations, a lot of interactions between the threads

int fib(int n){
int i, j;
if (n < 2) return n;
else {
#pragma omp task shared(i) firstprivate(n)
i = fib(n-1);
#pragma omp task shared(j) firstprivate(n)
j = fib(n-2);
#pragma omp taskwait
return i+j;
}
}

Initial call :

#pragma omp parallel shared(n)
{

#pragma omp single
printf ("fib(%d) = %d\n", n, fib(n));
}

Calcul 3 hautes performances

Progr ing parallel li

L Shared memory

Data dependency

Shared variables between tasks

> As usual, shared, firstprivate, lastprivate
» Watch for shared vatiables
» Critical sections, etc

» The returned value can be used

Data dependency between threads can be defined

for (int i = 0; i < T; ++i) {

#pragma omp task shared(x, ...) depend(out: x) // T1
foo(...);

#pragma omp task shared(x, ...) depend(in: x) // T2
bar(...);

#pragma omp task shared(x, ...) depend(in: x) // T3
toto(...);

}

» T1 < T2, T3
» T2// T3

From these informations, the run-time environment buids a DAG and schedules
the tasks.

Calcul 3 hautes performances

Progr ing parallel i

L Shared memory

Using OpenMP to program on GPU

OpenMP can be used with some extensions to program GPUs : the OmpSs
model

#pragma omp target device ({ smp | cuda 1})

More information : https://pm.bsc.es/ompss

https://pm.bsc.es/ompss

Calcul 3 hautes performances
"

Progr ing parallel

Programming on GPUs

Programming on GPUs

GPUs are great
» A lot of processing units
» High bandwidth local memory
... but GPUs have some restrictions
» Mostly vector-based computation
» Need to move data back and forth between the host and the device

» Slow double precision computations

Can be programmed using
» Cuda
» OpenCL
» SYCL...

Calcul 3 hautes performances

Progr ing parallel i

Programming on GPUs

Architecture

On a GPU, a core has a very specific architecture
» One instruction stream
» Multiple ALUs

Consequence : all the threads on a core must execute the same instruction
» Conditional branches are executed sequentally

> No gain...

Therefore, performant on vector-like computation patterns

e

Calcul 3 hautes performances
"

P ing parallel

Progr

Programming on GPUs

Cuda : example

Example provided by Nvidia's documentation : take add.cu

Unified memory can be accessed from the GPU or the CPU
» Allocated by cudaMallocManaged

» Freeed by cudaFree

The function to execute on the GPU is called a kernel
» Definition starts with __global__

> Vectorized automatically or manually
» Started by add«. » : provides the device number

Calcul 3 hautes performances

Progr ing parallel i

Programming on GPUs

StarPU

What is StarPU

» Task-based execution system

> Write tasks (defined by “codelets”) providing data dependencies between
tasks

» StarPU infers the DAG (statically or at run-time)

» StaPU schedules the tasks on the available resources, i.e. on the CPU and
the GPUs.

A codelet describes a computation kernel

» A task is the application of a codelet on data

Calcul 3 hautes performances

Progr ing parallel i

Programming on GPUs

Defining a codelet

Two parts :
» Defining the kernel itself

The prototype must be as follows :

void cpu_func(void *buffers, void *cl_arg)
{

printf("Hello world\n");
}

» Defining the codelet

Provide information on the kernel, its in/out buffers....

struct starpu_codelet cl =

{
.cpu_funcs = { cpu_func },
.nbuffers = 0

};

T
Calcul 3 hautes performances
"

Progr ing parallel

Programming on GPUs

Submitting the task

To execute a task :

» Create the task and set the codelet

struct starpu_task *task = starpu_task_create();
task->cl = &cl;

» Submit it to the StarPU scheduling system

starpu_task_submit (task) ;

More documentation at :
http://starpu.gforge.inria.fr/doc/html/index.html

http://starpu.gforge.inria.fr/doc/html/index.html

Calcul 3 hautes performances
"

Progr ing parallel

L Distributed memory

Distributed memory

The programmer is in charge with data locality

» Each process has its own memory space

» Explicit data movements

» Need an communication library : set of functions, routines... to move data
and handle information about the processes’ organization

» And a run-time environment to start the parallel processes on the
distributed resources and orchestrate the resources

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Message Passing Interface
Considered as the de facto interface for programming parallel distributed
programs
» Huge set of routines
History

» First call for contributions : SC 1992
» 1994 : MPI1 1.0

> Basic point-to-point communications
> collective communications

» 1995 : MPI 1.1 (clarifications)

