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Balanced equations

Let Σ be a signature (graded set over the integers). An equation u = v on
the free algebra Σ[X ] (on a set X ) is balanced when both terms u, v have
the same set of variables.

For instance, associativity (x0 ∗ x1) ∗ x2 = x0 ∗ (x1 ∗ x2), left 1 ∗ x0 = x0 or
right x0 ∗ 1 = x0 unit, commutativity x0 ∗ x1 = x1 ∗ x0, quasi-inverse (in an
inverse semigroup) x?0 · x0 · x?0 = x0, all are balanced equations.

Counter-example : left (or right) inverse x−10 ∗ x0 = 1.
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Balanced variety

An equational variety V of Σ-algebras is said to be balanced when it is
determined by balanced equations on Σ[N].

For instance, the varieties of semigroups, of monoids or also of inverse
semigroups (in commutative or non-commutative version) are balanced,
while that of groups is not.
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Substitution operations
Given a signature Σ, a set X and a term t ∈ Σ[N], P. Dehornoy defined

SubstX (t) := { σ̂(t) ∈ Σ[X ] : σ : N→ Σ[X ] } .

For instance, SubstX (n) = Σ[X ] for every n ∈ N.

Let (s, t) be a balanced pair of terms (i.e., s = t is a balanced equation in
Σ[N]). One defines a map ρ(s,t) : SubstX (s)→ SubstX (t) by

ρ(s,t)(σ̂(s)) := σ̂(t) .

(This is a well-defined function since all the variables in t occur in s, hence
the value of σ̂(t) is entirely determined by that of σ̂(s).)

More generally, given a position p, one defines the translated ρ(s,t)p of ρ(s,t)

that acts in a similar way on sub-terms at position p. In particular
ρ
(s,t)
ε = ρ(s,t).
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P. Dehornoy’s geometry monoid

Now let us fix a set R ⊆ Σ[N]2 of balanced equations: some relations.

According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant
under endomorphisms, congruence ∼=, on Σ[N] generated by R (it is
balanced because R is so) determines a unique balanced equational variety
V of Σ-algebras. For instance,
R = { ((0 ∗ 1) ∗ 2, 0 ∗ (1 ∗ 2)), (0 ∗ e, 0), (e ∗ 0, 0) } determines the variety of
monoids.

Let us consider the sub-monoid GR(V) (also denoted by G(V)) of partial
bijections of Σ[X ] generated by ρ(s,t)p : Σ[X ]→ Σ[X ], (s, t) ∈ R or
(t, s) ∈ R , and the positions p.

This object G(V), introduced by P. Dehornoy, was called the monoid of
geometry of the variety V.
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Remark

P. Dehornoy also defined an oriented version of G(V) by only considering
the generators of the form ρ

(s,t)
p for (s, t) ∈ R , and positions p

:

It is relevant to study rewrite term system.
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Properties

G(V) is an inverse monoid.

Let recall that an inverse monoid is a monoid with a unary operation
(−)? : M → M that satisfies the relations (xy)? = y?x?, 1? = 1, xx?x = x ,
(x?)? = x , x?xy?y = y?yx?x , et (xy)? = y?x?. Inverse monoids form a
variety (with monoid homomorphisms that commute with the involutions
(−)?).
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Geometry ?

Geometric property (Dehornoy)
The monoid G(V) acts on Σ[X ] and the homogeneous space Σ[X ]/G(V)
(set of orbits) associated with this action is the free algebra V[X ] in V on
X .
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Relation between G(V) and ∼=
P. Dehornoy proved the following result :

Theorem (Dehornoy)
For every (non void) partial bijection θ in G(V), there is a pair of balanced
terms (sθ, tθ) ∈ Σ[N]2, unique up to renaming of variables, such that
sθ ∼= tθ and

θ = ρ(sθ,tθ) .

Moreover for each set of relations R and R ′ that generate ∼=,
GR(V) ∼= GR′(V).

Hence the geometry monoid G(V) is essentially the fully invariant
congruence ∼= on Σ[N] generated by the relations R , and thus is largely
independent of the choice of R and the set X , and, by HSP Theorem of G.
Birkhoff, is intrinsically related to the variety V itself.

