# About the geometry groupoid of a balanced equational variety

Laurent Poinsot

LIPN - UMR CNRS 7030 Université Paris XIII, Sorbonne Paris Cité - Institut Galilée

# Table of contents

- 1 P. Dehornoy's geometry monoid
  - 2 Action of the groupoid of germs of bijections by renaming of variables
  - 3 The geometry groupoid of a balanced variety
  - 4 Generalization: Lattice of balanced sub-varieties
  - 5 Perspectives

# Balanced equations

Let  $\Sigma$  be a signature (graded set over the integers). An equation u = v on the free algebra  $\Sigma[X]$  (on a set X) is balanced when both terms u, v have the same set of variables.

# Balanced equations

Let  $\Sigma$  be a signature (graded set over the integers). An equation u = v on the free algebra  $\Sigma[X]$  (on a set X) is balanced when both terms u, v have the same set of variables.

For instance, associativity  $(x_0 * x_1) * x_2 = x_0 * (x_1 * x_2)$ , left  $1 * x_0 = x_0$  or right  $x_0 * 1 = x_0$  unit, commutativity  $x_0 * x_1 = x_1 * x_0$ , quasi-inverse (in an inverse semigroup)  $x_0^* \cdot x_0 \cdot x_0^* = x_0$ , all are balanced equations.

# Balanced equations

Let  $\Sigma$  be a signature (graded set over the integers). An equation u = v on the free algebra  $\Sigma[X]$  (on a set X) is balanced when both terms u, v have the same set of variables.

For instance, associativity  $(x_0 * x_1) * x_2 = x_0 * (x_1 * x_2)$ , left  $1 * x_0 = x_0$  or right  $x_0 * 1 = x_0$  unit, commutativity  $x_0 * x_1 = x_1 * x_0$ , quasi-inverse (in an inverse semigroup)  $x_0^* \cdot x_0 \cdot x_0^* = x_0$ , all are balanced equations.

Counter-example : left (or right) inverse  $x_0^{-1} * x_0 = 1$ .

# Balanced variety

An equational variety V of  $\Sigma$ -algebras is said to be balanced when it is determined by balanced equations on  $\Sigma[\mathbb{N}]$ .

# Balanced variety

An equational variety V of  $\Sigma$ -algebras is said to be balanced when it is determined by balanced equations on  $\Sigma[\mathbb{N}]$ .

For instance, the varieties of semigroups, of monoids or also of inverse semigroups (in commutative or non-commutative version) are balanced, while that of groups is not.

Given a signature  $\Sigma$ , a set X and a term  $t \in \Sigma[\mathbb{N}]$ , P. Dehornoy defined

 $\operatorname{Subst}_X(t) := \{ \hat{\sigma}(t) \in \Sigma[X] \colon \sigma \colon \mathbb{N} \to \Sigma[X] \} .$ 

Given a signature  $\Sigma$ , a set X and a term  $t \in \Sigma[\mathbb{N}]$ , P. Dehornoy defined

 $\mathsf{Subst}_X(t) := \{ \hat{\sigma}(t) \in \Sigma[X] \colon \sigma \colon \mathbb{N} \to \Sigma[X] \} .$ 

For instance,  $\mathbf{Subst}_X(n) = \Sigma[X]$  for every  $n \in \mathbb{N}$ .

Given a signature  $\Sigma$ , a set X and a term  $t \in \Sigma[\mathbb{N}]$ , P. Dehornoy defined

 $\mathsf{Subst}_X(t) := \{ \hat{\sigma}(t) \in \Sigma[X] \colon \sigma \colon \mathbb{N} \to \Sigma[X] \} .$ 

For instance,  $\mathbf{Subst}_X(n) = \Sigma[X]$  for every  $n \in \mathbb{N}$ .

Let (s, t) be a balanced pair of terms (i.e., s = t is a balanced equation in  $\Sigma[\mathbb{N}]$ ).

Given a signature  $\Sigma$ , a set X and a term  $t \in \Sigma[\mathbb{N}]$ , P. Dehornoy defined

 $\mathsf{Subst}_X(t) := \{ \hat{\sigma}(t) \in \Sigma[X] \colon \sigma \colon \mathbb{N} \to \Sigma[X] \} .$ 

For instance,  $\mathbf{Subst}_X(n) = \Sigma[X]$  for every  $n \in \mathbb{N}$ .

Let (s, t) be a balanced pair of terms (i.e., s = t is a balanced equation in  $\Sigma[\mathbb{N}]$ ). One defines a map  $\rho^{(s,t)}$ :  $\mathbf{Subst}_X(s) \to \mathbf{Subst}_X(t)$  by

 $\rho^{(s,t)}(\hat{\sigma}(s)) := \hat{\sigma}(t) .$ 

Given a signature  $\Sigma$ , a set X and a term  $t \in \Sigma[\mathbb{N}]$ , P. Dehornoy defined

 $\mathsf{Subst}_X(t) := \{ \hat{\sigma}(t) \in \Sigma[X] \colon \sigma \colon \mathbb{N} \to \Sigma[X] \} .$ 

For instance,  $\mathbf{Subst}_X(n) = \Sigma[X]$  for every  $n \in \mathbb{N}$ .

Let (s, t) be a balanced pair of terms (i.e., s = t is a balanced equation in  $\Sigma[\mathbb{N}]$ ). One defines a map  $\rho^{(s,t)}$ :  $\mathbf{Subst}_X(s) \to \mathbf{Subst}_X(t)$  by

 $\rho^{(s,t)}(\hat{\sigma}(s)) := \hat{\sigma}(t) .$ 

(This is a well-defined function since all the variables in t occur in s, hence the value of  $\hat{\sigma}(t)$  is entirely determined by that of  $\hat{\sigma}(s)$ .)

Given a signature  $\Sigma$ , a set X and a term  $t \in \Sigma[\mathbb{N}]$ , P. Dehornoy defined

 $\mathsf{Subst}_X(t) := \{ \hat{\sigma}(t) \in \Sigma[X] \colon \sigma \colon \mathbb{N} \to \Sigma[X] \} .$ 

For instance,  $\mathbf{Subst}_X(n) = \Sigma[X]$  for every  $n \in \mathbb{N}$ .

Let (s, t) be a balanced pair of terms (i.e., s = t is a balanced equation in  $\Sigma[\mathbb{N}]$ ). One defines a map  $\rho^{(s,t)}$ :  $\mathbf{Subst}_X(s) \to \mathbf{Subst}_X(t)$  by

 $\rho^{(s,t)}(\hat{\sigma}(s)) := \hat{\sigma}(t) .$ 

(This is a well-defined function since all the variables in t occur in s, hence the value of  $\hat{\sigma}(t)$  is entirely determined by that of  $\hat{\sigma}(s)$ .)

More generally, given a position p, one defines the translated  $\rho_p^{(s,t)}$  of  $\rho^{(s,t)}$  that acts in a similar way on sub-terms at position p.