> 1997 : MPI 1.2 (clarifications and corrections)
» 1998 : MPI 2.0

> Dynamic process management

> RDMA
» 2008 : MPI 2.1 (clarifications)

» 2009 : MPI 2.2 (corrections, few additions)

» MPI-3.0 (September 2012) and MPI-3.1 (June 2015).
> Non-blocking collective operations
> MPI SHM
> a LOT of other sections

T
Calcul 3 hautes performances
"

Progr ing parallel
L Distributed memory

Process naming system

Processes that communicate together belong to the same communicator :
> All the processes are in MPI_COMM_WORLD
> Everyone is alone in its own MPI_COMM _SELF
» MPI_COMM _NULL does not contain any process

Other communicators can be created at run-time

Processes are designated by their rank
> Unique in a given communicator
> Rank in MPI_COMM _WORLD = absolute rank in the application

> Used to send/receive messages

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Deployment of the application

Start mpiexec starts the processes on the remote machines
» Start = execution of a program on a remote machine
> The binary executable must be accessible on the remote machine
» Can execute a different binary depending on process ranks
> "True" MPMD

» Command-line parameters are transmitted

Input / outputs / signals are forwarded
> stderr, stdout, stdin are forwarded to the start-up process (mpiexec)

» MPI-IO for 1/0

Finalization
» mpiexec returns when all the processes are done

» Or when one process has exited abnormally (crash, failure...)

Using a batch scheduler
» Everything is done by the batch scheduler

» Start the application, outputs in files...

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Communication model

Asynchronous

» Communication time : finite, unbounded

Communication modes

» Small messages : eager
> The sender sends the message on the network and returns as soon as the
message is transferred to the network layer
> If the receiver is not in a receive call, the message is bufferized
> When the receiver enters a receive call, it starts looking in its buffers, to
check whether the message is already here

> Big messages : rendez-vous

> The sender and the receiver must be in the communication call
> Rendez-vous mechanism :
> Send a small fragment
»> The receiver acknowledges
> Send the rest of the message
> The sender returns only once it has sent all the message. The receiver is
receiving the message : no bufferization.

Calcul 3 hautes performances
"

Progr ing parallel
L Distributed memory

Hello world in MPI

Initialization of the MPI library
» MPI_Init(&argc, &argv);
Finalization
» MPI_Finalize();
If a process exits before MPI_Finalize();, it will be considered as an

abnormal exit

These two functions are MANDATORY' !'!

How many processes are there on the application ?
» MPI_Comm_size(MPI_COMM_WORLD, &size);
What is my rank ?
» MPI_Comm_rank(MPI_COMM_WORLD, &rank);

Calcul 3 hautes performances

Progr ing parallel i

L Distributed memory

Hello World in MPI

Full code

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main(int argc, char¥* argv) {
int size, rank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

fprintf(stdout, "Hello, I am rank %d in %d\n",
rank, size);

MPI_Finalize();

return EXIT_SUCCESS;

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Hello World en MPI

Compiler : mpicc
» Wrapper around the C compiler of the system
> Provides paths to mpi.h and the MPI library

» Roughly equivalent to
gcc -L/path/to/mpi/1ib -lmpi -I/path/to/mpi/include

mpicc -o helloworld helloworld.c

Execution with mpiexec
> Provide a list of hosts in a (machinefile)
» Number of processes to start

mpiexec -machinefile ./machinefile -n 4 ./helloworld

Hello, I am rank 1 in 4
Hello, I am rank 2 in 4
Hello, I am rank O in 4
Hello, I am rank 3 in 4

Calcul 3 hautes performances

Progr ing parallel i

L Distributed memory

About Python

Python bindings exist, but are non-official
» Not part of the standard
» For instance : mpidpy (high quality)

from mpi4py import MPI

The Python script still needs an interpreter :

$ mpiexec -n 8 python helloWorld.py

Particularity with Python : neither MPI_Init nor MPI_Finalize

T
Calcul 3 hautes performances

Progr ing parallel

L Distributed memory

Example in Python

Communicators : MPI.COMM_WORLD, MPI.COMM_SELF, MPI.COMM_NULL

#!/bin/python
from mpi4py import MPI

def main():
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
print "hello from " + str(rank) + " in " + str(size)

if __name == "__main__":

main()

T
Calcul 3 hautes performances
"

Progr ing parallel
L Distributed memory

Peer-to-peer communications

Two-sided communications can be :

> Blocking : MPI_Send, MPI_Recv

> Buffered : MPI_Bsend, MPI_Brecv

> Non-blocking : MPI_Isend, MPI _Irecv

> Buffered, non-blocking : MPI _Ibsend, MPI _lbrecv

» Asynchronous : MPI _Asend, MPI_ Arecv

> Returns only if the matching receive has been posted : MPI_Ssend

> Can be used only if the matching receive has been posted : MPl_Rsend
One-sided communications :