10 / 38



Relation between G(V) and ∼=
P. Dehornoy proved the following result :

Theorem (Dehornoy)
For every (non void) partial bijection θ in G(V), there is a pair of balanced
terms (sθ, tθ) ∈ Σ[N]2, unique up to renaming of variables, such that
sθ ∼= tθ and

θ = ρ(sθ,tθ) .

Moreover for each set of relations R and R ′ that generate ∼=,
GR(V) ∼= GR′(V).

Hence the geometry monoid G(V) is essentially the fully invariant
congruence ∼= on Σ[N] generated by the relations R , and thus is largely
independent of the choice of R and the set X , and, by HSP Theorem of G.
Birkhoff, is intrinsically related to the variety V itself.

10 / 38



Relation between G(V) and ∼=
P. Dehornoy proved the following result :

Theorem (Dehornoy)
For every (non void) partial bijection θ in G(V), there is a pair of balanced
terms (sθ, tθ) ∈ Σ[N]2, unique up to renaming of variables, such that
sθ ∼= tθ and

θ = ρ(sθ,tθ) .

Moreover for each set of relations R and R ′ that generate ∼=,
GR(V) ∼= GR′(V).

Hence the geometry monoid G(V) is essentially the fully invariant
congruence ∼= on Σ[N] generated by the relations R ,

and thus is largely
independent of the choice of R and the set X , and, by HSP Theorem of G.
Birkhoff, is intrinsically related to the variety V itself.

10 / 38



Relation between G(V) and ∼=
P. Dehornoy proved the following result :

Theorem (Dehornoy)
For every (non void) partial bijection θ in G(V), there is a pair of balanced
terms (sθ, tθ) ∈ Σ[N]2, unique up to renaming of variables, such that
sθ ∼= tθ and

θ = ρ(sθ,tθ) .

Moreover for each set of relations R and R ′ that generate ∼=,
GR(V) ∼= GR′(V).

Hence the geometry monoid G(V) is essentially the fully invariant
congruence ∼= on Σ[N] generated by the relations R , and thus is largely
independent of the choice of R and the set X ,

and, by HSP Theorem of G.
Birkhoff, is intrinsically related to the variety V itself.

10 / 38



Relation between G(V) and ∼=
P. Dehornoy proved the following result :

Theorem (Dehornoy)
For every (non void) partial bijection θ in G(V), there is a pair of balanced
terms (sθ, tθ) ∈ Σ[N]2, unique up to renaming of variables, such that
sθ ∼= tθ and

θ = ρ(sθ,tθ) .

Moreover for each set of relations R and R ′ that generate ∼=,
GR(V) ∼= GR′(V).

Hence the geometry monoid G(V) is essentially the fully invariant
congruence ∼= on Σ[N] generated by the relations R , and thus is largely
independent of the choice of R and the set X , and, by HSP Theorem of G.
Birkhoff, is intrinsically related to the variety V itself.

10 / 38



Groupoid structure on G(V)

For θ1, θ2 ∈ G(V), one defines (classical construction) the restricted
product θ2 · θ1 := θ2 ◦ θ1 if, and only if, dom(θ2) = im(θ1).

Remark
There is an isomorphism of categories between inverse semigroups and
inductive ordered groupoids (C. Ehresmann, M. Lawson).
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Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections.

An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
ΣF :=

⊔
A∈Ob(G) F (A).

Let us assume to simplify that F (A) ∩ F (B) = ∅, A 6= B . The orbit O(x)
of x ∈ F (A) is defined by {F (f )(x) : d0(f ) = A } ⊆ ΣF .

Given x , y ∈ ΣF , one defines x ∼F y if, and only if, there exists an arrow f
such that x ∈ F (d0(f )) and F (f )(x) = y .

One shows that ∼F is an equivalence relation on ΣF and x ∼F y if, and
only if, O(x) = O(y).

One defines the orbit space ΣF/G as ΣF/ ∼F .

13 / 38



Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections. An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
ΣF :=

⊔
A∈Ob(G) F (A).

Let us assume to simplify that F (A) ∩ F (B) = ∅, A 6= B . The orbit O(x)
of x ∈ F (A) is defined by {F (f )(x) : d0(f ) = A } ⊆ ΣF .

Given x , y ∈ ΣF , one defines x ∼F y if, and only if, there exists an arrow f
such that x ∈ F (d0(f )) and F (f )(x) = y .