Given a signature  $\Sigma$ , a set X and a term  $t \in \Sigma[\mathbb{N}]$ , P. Dehornoy defined

 $\mathsf{Subst}_X(t) := \{ \hat{\sigma}(t) \in \Sigma[X] \colon \sigma \colon \mathbb{N} \to \Sigma[X] \} .$ 

For instance,  $\mathbf{Subst}_X(n) = \Sigma[X]$  for every  $n \in \mathbb{N}$ .

Let (s, t) be a balanced pair of terms (i.e., s = t is a balanced equation in  $\Sigma[\mathbb{N}]$ ). One defines a map  $\rho^{(s,t)}$ :  $\mathbf{Subst}_X(s) \to \mathbf{Subst}_X(t)$  by

 $\rho^{(s,t)}(\hat{\sigma}(s)) := \hat{\sigma}(t) .$ 

(This is a well-defined function since all the variables in t occur in s, hence the value of  $\hat{\sigma}(t)$  is entirely determined by that of  $\hat{\sigma}(s)$ .)

More generally, given a position p, one defines the translated  $\rho_p^{(s,t)}$  of  $\rho^{(s,t)}$  that acts in a similar way on sub-terms at position p. In particular  $\rho_{\epsilon}^{(s,t)} = \rho^{(s,t)}$ .

Now let us fix a set  $R \subseteq \Sigma[\mathbb{N}]^2$  of balanced equations: some *relations*.

Now let us fix a set  $R \subseteq \Sigma[\mathbb{N}]^2$  of balanced equations: some *relations*.

According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant under endomorphisms, congruence  $\cong$ , on  $\Sigma[\mathbb{N}]$  generated by R (it is balanced because R is so) determines a unique balanced equational variety **V** of  $\Sigma$ -algebras.

Now let us fix a set  $R \subseteq \Sigma[\mathbb{N}]^2$  of balanced equations: some *relations*.

According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant under endomorphisms, congruence  $\cong$ , on  $\Sigma[\mathbb{N}]$  generated by R (it is balanced because R is so) determines a unique balanced equational variety **V** of  $\Sigma$ -algebras. For instance,

 $R = \{ ((0 * 1) * 2, 0 * (1 * 2)), (0 * e, 0), (e * 0, 0) \}$  determines the variety of monoids.

Now let us fix a set  $R \subseteq \Sigma[\mathbb{N}]^2$  of balanced equations: some *relations*.

According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant under endomorphisms, congruence  $\cong$ , on  $\Sigma[\mathbb{N}]$  generated by R (it is balanced because R is so) determines a unique balanced equational variety **V** of  $\Sigma$ -algebras. For instance,  $R = \{((0 * 1) * 2, 0 * (1 * 2)), (0 * e, 0), (e * 0, 0)\}$  determines the variety of

monoids.

Let us consider the sub-monoid  $G_R(V)$  (also denoted by G(V)) of partial bijections of  $\Sigma[X]$  generated by  $\rho_p^{(s,t)} \colon \Sigma[X] \to \Sigma[X]$ ,  $(s,t) \in R$  or  $(t,s) \in R$ , and the positions p.

Now let us fix a set  $R \subseteq \Sigma[\mathbb{N}]^2$  of balanced equations: some *relations*.

According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant under endomorphisms, congruence  $\cong$ , on  $\Sigma[\mathbb{N}]$  generated by R (it is balanced because R is so) determines a unique balanced equational variety **V** of  $\Sigma$ -algebras. For instance,  $R = \{((0 * 1) * 2, 0 * (1 * 2)), (0 * e, 0), (e * 0, 0)\}$  determines the variety of monoids.

Let us consider the sub-monoid  $G_R(V)$  (also denoted by G(V)) of partial bijections of  $\Sigma[X]$  generated by  $\rho_p^{(s,t)} \colon \Sigma[X] \to \Sigma[X]$ ,  $(s,t) \in R$  or  $(t,s) \in R$ , and the positions p.

This object G(V), introduced by P. Dehornoy, was called the monoid of geometry of the variety V.

## Remark

P. Dehornoy also defined an oriented version of  $\mathbf{G}(\mathbf{V})$  by only considering the generators of the form  $\rho_p^{(s,t)}$  for  $(s,t) \in R$ , and positions p

# Remark

P. Dehornoy also defined an oriented version of  $\mathbf{G}(\mathbf{V})$  by only considering the generators of the form  $\rho_p^{(s,t)}$  for  $(s,t) \in R$ , and positions p:

It is relevant to study rewrite term system.

#### Properties

G(V) is an inverse monoid.

## Properties

#### G(V) is an inverse monoid.

Let recall that an inverse monoid is a monoid with a unary operation  $(-)^*: M \to M$  that satisfies the relations  $(xy)^* = y^*x^*$ ,  $1^* = 1$ ,  $xx^*x = x$ ,  $(x^*)^* = x$ ,  $x^*xy^*y = y^*yx^*x$ , et  $(xy)^* = y^*x^*$ .

## Properties

#### G(V) is an inverse monoid.

Let recall that an inverse monoid is a monoid with a unary operation  $(-)^*: M \to M$  that satisfies the relations  $(xy)^* = y^*x^*$ ,  $1^* = 1$ ,  $xx^*x = x$ ,  $(x^*)^* = x$ ,  $x^*xy^*y = y^*yx^*x$ , et  $(xy)^* = y^*x^*$ . Inverse monoids form a variety (with monoid homomorphisms that commute with the involutions  $(-)^*$ ).

# Geometry ?

#### Geometric property (Dehornoy)

The monoid  $\mathbf{G}(\mathbf{V})$  acts on  $\Sigma[X]$  and the homogeneous space  $\Sigma[X]/\mathbf{G}(\mathbf{V})$  (set of orbits) associated with this action is the free algebra  $\mathbf{V}[X]$  in  $\mathbf{V}$  on X.

# Relation between G(V) and $\cong$

P. Dehornoy proved the following result :

# Relation between G(V) and $\cong$

P. Dehornoy proved the following result :

#### Theorem (Dehornoy)

For every (non void) partial bijection  $\theta$  in G(V), there is a pair of balanced terms  $(s_{\theta}, t_{\theta}) \in \Sigma[\mathbb{N}]^2$ , unique up to renaming of variables, such that  $s_{\theta} \cong t_{\theta}$  and

 $\theta = \rho^{(s_{\theta}, t_{\theta})}$  .

Moreover for each set of relations R and R' that generate  $\cong$ ,  $\mathbf{G}_{R}(\mathbf{V}) \cong \mathbf{G}_{R'}(\mathbf{V})$ .

# Relation between G(V) and $\cong$

P. Dehornoy proved the following result :

#### Theorem (Dehornoy)

For every (non void) partial bijection  $\theta$  in G(V), there is a pair of balanced terms  $(s_{\theta}, t_{\theta}) \in \Sigma[\mathbb{N}]^2$ , unique up to renaming of variables, such that  $s_{\theta} \cong t_{\theta}$  and

 $\theta = \rho^{(s_{\theta}, t_{\theta})}$  .

Moreover for each set of relations R and R' that generate  $\cong$ ,  $\mathbf{G}_{R}(\mathbf{V}) \cong \mathbf{G}_{R'}(\mathbf{V})$ .