» MPI_Put, MPI_Get

» Asynchronous, non-blocking

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Communications

Data
> buff : send / receive buffer

» count : number of elements, of type datatype
» datatype : type of the communicated data

> Use MPI data types
> Ensures portability (including 32/64 bits, heterogeneous environments...)
> Standard data types, new ones can be defined (derived data types)

Process identification

> Use the couple communicator / rank
» Reception : can use a wildcard
» MPI_ANY_SOURCE
> After completion of the reception, the sender can be found in the status
Communication identification

> Use a tag
> Reception : can use a wildcard

> MPI_ANY_TAG
> After completion of the reception, the tag can be found in the status

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Ping-pong

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main(int argc, char** argv) {
int rank;
int token = 42;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD, &status);
} else {
if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, O, O, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, O, O, MPI_COMM_WORLD);
}
}
MPI_Finalize(Q);

return EXIT_SUCCESS;

T
Calcul 3 hautes performances
"

Progr ing parallel
L Distributed memory

Ping-pong

Remarks
» For each send, there is always a matching receive
> Same communicator, same tag
> Sender’s rank and receiver’s rank
» Rank used to determine what need to do

> Integers are sent : — MPI_INT

Frequent mistakes

» The data type and number of elements must be the same in the send and
the receive calls

> The receiver expects to receive what was sent
» Matching MPI_Send et MPI_Recv
> Two MPI_Send or two MPI_Recv = deadlock!

T
Calcul 3 hautes performances

Progr ing parallel i

L Distributed memory

Ping-pong illustated

» Rank 0 sends a token
» Rank 1 receives it and sends it back to rank 0

» Rank 0 receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD, &status);
} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, O, 0, MPI_COMM_WORLD);

Fo

P

T
Calcul 3 hautes performances

Progr ing parallel i

L Distributed memory

Ping-pong illustated

» Rank 0 sends a token
» Rank 1 receives it and sends it back to rank 0

» Rank 0 receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD, &status);
} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, O, 0, MPI_COMM_WORLD);

Fo

send(&t, Pr)

recv(&t, Po)
P

T
Calcul 3 hautes performances

Progr ing parallel i

L Distributed memory

Ping-pong illustated

» Rank 0 sends a token
» Rank 1 receives it and sends it back to rank 0

» Rank 0 receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD, &status);
} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, O, 0, MPI_COMM_WORLD);

Fo

send(&t, Py) recv(&t, Py)

recv(&t, Po) send(&t, Po)
P

T

Calcul 3 hautes performances
"

Progr ing parallel
L Distributed memory

How communications are actually made

Every process (sender or receiver) has a
buffer corresponding to the message
» Memory must be allocated both]
on sender’s side and receiver's side
» We do not send more elements
than the available space
Data must be linearized (marshalled) in
the buffer
» We send a buffer, a table of
elements, a row of bytes...

P1

addr

send(P1, &addr)

recv(PO, &addr)

addr

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Some communication patterns : master-workers

Data distribution : the master distributes input data to the workers
» The master demultiplexes the input data, multiplexes the results

» The slaves do not communicate with each other

Efficiency : the master manages queues for the input data and the results
» Sequential part of the computation
» Communications : master < slaves

» The slaves do not work when they are waiting for data or when they are
sending their results

The slaves only take actual part of the computation

» Can give a good speedup at large scale (slaves >> master) if they do not
communicate often

» Not very efficient with only a few processes

» Might cause a bottleneck on the master

Calcul 3 hautes performances

Progr ing parallel
L Distributed memory

Master-slave

Static load balancing :
» Data distributed using MPI_Scatter
» Results gathered using MPI_Gather

Example : masterworker3.c
Dynamic load balancing :

» Pull mode : the slaves ask for work
» The master sends chunks one by one

Example : masterworkerl.c,
masterworker2.c

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Some communication patterns : domain decomposition

Process grid : the data is sliced, a process is

2D decomposition
The data is sliced in rectangles : more
scalable

1D decomposition
The data is sliced in bands

12 13 14 15

Calcul 3 hautes performances
Programming parallel applications

L Distributed memory

Ghost region

Boarder between sub-domains

» An algorithm can need values of neighboring points to compute the new
value of a point

> Image processing (gradient...), cellular automata...
» Replicate data around the border

> Each process keeps a bit of data from the neighbors
> Updated at the end of the computation

T
Calcul 3 hautes performances

Progr ing parallel i

L Distributed memory

Exercise : data exchange between neighbors

Write a parallel program using MPI that :
» Initializes a matrix on each process
» Exchange a ghost region

Using a 1D and a 2D decomposition.