One shows that ∼F is an equivalence relation on ΣF and x ∼F y if, and
only if, O(x) = O(y).

One defines the orbit space ΣF/G as ΣF/ ∼F .

13 / 38



Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections. An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
ΣF :=

⊔
A∈Ob(G) F (A).

Let us assume to simplify that F (A) ∩ F (B) = ∅, A 6= B . The orbit O(x)
of x ∈ F (A) is defined by {F (f )(x) : d0(f ) = A } ⊆ ΣF .

Given x , y ∈ ΣF , one defines x ∼F y if, and only if, there exists an arrow f
such that x ∈ F (d0(f )) and F (f )(x) = y .

One shows that ∼F is an equivalence relation on ΣF and x ∼F y if, and
only if, O(x) = O(y).

One defines the orbit space ΣF/G as ΣF/ ∼F .

13 / 38



Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections. An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
ΣF :=

⊔
A∈Ob(G) F (A).

Let us assume to simplify that F (A) ∩ F (B) = ∅, A 6= B .

The orbit O(x)
of x ∈ F (A) is defined by {F (f )(x) : d0(f ) = A } ⊆ ΣF .

Given x , y ∈ ΣF , one defines x ∼F y if, and only if, there exists an arrow f
such that x ∈ F (d0(f )) and F (f )(x) = y .

One shows that ∼F is an equivalence relation on ΣF and x ∼F y if, and
only if, O(x) = O(y).

One defines the orbit space ΣF/G as ΣF/ ∼F .

13 / 38



Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections. An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
ΣF :=

⊔
A∈Ob(G) F (A).

Let us assume to simplify that F (A) ∩ F (B) = ∅, A 6= B . The orbit O(x)
of x ∈ F (A) is defined by {F (f )(x) : d0(f ) = A } ⊆ ΣF .

Given x , y ∈ ΣF , one defines x ∼F y if, and only if, there exists an arrow f
such that x ∈ F (d0(f )) and F (f )(x) = y .

One shows that ∼F is an equivalence relation on ΣF and x ∼F y if, and
only if, O(x) = O(y).

One defines the orbit space ΣF/G as ΣF/ ∼F .

13 / 38



Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections. An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
ΣF :=

⊔
A∈Ob(G) F (A).

Let us assume to simplify that F (A) ∩ F (B) = ∅, A 6= B . The orbit O(x)
of x ∈ F (A) is defined by {F (f )(x) : d0(f ) = A } ⊆ ΣF .

Given x , y ∈ ΣF , one defines x ∼F y if, and only if, there exists an arrow f
such that x ∈ F (d0(f )) and F (f )(x) = y .

One shows that ∼F is an equivalence relation on ΣF and x ∼F y if, and
only if, O(x) = O(y).

One defines the orbit space ΣF/G as ΣF/ ∼F .

13 / 38



Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections. An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
ΣF :=

⊔
A∈Ob(G) F (A).

Let us assume to simplify that F (A) ∩ F (B) = ∅, A 6= B . The orbit O(x)
of x ∈ F (A) is defined by {F (f )(x) : d0(f ) = A } ⊆ ΣF .

Given x , y ∈ ΣF , one defines x ∼F y if, and only if, there exists an arrow f
such that x ∈ F (d0(f )) and F (f )(x) = y .

One shows that ∼F is an equivalence relation on ΣF and x ∼F y if, and
only if, O(x) = O(y).

One defines the orbit space ΣF/G as ΣF/ ∼F .

13 / 38



Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections. An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
ΣF :=

⊔
A∈Ob(G) F (A).

Let us assume to simplify that F (A) ∩ F (B) = ∅, A 6= B . The orbit O(x)
of x ∈ F (A) is defined by {F (f )(x) : d0(f ) = A } ⊆ ΣF .

Given x , y ∈ ΣF , one defines x ∼F y if, and only if, there exists an arrow f
such that x ∈ F (d0(f )) and F (f )(x) = y .

One shows that ∼F is an equivalence relation on ΣF and x ∼F y if, and
only if, O(x) = O(y).

One defines the orbit space ΣF/G as ΣF/ ∼F .
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Other definition of an action

Mark V. Lawson introduced the notion of a groupoid action as follows.

Let
us assume that E is a set with a map π : E → Ob(G).