Hence the geometry monoid G(V) is essentially the fully invariant congruence  $\cong$  on  $\Sigma[\mathbb{N}]$  generated by the relations R,

# Relation between ${\sf G}({\sf V})$ and $\cong$

P. Dehornoy proved the following result :

#### Theorem (Dehornoy)

For every (non void) partial bijection  $\theta$  in G(V), there is a pair of balanced terms  $(s_{\theta}, t_{\theta}) \in \Sigma[\mathbb{N}]^2$ , unique up to renaming of variables, such that  $s_{\theta} \cong t_{\theta}$  and

 $\theta = \rho^{(s_{\theta}, t_{\theta})}$  .

Moreover for each set of relations R and R' that generate  $\cong$ ,  $\mathbf{G}_{R}(\mathbf{V}) \cong \mathbf{G}_{R'}(\mathbf{V})$ .

Hence the geometry monoid G(V) is essentially the fully invariant congruence  $\cong$  on  $\Sigma[\mathbb{N}]$  generated by the relations R, and thus is largely independent of the choice of R and the set X,

# Relation between ${\sf G}({\sf V})$ and $\cong$

P. Dehornoy proved the following result :

#### Theorem (Dehornoy)

For every (non void) partial bijection  $\theta$  in G(V), there is a pair of balanced terms  $(s_{\theta}, t_{\theta}) \in \Sigma[\mathbb{N}]^2$ , unique up to renaming of variables, such that  $s_{\theta} \cong t_{\theta}$  and

 $\theta = \rho^{(s_{\theta}, t_{\theta})}$  .

Moreover for each set of relations R and R' that generate  $\cong$ ,  $\mathbf{G}_{R}(\mathbf{V}) \cong \mathbf{G}_{R'}(\mathbf{V})$ .

Hence the geometry monoid G(V) is essentially the fully invariant congruence  $\cong$  on  $\Sigma[\mathbb{N}]$  generated by the relations R, and thus is largely independent of the choice of R and the set X, and, by HSP Theorem of G. Birkhoff, is intrinsically related to the variety V itself.

# Groupoid structure on G(V)

For  $\theta_1, \theta_2 \in \mathbf{G}(\mathbf{V})$ , one defines (classical construction) the restricted product  $\theta_2 \cdot \theta_1 := \theta_2 \circ \theta_1$  if, and only if,  $\operatorname{dom}(\theta_2) = \operatorname{im}(\theta_1)$ .

# Groupoid structure on G(V)

For  $\theta_1, \theta_2 \in \mathbf{G}(\mathbf{V})$ , one defines (classical construction) the restricted product  $\theta_2 \cdot \theta_1 := \theta_2 \circ \theta_1$  if, and only if,  $\operatorname{dom}(\theta_2) = \operatorname{im}(\theta_1)$ .

#### Remark

There is an isomorphism of categories between inverse semigroups and inductive ordered groupoids (C. Ehresmann, M. Lawson).

# Table of contents

- P. Dehornoy's geometry monoid
- 2 Action of the groupoid of germs of bijections by renaming of variables
- 3 The geometry groupoid of a balanced variety
- 4 Generalization: Lattice of balanced sub-varieties
- 5 Perspectives

# Action of a groupoid

Let  ${\bf G}$  be a groupoid, and let us denote by  ${\bf Bij}$  the groupoid of sets with bijections.

# Action of a groupoid

Let **G** be a groupoid, and let us denote by **Bij** the groupoid of sets with bijections. An action of **G** is just a functor F from **G** to **Bij**.

# Action of a groupoid

Let **G** be a groupoid, and let us denote by **Bij** the groupoid of sets with bijections. An action of **G** is just a functor F from **G** to **Bij**.

If the class Ob(G) of objects of **G** is a small set, then one can define  $\Sigma_F := \bigsqcup_{A \in Ob(G)} F(A)$ .
Let **G** be a groupoid, and let us denote by **Bij** the groupoid of sets with bijections. An action of **G** is just a functor F from **G** to **Bij**.

If the class Ob(G) of objects of **G** is a small set, then one can define  $\Sigma_F := \bigsqcup_{A \in Ob(G)} F(A)$ .

Let us assume to simplify that  $F(A) \cap F(B) = \emptyset$ ,  $A \neq B$ .

Let **G** be a groupoid, and let us denote by **Bij** the groupoid of sets with bijections. An action of **G** is just a functor F from **G** to **Bij**.

If the class Ob(G) of objects of **G** is a small set, then one can define  $\Sigma_F := \bigsqcup_{A \in Ob(G)} F(A)$ .

Let us assume to simplify that  $F(A) \cap F(B) = \emptyset$ ,  $A \neq B$ . The orbit  $\mathcal{O}(x)$  of  $x \in F(A)$  is defined by  $\{F(f)(x) : d_0(f) = A\} \subseteq \Sigma_F$ .

Let **G** be a groupoid, and let us denote by **Bij** the groupoid of sets with bijections. An action of **G** is just a functor F from **G** to **Bij**.

If the class Ob(G) of objects of **G** is a small set, then one can define  $\Sigma_F := \bigsqcup_{A \in Ob(G)} F(A)$ .

Let us assume to simplify that  $F(A) \cap F(B) = \emptyset$ ,  $A \neq B$ . The orbit  $\mathcal{O}(x)$  of  $x \in F(A)$  is defined by  $\{F(f)(x) : d_0(f) = A\} \subseteq \Sigma_F$ .

Given  $x, y \in \Sigma_F$ , one defines  $x \sim_F y$  if, and only if, there exists an arrow f such that  $x \in F(d_0(f))$  and F(f)(x) = y.

Let **G** be a groupoid, and let us denote by **Bij** the groupoid of sets with bijections. An action of **G** is just a functor F from **G** to **Bij**.

If the class Ob(G) of objects of **G** is a small set, then one can define  $\Sigma_F := \bigsqcup_{A \in Ob(G)} F(A)$ .

Let us assume to simplify that  $F(A) \cap F(B) = \emptyset$ ,  $A \neq B$ . The orbit  $\mathcal{O}(x)$  of  $x \in F(A)$  is defined by  $\{F(f)(x) : d_0(f) = A\} \subseteq \Sigma_F$ .

Given  $x, y \in \Sigma_F$ , one defines  $x \sim_F y$  if, and only if, there exists an arrow f such that  $x \in F(d_0(f))$  and F(f)(x) = y.

One shows that  $\sim_F$  is an equivalence relation on  $\Sigma_F$  and  $x \sim_F y$  if, and only if,  $\mathcal{O}(x) = \mathcal{O}(y)$ .

Let **G** be a groupoid, and let us denote by **Bij** the groupoid of sets with bijections. An action of **G** is just a functor F from **G** to **Bij**.

If the class Ob(G) of objects of **G** is a small set, then one can define  $\Sigma_F := \bigsqcup_{A \in Ob(G)} F(A)$ .

Let us assume to simplify that  $F(A) \cap F(B) = \emptyset$ ,  $A \neq B$ . The orbit  $\mathcal{O}(x)$  of  $x \in F(A)$  is defined by  $\{F(f)(x) : d_0(f) = A\} \subseteq \Sigma_F$ .