You can start from cart_comm.c : the program extracts communicators from a
2D process grid.

Calcul 3 hautes performances

Programming parallel applications

L Distributed memory

OpenSHMEM

Other communication and memory model

» Shared heap

» One-sided communications

Memory model : symmetric heap

» Private memory vs shared memory (heap)

» Memory allocation in the shared heap is a collective communication

Private
memory

Symmetric
heap

PO

P1
—
=

T

P2

_,I

K_
1

A

=

ulf}

Static global
objects

Symmetric
objects

Calcul 3 hautes performances

Progr ing parallel i

L Distributed memory

OpenSHMEM : Example

Allocation in the shared heap :
» shmalloc function

» Warning : collective

Data movements :
> Fonctions shmem_*_put, shmem_*_get

» One function for each data type

short* ptr = (short*)shmalloc(10 * sizeof(short));
if (Lmy_pe() == 0) {

shmem_long_put(ptr, source, 10, 1);
}

Calcul 3 hautes performances
"

Progr ing parallel
L Distributed shared memory

Global Address Space

Concept of global address space :
> Program distributed memory just like shared memory
» Participation from the compiler

» The union of the distributed memories is seen by the programmer as a
shared memory

In practice :
» The programmer declares the visibility of his/her variables : private (by
default) or shared
> Arrays : The programmer declares the size of the blocks that will be
placed on each process

» The compiler is in charge with :

> Distributing the shared variables in the memory of the processes
> Translating remote accesses (a = b) into communications

Issues related to the fact that the memory is distributed are not seen by the
programmer.

T
Calcul 3 hautes performances

Progr ing parallel i

L Distributed shared memory

Examples
PGAS languages :
» Unified Parallel C (UPC), Titanium, CoArray Fortran

P P P

prive |[2] 2] 2]

partagé

int a;

shared int x:

T
Calcul 3 hautes performances

Progr ing parallel i

L Distributed shared memory

Examples
PGAS languages :
» Unified Parallel C (UPC), Titanium, CoArray Fortran

P P P

prive |[2] 2] 2]

partagé

int a;

shared int x:

T
Calcul 3 hautes performances
"

Progr ing parallel

L Distributed shared memory

Examples
PGAS languages :
» Unified Parallel C (UPC), Titanium, CoArray Fortran

P P P

prive |[2] 2] 2]

partagé

int a;
shared int x:

inta = x;

T
Calcul 3 hautes performances

Progr ing parallel i

L Distributed shared memory

Examples
PGAS languages :
» Unified Parallel C (UPC), Titanium, CoArray Fortran

P P P

privé EI EI
/
get t
ﬁx
partagé -

int a;

shared int x:

inta = x;

Calcul 3 hautes performances
Programming parallel applications

L Distributed shared memory

UPC : Example

Example :

» A variable x is shared, and therefore accessible from all the processes
> The compiler will place it in the memory of a process of its choice.

> Process 0 (called thread in UPC terminology) initializes it to 42.

> A global barrier makes sure that all the processes have reached this point
of the program.

» All the processes read the value of x and put it into a private variable of
their own.
> The compiler generates inter-process network communications (in all
likelihood get)

shared int x;

int a;

if(0 == MYTHREAD) {
X = 42;

}

upc_barrier;
a = x;

T
Calcul 3 hautes performances

Performance ?

Roadmap

Performance ?

Calcul 3 hautes performances

Performance ?

A few words on performance evaluation

Speed-up
>

Sequential application profiling
» PAPI : Performance API
» Hardware counters
» Counts operations, cache hits/misses, erroneous branch predictions...
> http://icl.utk.edu/papi/

General profiling
> VTune
» A lot of information, including vector performance
> https://software.intel.com/en-us/vtune

Parallel applications profiling
» Tau : profiling and tracing http://tau.uoregon.edu
» EZtrace : modular http://eztrace.gforge.inria.fr

» mpiP : lightweight, time spent in MPI routines
http://mpip.sourceforge.net

http://icl.utk.edu/papi/
https://software.intel.com/en-us/vtune
http://tau.uoregon.edu
http://eztrace.gforge.inria.fr
http://mpip.sourceforge.net

T

Calcul 3 hautes performances

Performance ?

Roadmap

Scientific computing

Parallel architectures

Programming parallel applications

Performance ?

	Parallel architectures
	Programming parallel applications
	Performance?