A (left) action G on (E , π) is a map from the fibered product
Arr(G ) d0×π E to E , denoted by (f , x) 7→ f · x , that satisfies a certain
number of axioms.

Theorem (PL, 2014)
Both versions of the definition of a groupoid action are equivalent.
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Renaming of variables

The symmetric group S(X ) acts on Σ[X ] by renaming of variables:
π · t := π̂(t).

The value of π · t only depends on π|var(t) . Hence one can consider an
action by the infinite symmetric group S∞(X ) (permutations of X that fix
all but finitely many members of X ).

But actually it is not important that π is a permutation on the whole X .
So one can restrict to endo-functions of X which are bijective only on a
finite set, and consider two such functions as equal as soon as they coincide
on the finite set: germs of local bijections.
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Groupoid of germs of local bijections

Let X be a set, and let us denote by Pfin(X ) the set of finite subsets of X .

One defines a category LocBij(X ) of local bijections (but not partial) on
X : the objects are the members of Pfin(X ), an arrow from A to B is a pair
(σ,A) where σ : X → X such that σ|A : A→ B is a bijection (hence in
particular σ(A) = B and |A| = |B|).

For finite subsets A,B ⊆ X of the same cardinal number, let
(σ,A) ≡A,B (τ,A) if, and only if, σ|A = τ|A . The family (≡A,B)A,B is a
congruence.

The quotient category Germ∞(X ) is actually a groupoid, with
[σ,A]−1 = [(σ|A)−1, σ(A)], called the groupoid of germs of bijections of X .
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Action of Germ∞(X ) on Σ[X ]

Let [σ,A] · t := σ̂|A(t) for each term t such that var(t) = A.

This defines a
(left) action Germ∞(X ) on (Σ[X ], var).

The orbit O(t) is just the set of terms obtained from t by renaming of
variables, and so s ∼ t if, and only if, s and t are equal up to renaming of
variables.
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Action on a balanced congruence

If ∼= is a balanced (i.e., u ∼= v ⇒ var(s) = var(t)) and fully invariant (i.e.,
invariant under all endomorphisms) congruence of Σ[X ],

then Germ∞(X ) also acts on ∼= by a diagonal action

[σ,A] · (u, v) := (σ̂|A(u), σ̂|A(v))

for every u ∼= v such that var(u) = A = var(v).
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Notations

Let X be a set and ∼= be a fully invariant balanced congruence on Σ[X ].

Notations
O(t) and O denote respectively the orbit of t ∈ Σ[X ] and any orbit under
the action of the groupoid of germs of bijections, O(2)(s, t) and O(2)

denote respectively the orbit of (s, t) with s ∼= t, and any orbit under the
(diagonal) action of Germ∞(X ) on ∼=.
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Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is Σ[X ]/Germ∞(X ),

- The set of edges is ∼= /Germ∞(X ),

- The source and target maps: let us define ∂0(s, t) = s and ∂1(s, t) = t
for all s ∼= t, then there is a unique (well-defined) map
di : ∼= /Germ∞(X )→ Σ[X ]/Germ∞(X ) such that

di (O(2)(s, t)) = O∂i (s,t)

i = 0, 1.

- The loops: the map i : Σ[X ]→∼= /Germ∞(X ), defined by
i(t) := O(2)(t, t), passes to the quotient to provide a map that satisfies
ι(O(t)) = O(2)(t, t) for every t ∈ Σ[X ].
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Structure of multiplicative graph
Deformation of the groupoid structure of an equivalence relation

- Let us define m : { ((s, t), (r , s ′)) ∈∼=2 : s ′ ∈ O(s) } → Σ[X ]× Σ[X ] by

m((s, t), (r , s ′)) := (r , [σ, var(s)] · t)

where [σ, var(s)] · s = s ′.

- One observes that im(m) ⊆∼=.

- It can be shown that there is a unique well-defined map
γ : (∼= /Germ∞(X )) d0 ×d1 (∼= /Germ∞(X ))→ (∼= /Germ∞(X )) such
that

γ(O(2)(s, t),O(2)(r , s ′)) = O(2)
m((s,t),(r ,s′)) .

22 / 38



Groupoid structure

Therefore ∼= /Germ∞(X ) is a (small) category.