Given  $x, y \in \Sigma_F$ , one defines  $x \sim_F y$  if, and only if, there exists an arrow f such that  $x \in F(d_0(f))$  and F(f)(x) = y.

One shows that  $\sim_F$  is an equivalence relation on  $\Sigma_F$  and  $x \sim_F y$  if, and only if,  $\mathcal{O}(x) = \mathcal{O}(y)$ .

One defines the orbit space  $\Sigma_F/G$  as  $\Sigma_F/\sim_F$ .

Mark V. Lawson introduced the notion of a groupoid action as follows.

Mark V. Lawson introduced the notion of a groupoid action as follows. Let us assume that *E* is a set with a map  $\pi: E \to Ob(G)$ .

Mark V. Lawson introduced the notion of a groupoid action as follows. Let us assume that E is a set with a map  $\pi: E \to Ob(G)$ .

A (left) action **G** on  $(E, \pi)$  is a map from the fibered product  $\operatorname{Arr}(G)_{d_0} \times_{\pi} E$  to E, denoted by  $(f, x) \mapsto f \cdot x$ , that satisfies a certain number of axioms.

Mark V. Lawson introduced the notion of a groupoid action as follows. Let us assume that E is a set with a map  $\pi: E \to Ob(G)$ .

A (left) action **G** on  $(E, \pi)$  is a map from the fibered product  $\operatorname{Arr}(G)_{d_0} \times_{\pi} E$  to E, denoted by  $(f, x) \mapsto f \cdot x$ , that satisfies a certain number of axioms.

### Theorem (PL, 2014)

Both versions of the definition of a groupoid action are equivalent.

The symmetric group  $\mathfrak{S}(X)$  acts on  $\Sigma[X]$  by renaming of variables:  $\pi \cdot t := \hat{\pi}(t)$ .

The symmetric group  $\mathfrak{S}(X)$  acts on  $\Sigma[X]$  by renaming of variables:  $\pi \cdot t := \hat{\pi}(t)$ .

The value of  $\pi \cdot t$  only depends on  $\pi_{|_{var(t)}}$ .

The symmetric group  $\mathfrak{S}(X)$  acts on  $\Sigma[X]$  by renaming of variables:  $\pi \cdot t := \hat{\pi}(t)$ .

The value of  $\pi \cdot t$  only depends on  $\pi_{|var(t)}$ . Hence one can consider an action by the infinite symmetric group  $\mathfrak{S}_{\infty}(X)$  (permutations of X that fix all but finitely many members of X).

The symmetric group  $\mathfrak{S}(X)$  acts on  $\Sigma[X]$  by renaming of variables:  $\pi \cdot t := \hat{\pi}(t)$ .

The value of  $\pi \cdot t$  only depends on  $\pi_{|var(t)}$ . Hence one can consider an action by the infinite symmetric group  $\mathfrak{S}_{\infty}(X)$  (permutations of X that fix all but finitely many members of X).

But actually it is not important that  $\pi$  is a permutation on the whole X.

The symmetric group  $\mathfrak{S}(X)$  acts on  $\Sigma[X]$  by renaming of variables:  $\pi \cdot t := \hat{\pi}(t)$ .

The value of  $\pi \cdot t$  only depends on  $\pi_{|var(t)}$ . Hence one can consider an action by the infinite symmetric group  $\mathfrak{S}_{\infty}(X)$  (permutations of X that fix all but finitely many members of X).

But actually it is not important that  $\pi$  is a permutation on the whole X. So one can restrict to endo-functions of X which are bijective only on a finite set,

The symmetric group  $\mathfrak{S}(X)$  acts on  $\Sigma[X]$  by renaming of variables:  $\pi \cdot t := \hat{\pi}(t)$ .

The value of  $\pi \cdot t$  only depends on  $\pi_{|var(t)}$ . Hence one can consider an action by the infinite symmetric group  $\mathfrak{S}_{\infty}(X)$  (permutations of X that fix all but finitely many members of X).

But actually it is not important that  $\pi$  is a permutation on the whole X. So one can restrict to endo-functions of X which are bijective only on a finite set, and consider two such functions as equal as soon as they coincide on the finite set: germs of local bijections.

Let X be a set, and let us denote by  $\mathfrak{P}_{fin}(X)$  the set of finite subsets of X.

Let X be a set, and let us denote by  $\mathfrak{P}_{fin}(X)$  the set of finite subsets of X.

One defines a category LocBij(X) of local bijections (but not partial) on X

Let X be a set, and let us denote by  $\mathfrak{P}_{fin}(X)$  the set of finite subsets of X.

One defines a category **LocBij**(X) of local bijections (but not partial) on X: the objects are the members of  $\mathfrak{P}_{fin}(X)$ ,

Let X be a set, and let us denote by  $\mathfrak{P}_{fin}(X)$  the set of finite subsets of X.

One defines a category LocBij(X) of local bijections (but not partial) on X: the objects are the members of  $\mathfrak{P}_{fin}(X)$ , an arrow from A to B is a pair  $(\sigma, A)$  where  $\sigma: X \to X$  such that  $\sigma_{|_A}: A \to B$  is a bijection (hence in particular  $\sigma(A) = B$  and |A| = |B|).

Let X be a set, and let us denote by  $\mathfrak{P}_{fin}(X)$  the set of finite subsets of X.

One defines a category LocBij(X) of local bijections (but not partial) on X: the objects are the members of  $\mathfrak{P}_{fin}(X)$ , an arrow from A to B is a pair  $(\sigma, A)$  where  $\sigma: X \to X$  such that  $\sigma_{|_A}: A \to B$  is a bijection (hence in particular  $\sigma(A) = B$  and |A| = |B|).

For finite subsets  $A, B \subseteq X$  of the same cardinal number, let  $(\sigma, A) \equiv_{A,B} (\tau, A)$  if, and only if,  $\sigma|_A = \tau|_A$ .

Let X be a set, and let us denote by  $\mathfrak{P}_{fin}(X)$  the set of finite subsets of X.

One defines a category LocBij(X) of local bijections (but not partial) on X: the objects are the members of  $\mathfrak{P}_{fin}(X)$ , an arrow from A to B is a pair  $(\sigma, A)$  where  $\sigma: X \to X$  such that  $\sigma_{|_A}: A \to B$  is a bijection (hence in particular  $\sigma(A) = B$  and |A| = |B|).

For finite subsets  $A, B \subseteq X$  of the same cardinal number, let  $(\sigma, A) \equiv_{A,B} (\tau, A)$  if, and only if,  $\sigma_{|_A} = \tau_{|_A}$ . The family  $(\equiv_{A,B})_{A,B}$  is a congruence.

Let X be a set, and let us denote by  $\mathfrak{P}_{fin}(X)$  the set of finite subsets of X.

One defines a category LocBij(X) of local bijections (but not partial) on X: the objects are the members of  $\mathfrak{P}_{fin}(X)$ , an arrow from A to B is a pair  $(\sigma, A)$  where  $\sigma: X \to X$  such that  $\sigma_{|_A}: A \to B$  is a bijection (hence in particular  $\sigma(A) = B$  and |A| = |B|).

For finite subsets  $A, B \subseteq X$  of the same cardinal number, let  $(\sigma, A) \equiv_{A,B} (\tau, A)$  if, and only if,  $\sigma_{|_A} = \tau_{|_A}$ . The family  $(\equiv_{A,B})_{A,B}$  is a congruence.

The quotient category  $\operatorname{Germ}_{\infty}(X)$  is actually a groupoid, with  $[\sigma, A]^{-1} = [(\sigma_{|_A})^{-1}, \sigma(A)]$ , called the groupoid of germs of bijections of X.

# Action of **Germ**<sub> $\infty$ </sub>(*X*) on $\Sigma$ [*X*]

Let  $[\sigma, A] \cdot t := \hat{\sigma}_{|_{A}}(t)$  for each term t such that var(t) = A.

# Action of $\mathbf{Germ}_{\infty}(X)$ on $\Sigma[X]$

Let  $[\sigma, A] \cdot t := \hat{\sigma}_{|A}(t)$  for each term t such that  $\operatorname{var}(t) = A$ . This defines a (left) action  $\operatorname{Germ}_{\infty}(X)$  on  $(\Sigma[X], \operatorname{var})$ .

# Action of $\mathbf{Germ}_{\infty}(X)$ on $\Sigma[X]$

Let  $[\sigma, A] \cdot t := \hat{\sigma}_{|A}(t)$  for each term t such that  $\operatorname{var}(t) = A$ . This defines a (left) action  $\operatorname{Germ}_{\infty}(X)$  on  $(\Sigma[X], \operatorname{var})$ .

The orbit  $\mathcal{O}(t)$  is just the set of terms obtained from t by renaming of variables,

# Action of $\mathbf{Germ}_{\infty}(X)$ on $\Sigma[X]$

Let  $[\sigma, A] \cdot t := \hat{\sigma}_{|A}(t)$  for each term t such that  $\operatorname{var}(t) = A$ . This defines a (left) action  $\operatorname{Germ}_{\infty}(X)$  on  $(\Sigma[X], \operatorname{var})$ .

The orbit  $\mathcal{O}(t)$  is just the set of terms obtained from t by renaming of variables, and so  $s \sim t$  if, and only if, s and t are equal up to renaming of variables.

# Action on a balanced congruence

If  $\cong$  is a balanced (i.e.,  $u \cong v \Rightarrow var(s) = var(t)$ ) and fully invariant (i.e., invariant under all endomorphisms) congruence of  $\Sigma[X]$ ,

## Action on a balanced congruence

If  $\cong$  is a balanced (i.e.,  $u \cong v \Rightarrow var(s) = var(t)$ ) and fully invariant (i.e., invariant under all endomorphisms) congruence of  $\Sigma[X]$ ,

then  $\operatorname{Germ}_{\infty}(X)$  also acts on  $\cong$  by a diagonal action

## Action on a balanced congruence

If  $\cong$  is a balanced (i.e.,  $u \cong v \Rightarrow var(s) = var(t)$ ) and fully invariant (i.e., invariant under all endomorphisms) congruence of  $\Sigma[X]$ ,

then  $\operatorname{Germ}_{\infty}(X)$  also acts on  $\cong$  by a diagonal action

 $[\sigma, A] \cdot (u, v) := (\hat{\sigma}_{|_A}(u), \hat{\sigma}_{|_A}(v))$ 

for every  $u \cong v$  such that var(u) = A = var(v).

# Table of contents

- P. Dehornoy's geometry monoid
- 2 Action of the groupoid of germs of bijections by renaming of variables
- 3 The geometry groupoid of a balanced variety
  - 4 Generalization: Lattice of balanced sub-varieties
  - 5 Perspectives

### Notations

### Let X be a set and $\cong$ be a fully invariant balanced congruence on $\Sigma[X]$ .

## Notations

### Let X be a set and $\cong$ be a fully invariant balanced congruence on $\Sigma[X]$ .

#### Notations

 $\mathcal{O}(t)$  and  $\mathcal{O}$  denote respectively the orbit of  $t \in \Sigma[X]$  and any orbit under the action of the groupoid of germs of bijections,

## Notations

#### Let X be a set and $\cong$ be a fully invariant balanced congruence on $\Sigma[X]$ .

#### Notations

 $\mathcal{O}(t)$  and  $\mathcal{O}$  denote respectively the orbit of  $t \in \Sigma[X]$  and any orbit under the action of the groupoid of germs of bijections,  $\mathcal{O}^{(2)}(s, t)$  and  $\mathcal{O}^{(2)}$ denote respectively the orbit of (s, t) with  $s \cong t$ , and any orbit under the (diagonal) action of  $\operatorname{Germ}_{\infty}(X)$  on  $\cong$ .

# Reflexive directed graph

One defines a structure of (small) directed graph:

# Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is  $\Sigma[X]/\text{Germ}_{\infty}(X)$ ,

# Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is  $\Sigma[X]/\text{Germ}_{\infty}(X)$ ,
- The set of edges is  $\cong /\operatorname{Germ}_{\infty}(X)$ ,
One defines a structure of (small) directed graph:

- The set of vertices is  $\Sigma[X]/\text{Germ}_{\infty}(X)$ ,
- The set of edges is  $\cong /\operatorname{Germ}_{\infty}(X)$ ,

- The source and target maps: let us define  $\partial_0(s, t) = s$  and  $\partial_1(s, t) = t$  for all  $s \cong t$ ,

One defines a structure of (small) directed graph:

- The set of vertices is  $\Sigma[X]/\text{Germ}_{\infty}(X)$ ,
- The set of edges is  $\cong /\operatorname{Germ}_{\infty}(X)$ ,

- The source and target maps: let us define  $\partial_0(s, t) = s$  and  $\partial_1(s, t) = t$ for all  $s \cong t$ , then there is a unique (well-defined) map  $d_i: \cong /\operatorname{Germ}_{\infty}(X) \to \Sigma[X]/\operatorname{Germ}_{\infty}(X)$  such that

 $d_i(\mathcal{O}^{(2)}(s,t)) = \mathcal{O}_{\partial_i(s,t)}$ 

i = 0, 1.

One defines a structure of (small) directed graph:

- The set of vertices is  $\Sigma[X]/\text{Germ}_{\infty}(X)$ ,
- The set of edges is  $\cong /\operatorname{Germ}_{\infty}(X)$ ,

- The source and target maps: let us define  $\partial_0(s, t) = s$  and  $\partial_1(s, t) = t$ for all  $s \cong t$ , then there is a unique (well-defined) map  $d_i: \cong /\operatorname{Germ}_{\infty}(X) \to \Sigma[X]/\operatorname{Germ}_{\infty}(X)$  such that

 $d_i(\mathcal{O}^{(2)}(s,t)) = \mathcal{O}_{\partial_i(s,t)}$ 

i = 0, 1.