Moreover, for every orbit
O(2)(s, t) ∈∼= /Germ∞(X ) has an inverse namely O(2)(t, s): this provides
a structure of groupoid.

This defines the geometry groupoid Geom(V) of the balanced variety V
determined by ∼=.
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Refinement of G. Birkhoff’s HSP Theorem

Theorem (PL, 2014)
The map V 7→ Geom(V) is a Galois connection between the lattice of
balanced sub-varieties of Σ-algebras and a sub-poset of small groupoids.
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Groupoid action on Σ[X ]

Let X be a set.

Lemma (Dehornoy)
For all terms s, t ∈ Σ[N], SubstX (s) = SubstX (t) if, and only if,
O(s) = O(t).

It follows that one can define SubstX (O(t)) := SubstX (t) independently
of the choice of the representative t.

For all X , one defines an action of Geom(V) by the functor FX given by
FX (O) := SubstX (O) and
FX (O(2)(s, t)) : SubstX (O(s))→ SubstX (O(t)), FX (O(2)(s, t)) := ρ(s,t)

(does not depend on the choice of (s, t)).
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(does not depend on the choice of (s, t)).
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Recover G(V) from Geom(V)

When X is not void FX is faithful and injective on objects.

It follows that the image of FX (i.e., the classes of sets
FX (Σ[N]/Germ∞(N)) and of bijections FX (∼= /Germ∞(N))) is a
sub-groupoid of Bij: more precisely it is the groupoid associated to the
geometry monoid of P. Dehornoy.
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Remark

The equivalence relation ∼ induced by the action of Germ∞(X ) on Σ[X ]
(i.e., u ∼ v if, and only if, O(s) = O(t)) is not in general a congruence,

so
that the orbit space Σ[X ]/Germ∞(X ) is not canonically equipped with a
structure of a Σ-algebra.

For instance, let x , y ∈ X , x 6= y . Then x ∼ x and x ∼ y but x ∗ x 6∼ x ∗ y .

27 / 38



Remark

The equivalence relation ∼ induced by the action of Germ∞(X ) on Σ[X ]
(i.e., u ∼ v if, and only if, O(s) = O(t)) is not in general a congruence, so
that the orbit space Σ[X ]/Germ∞(X ) is not canonically equipped with a
structure of a Σ-algebra.

For instance, let x , y ∈ X , x 6= y . Then x ∼ x and x ∼ y but x ∗ x 6∼ x ∗ y .

27 / 38



Remark

The equivalence relation ∼ induced by the action of Germ∞(X ) on Σ[X ]
(i.e., u ∼ v if, and only if, O(s) = O(t)) is not in general a congruence, so
that the orbit space Σ[X ]/Germ∞(X ) is not canonically equipped with a
structure of a Σ-algebra.

For instance, let x , y ∈ X , x 6= y . Then x ∼ x and x ∼ y but x ∗ x 6∼ x ∗ y .

27 / 38



A Σ-algebra structure on the orbit space

Nevertheless, in case of X = N, it is possible to define a Σ-algebra
structure (Lawson)

: let f ∈ Σ(n), and u1, · · · , un ∈ Σ[N], we let

f ′(u1, · · · , un) := O(f (v1, · · · , vn))

for vi ∈ O(ui ), i = 1, · · · , n such that var(vi ) ∩ var(vj) = ∅, i 6= j (it is
possible since the set of variables is infinite). Of course this definition does
not depend on the choice of such that var(vi ) ∩ var(vj) = ∅.

One shows that there exists one, and only one, well-defined map such that
f̄ (O(u1), · · · ,O(un)) = O(f (v1, · · · , vn)) with vi ∈ O(ui ), i = 1, · · · , n
such that var(vi ) ∩ var(vj) = ∅, i 6= j .
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A Σ-algebra structure on Geom(V)

The previous construction may also be applied to ∼= /Germ∞(X ).

Proposition (PL, 2014)
Geom(V) is a Σ-algebra in the category of (small) groupoids.
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Action of the groupoid of germs on V[X ]

The groupoid Germ∞(X ) of germs of bijections acts also on V[X ] by a
quotient action

[σ,A] · π(t) = π([σ,A] · t)

where t ∈ Σ[X ] such that var(t) = A, and π : Σ[X ]→ V[X ] is the
canonical epimorphism.