- The loops:

One defines a structure of (small) directed graph:

- The set of vertices is  $\Sigma[X]/\text{Germ}_{\infty}(X)$ ,
- The set of edges is  $\cong /\operatorname{Germ}_{\infty}(X)$ ,

- The source and target maps: let us define  $\partial_0(s, t) = s$  and  $\partial_1(s, t) = t$ for all  $s \cong t$ , then there is a unique (well-defined) map  $d_i: \cong /\operatorname{Germ}_{\infty}(X) \to \Sigma[X]/\operatorname{Germ}_{\infty}(X)$  such that

 $d_i(\mathcal{O}^{(2)}(s,t)) = \mathcal{O}_{\partial_i(s,t)}$ 

i = 0, 1.

- The loops: the map  $i: \Sigma[X] \to \cong /\operatorname{Germ}_{\infty}(X)$ , defined by  $i(t) := \mathcal{O}^{(2)}(t, t)$ , passes to the quotient to provide a map that satisfies  $\iota(\mathcal{O}(t)) = \mathcal{O}^{(2)}(t, t)$  for every  $t \in \Sigma[X]$ .

#### Structure of multiplicative graph Deformation of the groupoid structure of an equivalence relation

- Let us define m: {  $((s,t),(r,s')) \in \cong^2$  :  $s' \in \mathcal{O}(s)$  }  $o \Sigma[X] imes \Sigma[X]$  by

 $m((s,t),(r,s')) := (r,[\sigma,\mathsf{var}(s)] \cdot t)$ 

where  $[\sigma, var(s)] \cdot s = s'$ .

- One observes that  $im(m) \subseteq \cong$ .

- It can be shown that there is a unique well-defined map  $\gamma: (\cong /\operatorname{Germ}_{\infty}(X))_{d_0} \times_{d_1} (\cong /\operatorname{Germ}_{\infty}(X)) \to (\cong /\operatorname{Germ}_{\infty}(X))$  such that

$$\gamma(\mathcal{O}^{(2)}(s,t),\mathcal{O}^{(2)}(r,s')) = \mathcal{O}^{(2)}_{m((s,t),(r,s'))}$$

Therefore  $\cong /\operatorname{Germ}_{\infty}(X)$  is a (small) category.

Therefore  $\cong /\operatorname{Germ}_{\infty}(X)$  is a (small) category. Moreover, for every orbit  $\mathcal{O}^{(2)}(s,t) \in \cong /\operatorname{Germ}_{\infty}(X)$  has an inverse namely  $\mathcal{O}^{(2)}(t,s)$ 

Therefore  $\cong /\operatorname{Germ}_{\infty}(X)$  is a (small) category. Moreover, for every orbit  $\mathcal{O}^{(2)}(s,t) \in \cong /\operatorname{Germ}_{\infty}(X)$  has an inverse namely  $\mathcal{O}^{(2)}(t,s)$ : this provides a structure of groupoid.

Therefore  $\cong /\operatorname{Germ}_{\infty}(X)$  is a (small) category. Moreover, for every orbit  $\mathcal{O}^{(2)}(s,t) \in \cong /\operatorname{Germ}_{\infty}(X)$  has an inverse namely  $\mathcal{O}^{(2)}(t,s)$ : this provides a structure of groupoid.

This defines the geometry groupoid Geom(V) of the balanced variety V determined by  $\cong$ .

### Refinement of G. Birkhoff's HSP Theorem

#### Theorem (PL, 2014)

The map  $\mathbf{V} \mapsto \mathbf{Geom}(\mathbf{V})$  is a Galois connection between the lattice of balanced sub-varieties of  $\Sigma$ -algebras and a sub-poset of small groupoids.

Let X be a set.

Lemma (Dehornoy) For all terms  $s, t \in \Sigma[\mathbb{N}]$ ,  $\mathbf{Subst}_X(s) = \mathbf{Subst}_X(t)$  if, and only if,  $\mathcal{O}(s) = \mathcal{O}(t)$ .

Let X be a set.

```
Lemma (Dehornoy)
```

```
For all terms s, t \in \Sigma[\mathbb{N}], \mathbf{Subst}_X(s) = \mathbf{Subst}_X(t) if, and only if,
\mathcal{O}(s) = \mathcal{O}(t).
```

It follows that one can define  $\operatorname{Subst}_X(\mathcal{O}(t)) := \operatorname{Subst}_X(t)$  independently of the choice of the representative t.

Let X be a set.

```
Lemma (Dehornoy)
```

```
For all terms s, t \in \Sigma[\mathbb{N}], \mathbf{Subst}_X(s) = \mathbf{Subst}_X(t) if, and only if,
\mathcal{O}(s) = \mathcal{O}(t).
```

It follows that one can define  $\operatorname{Subst}_X(\mathcal{O}(t)) := \operatorname{Subst}_X(t)$  independently of the choice of the representative t.

For all X, one defines an action of Geom(V) by the functor  $F_X$  given by  $F_X(\mathcal{O}) := \text{Subst}_X(\mathcal{O})$ 

Let X be a set.

```
Lemma (Dehornoy)
```

```
For all terms s, t \in \Sigma[\mathbb{N}], \mathbf{Subst}_X(s) = \mathbf{Subst}_X(t) if, and only if,
\mathcal{O}(s) = \mathcal{O}(t).
```

It follows that one can define  $\operatorname{Subst}_X(\mathcal{O}(t)) := \operatorname{Subst}_X(t)$  independently of the choice of the representative t.

For all X, one defines an action of **Geom**(**V**) by the functor  $F_X$  given by  $F_X(\mathcal{O}) := \mathbf{Subst}_X(\mathcal{O})$  and  $F_X(\mathcal{O}^{(2)}(s,t))$ :  $\mathbf{Subst}_X(\mathcal{O}(s)) \to \mathbf{Subst}_X(\mathcal{O}(t)), \ F_X(\mathcal{O}^{(2)}(s,t)) := \rho^{(s,t)}$  (does not depend on the choice of (s, t)).

When X is not void  $F_X$  is faithful and injective on objects.

When X is not void  $F_X$  is faithful and injective on objects.

It follows that the image of  $F_X$  (i.e., the classes of sets  $F_X(\Sigma[\mathbb{N}]/\operatorname{Germ}_{\infty}(\mathbb{N}))$  and of bijections  $F_X(\cong/\operatorname{Germ}_{\infty}(\mathbb{N})))$ 

When X is not void  $F_X$  is faithful and injective on objects.

It follows that the image of  $F_X$  (i.e., the classes of sets  $F_X(\Sigma[\mathbb{N}]/\operatorname{Germ}_{\infty}(\mathbb{N}))$  and of bijections  $F_X(\cong/\operatorname{Germ}_{\infty}(\mathbb{N})))$  is a sub-groupoid of **Bij** 

When X is not void  $F_X$  is faithful and injective on objects.

It follows that the image of  $F_X$  (i.e., the classes of sets  $F_X(\Sigma[\mathbb{N}]/\text{Germ}_{\infty}(\mathbb{N}))$  and of bijections  $F_X(\cong/\text{Germ}_{\infty}(\mathbb{N})))$  is a sub-groupoid of **Bij**: more precisely it is the groupoid associated to the geometry monoid of P. Dehornoy.

### Remark

The equivalence relation  $\sim$  induced by the action of  $\operatorname{Germ}_{\infty}(X)$  on  $\Sigma[X]$  (i.e.,  $u \sim v$  if, and only if,  $\mathcal{O}(s) = \mathcal{O}(t)$ ) is not in general a congruence,

### Remark

The equivalence relation  $\sim$  induced by the action of  $\operatorname{Germ}_{\infty}(X)$  on  $\Sigma[X]$ (i.e.,  $u \sim v$  if, and only if,  $\mathcal{O}(s) = \mathcal{O}(t)$ ) is not in general a congruence, so that the orbit space  $\Sigma[X]/\operatorname{Germ}_{\infty}(X)$  is not canonically equipped with a structure of a  $\Sigma$ -algebra.

### Remark

The equivalence relation  $\sim$  induced by the action of  $\operatorname{Germ}_{\infty}(X)$  on  $\Sigma[X]$ (i.e.,  $u \sim v$  if, and only if,  $\mathcal{O}(s) = \mathcal{O}(t)$ ) is not in general a congruence, so that the orbit space  $\Sigma[X]/\operatorname{Germ}_{\infty}(X)$  is not canonically equipped with a structure of a  $\Sigma$ -algebra.

For instance, let  $x, y \in X$ ,  $x \neq y$ . Then  $x \sim x$  and  $x \sim y$  but  $x * x \not\sim x * y$ .

Nevertheless, in case of  $X = \mathbb{N}$ , it is possible to define a  $\Sigma$ -algebra structure (Lawson)

Nevertheless, in case of  $X = \mathbb{N}$ , it is possible to define a  $\Sigma$ -algebra structure (Lawson): let  $f \in \Sigma(n)$ , and  $u_1, \dots, u_n \in \Sigma[\mathbb{N}]$ ,

Nevertheless, in case of  $X = \mathbb{N}$ , it is possible to define a  $\Sigma$ -algebra structure (Lawson): let  $f \in \Sigma(n)$ , and  $u_1, \dots, u_n \in \Sigma[\mathbb{N}]$ , we let

$$f'(u_1,\cdots,u_n):=\mathcal{O}(f(v_1,\cdots,v_n))$$

for  $v_i \in \mathcal{O}(u_i)$ ,  $i = 1, \dots, n$  such that  $var(v_i) \cap var(v_j) = \emptyset$ ,  $i \neq j$  (it is possible since the set of variables is infinite).

Nevertheless, in case of  $X = \mathbb{N}$ , it is possible to define a  $\Sigma$ -algebra structure (Lawson): let  $f \in \Sigma(n)$ , and  $u_1, \dots, u_n \in \Sigma[\mathbb{N}]$ , we let

$$f'(u_1,\cdots,u_n):=\mathcal{O}(f(v_1,\cdots,v_n))$$

for  $v_i \in \mathcal{O}(u_i)$ ,  $i = 1, \dots, n$  such that  $\operatorname{var}(v_i) \cap \operatorname{var}(v_j) = \emptyset$ ,  $i \neq j$  (it is possible since the set of variables is infinite). Of course this definition does not depend on the choice of such that  $\operatorname{var}(v_i) \cap \operatorname{var}(v_i) = \emptyset$ .

Nevertheless, in case of  $X = \mathbb{N}$ , it is possible to define a  $\Sigma$ -algebra structure (Lawson): let  $f \in \Sigma(n)$ , and  $u_1, \dots, u_n \in \Sigma[\mathbb{N}]$ , we let

$$f'(u_1,\cdots,u_n):=\mathcal{O}(f(v_1,\cdots,v_n))$$

for  $v_i \in \mathcal{O}(u_i)$ ,  $i = 1, \dots, n$  such that  $\operatorname{var}(v_i) \cap \operatorname{var}(v_j) = \emptyset$ ,  $i \neq j$  (it is possible since the set of variables is infinite). Of course this definition does not depend on the choice of such that  $\operatorname{var}(v_i) \cap \operatorname{var}(v_j) = \emptyset$ .

One shows that there exists one, and only one, well-defined map such that  $\overline{f}(\mathcal{O}(u_1), \dots, \mathcal{O}(u_n)) = \mathcal{O}(f(v_1, \dots, v_n))$  with  $v_i \in \mathcal{O}(u_i)$ ,  $i = 1, \dots, n$  such that  $\operatorname{var}(v_i) \cap \operatorname{var}(v_j) = \emptyset$ ,  $i \neq j$ .

### A $\Sigma$ -algebra structure on **Geom**(V)

The previous construction may also be applied to  $\cong /\operatorname{Germ}_{\infty}(X)$ .

### A $\Sigma$ -algebra structure on **Geom**(V)

The previous construction may also be applied to  $\cong /\operatorname{Germ}_{\infty}(X)$ .

Proposition (PL, 2014) Geom(V) is a  $\Sigma$ -algebra in the category of (small) groupoids.

### Table of contents

- P. Dehornoy's geometry monoid
- 2 Action of the groupoid of germs of bijections by renaming of variables
  - 3 The geometry groupoid of a balanced variety
- Generalization: Lattice of balanced sub-varieties
  - 5 Perspectives

The groupoid  $\operatorname{Germ}_{\infty}(X)$  of germs of bijections acts also on  $\mathbf{V}[X]$  by a quotient action

$$[\sigma, A] \cdot \pi(t) = \pi([\sigma, A] \cdot t)$$

where  $t \in \Sigma[X]$  such that var(t) = A, and  $\pi \colon \Sigma[X] \to V[X]$  is the canonical epimorphism.

The groupoid  $\operatorname{Germ}_{\infty}(X)$  of germs of bijections acts also on  $\mathbf{V}[X]$  by a quotient action

$$[\sigma, A] \cdot \pi(t) = \pi([\sigma, A] \cdot t)$$

where  $t \in \Sigma[X]$  such that var(t) = A, and  $\pi \colon \Sigma[X] \to V[X]$  is the canonical epimorphism.

Since **V** is a balanced variety, the notion of set of variables remains defined in  $\mathbf{V}[X]$ .

The groupoid  $\operatorname{Germ}_{\infty}(X)$  of germs of bijections acts also on  $\mathbf{V}[X]$  by a quotient action

$$[\sigma, A] \cdot \pi(t) = \pi([\sigma, A] \cdot t)$$

where  $t \in \Sigma[X]$  such that var(t) = A, and  $\pi \colon \Sigma[X] \to V[X]$  is the canonical epimorphism.

Since V is a balanced variety, the notion of set of variables remains defined in V[X]. It follows that one can talk about balanced congruences on V[X].

The groupoid  $\operatorname{Germ}_{\infty}(X)$  of germs of bijections acts also on  $\mathbf{V}[X]$  by a quotient action

$$[\sigma, A] \cdot \pi(t) = \pi([\sigma, A] \cdot t)$$

where  $t \in \Sigma[X]$  such that var(t) = A, and  $\pi \colon \Sigma[X] \to V[X]$  is the canonical epimorphism.

Since V is a balanced variety, the notion of set of variables remains defined in V[X]. It follows that one can talk about balanced congruences on V[X]. One shows that if  $\cong$  is a (fully invariant) balanced congruence on V[X], then  $\operatorname{Germ}_{\infty}(X)$  acts on  $\cong$  by a diagonal action.