Since V is a balanced variety, the notion of set of variables remains defined
in V[X ]. It follows that one can talk about balanced congruences on V[X ].
One shows that if ∼= is a (fully invariant) balanced congruence on V[X ],
then Germ∞(X ) acts on ∼= by a diagonal action.
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The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of Σ-algebras and ∼= be a balanced fully
invariant congruence on V[N].

∼= determines a unique balanced sub-variety W of V.

Then one can define a (small) groupoid GeomV(W) whose set of objects
is V[N]/Germ∞(N) and that of arrows is ∼= /Germ∞(N), which is called
the relative geometry groupoid of W (with respect to V).

Remark
Of course one recovers Geom(W) by considering GeomV(W) with V the
variety of all Σ-algebras (which is balanced).

32 / 38



The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of Σ-algebras and ∼= be a balanced fully
invariant congruence on V[N].

∼= determines a unique balanced sub-variety W of V.

Then one can define a (small) groupoid GeomV(W) whose set of objects
is V[N]/Germ∞(N) and that of arrows is ∼= /Germ∞(N), which is called
the relative geometry groupoid of W (with respect to V).

Remark
Of course one recovers Geom(W) by considering GeomV(W) with V the
variety of all Σ-algebras (which is balanced).

32 / 38



The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of Σ-algebras and ∼= be a balanced fully
invariant congruence on V[N].

∼= determines a unique balanced sub-variety W of V.

Then one can define a (small) groupoid GeomV(W) whose set of objects
is V[N]/Germ∞(N) and that of arrows is ∼= /Germ∞(N), which is called
the relative geometry groupoid of W (with respect to V).

Remark
Of course one recovers Geom(W) by considering GeomV(W) with V the
variety of all Σ-algebras (which is balanced).

32 / 38



The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of Σ-algebras and ∼= be a balanced fully
invariant congruence on V[N].

∼= determines a unique balanced sub-variety W of V.

Then one can define a (small) groupoid GeomV(W) whose set of objects
is V[N]/Germ∞(N) and that of arrows is ∼= /Germ∞(N), which is called
the relative geometry groupoid of W (with respect to V).

Remark
Of course one recovers Geom(W) by considering GeomV(W) with V the
variety of all Σ-algebras (which is balanced).

32 / 38



One can also equips V[N]/Germ∞(N) and ∼= /Germ∞(N) with structures
of Σ-algebras (as already done in case of Σ[N]).

Nevertheless one cannot go further in general: V[N]/Germ∞(N) is
generally not an algebra of the variety V. (A different number of
occurrences of a same variable in two equivalent terms is an obstruction to
this.)
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Definition
A balanced congruence on Σ[X ] is said to be linearly generated (or simply
linear) if it admits a set of generators R ⊆ Σ[X ]2 such that for each
(s, t) ∈ R , every variable in s (hence in t) occurs one and only one time in
s and in t.

For instance, associativity, left or right units are linear. On the other side
the inverse relation (for inverse semigroups) x? · x · x? = x is not.

Definition
A balanced variety determined by a linear congruence is called a linear
variety.
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Algebra in V

Theorem (PL, 2014)
Let V be a linear variety of Σ-algebras and let ∼= be a balanced and fully
invariant congruence on V[N] that (uniquely) determines a balanced
sub-variety W of V.

Then GeomV(W) is an algebra in the variety V in the category of (small)
groupoids.
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Some examples

- Let ∼= be a balanced and fully invariant congruence on N? = Mon[N],
and let W be the associated sub-variety of monoids.

Then GeomMon(W)
is a (strict) monoidal groupoid.

- In particular if ∼= is the commutativity, then GeomMon(ComMon) is a
symmetric monoidal groupoid.

- Similarly Geom?Mon(InvMon) is an “involutive” monoidal groupoid
(where ?Mon is the variety of monoids with an involution).
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Perspectives

- Non symmetric version adapted to term (or even word) rewrite systems
with help of a geometry category ?

- Linear varieties extend to varieties of modules (for instance, the variety of
monoids corresponds to that of algebras over a ring). This approach should
be applied to (plain set) operads and also to polynomial rewrite systems
(Bergman’s reduction systems or Groebner bases ).

- Links with monads, Lawvere theories and clones.

- Of course, links with Lawson’s work.
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