The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of  $\Sigma$ -algebras and  $\cong$  be a balanced fully invariant congruence on V[ $\mathbb{N}$ ].

The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of  $\Sigma$ -algebras and  $\cong$  be a balanced fully invariant congruence on V[ $\mathbb{N}$ ].

 $\cong$  determines a unique balanced sub-variety W of V.

The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of  $\Sigma$ -algebras and  $\cong$  be a balanced fully invariant congruence on V[ $\mathbb{N}$ ].

 $\cong$  determines a unique balanced sub-variety W of V.

Then one can define a (small) groupoid  $Geom_V(W)$  whose set of objects is  $V[\mathbb{N}]/Germ_{\infty}(\mathbb{N})$  and that of arrows is  $\cong /Germ_{\infty}(\mathbb{N})$ , which is called the relative geometry groupoid of W (with respect to V).
The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of  $\Sigma$ -algebras and  $\cong$  be a balanced fully invariant congruence on V[ $\mathbb{N}$ ].

 $\cong$  determines a unique balanced sub-variety W of V.

Then one can define a (small) groupoid  $\textbf{Geom}_V(W)$  whose set of objects is  $V[\mathbb{N}]/\textbf{Germ}_\infty(\mathbb{N})$  and that of arrows is  $\cong/\textbf{Germ}_\infty(\mathbb{N})$ , which is called the relative geometry groupoid of W (with respect to V).

#### Remark

Of course one recovers Geom(W) by considering  $Geom_V(W)$  with V the variety of all  $\Sigma$ -algebras (which is balanced).

One can also equips  $V[\mathbb{N}]/\text{Germ}_{\infty}(\mathbb{N})$  and  $\cong/\text{Germ}_{\infty}(\mathbb{N})$  with structures of  $\Sigma$ -algebras (as already done in case of  $\Sigma[\mathbb{N}]$ ).

One can also equips  $V[\mathbb{N}]/\text{Germ}_{\infty}(\mathbb{N})$  and  $\cong/\text{Germ}_{\infty}(\mathbb{N})$  with structures of  $\Sigma$ -algebras (as already done in case of  $\Sigma[\mathbb{N}]$ ).

Nevertheless one cannot go further in general:  $V[\mathbb{N}]/\text{Germ}_{\infty}(\mathbb{N})$  is generally not an algebra of the variety V. (A different number of occurrences of a same variable in two equivalent terms is an obstruction to this.)

A balanced congruence on  $\Sigma[X]$  is said to be linearly generated (or simply linear) if it admits a set of generators  $R \subseteq \Sigma[X]^2$  such that for each  $(s, t) \in R$ , every variable in s (hence in t) occurs one and only one time in s and in t.

A balanced congruence on  $\Sigma[X]$  is said to be linearly generated (or simply linear) if it admits a set of generators  $R \subseteq \Sigma[X]^2$  such that for each  $(s, t) \in R$ , every variable in s (hence in t) occurs one and only one time in s and in t.

For instance, associativity, left or right units are linear.

A balanced congruence on  $\Sigma[X]$  is said to be linearly generated (or simply linear) if it admits a set of generators  $R \subseteq \Sigma[X]^2$  such that for each  $(s, t) \in R$ , every variable in s (hence in t) occurs one and only one time in s and in t.

For instance, associativity, left or right units are linear. On the other side the inverse relation (for inverse semigroups)  $x^* \cdot x \cdot x^* = x$  is not.

A balanced congruence on  $\Sigma[X]$  is said to be linearly generated (or simply linear) if it admits a set of generators  $R \subseteq \Sigma[X]^2$  such that for each  $(s, t) \in R$ , every variable in s (hence in t) occurs one and only one time in s and in t.

For instance, associativity, left or right units are linear. On the other side the inverse relation (for inverse semigroups)  $x^* \cdot x \cdot x^* = x$  is not.

#### Definition

A balanced variety determined by a linear congruence is called a linear variety.

# Algebra in $\boldsymbol{\mathsf{V}}$

#### Theorem (PL, 2014)

Let V be a linear variety of  $\Sigma$ -algebras and let  $\cong$  be a balanced and fully invariant congruence on V[N] that (uniquely) determines a balanced sub-variety W of V.

# Algebra in $\mathbf{V}$

#### Theorem (PL, 2014)

Let V be a linear variety of  $\Sigma$ -algebras and let  $\cong$  be a balanced and fully invariant congruence on V[N] that (uniquely) determines a balanced sub-variety W of V.

Then  $Geom_V(W)$  is an algebra in the variety V in the category of (small) groupoids.

- Let  $\cong$  be a balanced and fully invariant congruence on  $\mathbb{N}^* = Mon[\mathbb{N}]$ , and let W be the associated sub-variety of monoids.

- Let  $\cong$  be a balanced and fully invariant congruence on  $\mathbb{N}^* = Mon[\mathbb{N}]$ , and let W be the associated sub-variety of monoids. Then  $Geom_{Mon}(W)$  is a (strict) monoidal groupoid.

- Let  $\cong$  be a balanced and fully invariant congruence on  $\mathbb{N}^* = Mon[\mathbb{N}]$ , and let W be the associated sub-variety of monoids. Then  $Geom_{Mon}(W)$  is a (strict) monoidal groupoid.

- In particular if  $\cong$  is the commutativity, then  $Geom_{Mon}(ComMon)$  is a symmetric monoidal groupoid.

- Let  $\cong$  be a balanced and fully invariant congruence on  $\mathbb{N}^* = Mon[\mathbb{N}]$ , and let W be the associated sub-variety of monoids. Then  $Geom_{Mon}(W)$  is a (strict) monoidal groupoid.

- In particular if  $\cong$  is the commutativity, then  $Geom_{Mon}(ComMon)$  is a symmetric monoidal groupoid.

- Similarly  $Geom_{*Mon}(InvMon)$  is an "involutive" monoidal groupoid (where \*Mon is the variety of monoids with an involution).

## Table of contents

- P. Dehornoy's geometry monoid
- 2 Action of the groupoid of germs of bijections by renaming of variables
- 3 The geometry groupoid of a balanced variety
- 4 Generalization: Lattice of balanced sub-varieties



- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?

- Linear varieties extend to varieties of modules (for instance, the variety of monoids corresponds to that of algebras over a ring).

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?

- Linear varieties extend to varieties of modules (for instance, the variety of monoids corresponds to that of algebras over a ring). This approach should be applied to (plain set) operads and also to polynomial rewrite systems (Bergman's reduction systems or Groebner bases ).

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?

- Linear varieties extend to varieties of modules (for instance, the variety of monoids corresponds to that of algebras over a ring). This approach should be applied to (plain set) operads and also to polynomial rewrite systems (Bergman's reduction systems or Groebner bases ).

- Links with monads, Lawvere theories and clones.

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?

- Linear varieties extend to varieties of modules (for instance, the variety of monoids corresponds to that of algebras over a ring). This approach should be applied to (plain set) operads and also to polynomial rewrite systems (Bergman's reduction systems or Groebner bases ).

- Links with monads, Lawvere theories and clones.
- Of course, links with Lawson's work.