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Balanced equations

Let X be a signature (graded set over the integers). An equation u = v on
the free algebra X[X] (on a set X) is balanced when both terms u, v have
the same set of variables.
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Let X be a signature (graded set over the integers). An equation u = v on
the free algebra X[X] (on a set X) is balanced when both terms u, v have
the same set of variables.

For instance, associativity (xp * x1) * x2 = Xp * (X1 * x2), left 1% xg = xp or
right xo * 1 = xg unit, commutativity xg * x1 = X1 * Xg, quasi-inverse (in an

inverse semigroup) x3 - Xo - x§ = Xo, all are balanced equations.

Counter-example : left (or right) inverse x; * * xo = 1.
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Balanced variety

An equational variety V of X-algebras is said to be balanced when it is
determined by balanced equations on X[N].
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Balanced variety

An equational variety V of X-algebras is said to be balanced when it is
determined by balanced equations on X[N].

For instance, the varieties of semigroups, of monoids or also of inverse
semigroups (in commutative or non-commutative version) are balanced,
while that of groups is not.
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Substitution operations

Given a signature ¥, a set X and a term t € X[N], P. Dehornoy defined

Substx(t) :={45(t) € X[X]: 0: N—= X[X] } .
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Substx(t) :={45(t) € X[X]: 0: N—= X[X] } .
For instance, Substx(n) = X[X] for every n € N.

Let (s, t) be a balanced pair of terms (i.e., s = t is a balanced equation in
Y[N]). One defines a map p(>!): Substx(s) — Substx(t) by

Po9(5(s)) = 6(t) .

(This is a well-defined function since all the variables in t occur in s, hence
the value of 5(t) is entirely determined by that of 6(s).)
More generally, given a position p, one defines the translated pﬁ,s’t) of p!

that acts in a similar way on sub-terms at position p. In particular

p£s7t) = p(svt)_
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Now let us fix a set R C X[NJ]? of balanced equations: some relations.

According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant
under endomorphisms, congruence =, on ¥[N] generated by R (it is
balanced because R is so) determines a unique balanced equational variety
V of Y-algebras. For instance,
R={((0x1)%2,0%(1%2)),(0xe,0),(ex*0,0)} determines the variety of
monoids.

Let us consider the sub-monoid Gr(V) (also denoted by G(V)) of partial
bijections of X[X] generated by pf,s’t): Y[X] = X[X], (s,t) € Ror
(t,s) € R, and the positions p.

This object G(V), introduced by P. Dehornoy, was called the monoid of
geometry of the variety V.
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P. Dehornoy also defined an oriented version of G(V) by only considering
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Remark

P. Dehornoy also defined an oriented version of G(V) by only considering

the generators of the form pE,s’t) for (s, t) € R, and positions p :

It is relevant to study rewrite term system.
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Properties

G(V) is an inverse monoid.
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Properties

G(V) is an inverse monoid.
Let recall that an inverse monoid is a monoid with a unary operation

(=)*: M — M that satisfies the relations (xy)* = y*x*, 1* = 1, xx*x = x,
(xX*)* = x, x*xy*y = y*yx*x, et (xy)* = y*x*.
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Properties

G(V) is an inverse monoid.

Let recall that an inverse monoid is a monoid with a unary operation
(=)*: M — M that satisfies the relations (xy)* = y*x*, 1* = 1, xx*x = x,
(x*)* = x, x*xy*y = y*yx*x, et (xy)* = y*x*. Inverse monoids form a
variety (with monoid homomorphisms that commute with the involutions

(=)")-
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Geometry 7

Geometric property (Dehornoy)

The monoid G(V) acts on X[X] and the homogeneous space X[X]/G(V)
(set of orbits) associated with this action is the free algebra V[X] in V on
X.
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Relation between G(V) and =

P. Dehornoy proved the following result :
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Relation between G(V) and =

P. Dehornoy proved the following result :

Theorem (Dehornoy)

For every (non void) partial bijection 6 in G(V), there is a pair of balanced
terms (sp, ty) € Z[N]?, unique up to renaming of variables, such that

sp = ty and
0 — p(597t9) .

Moreover for each set of relations R and R’ that generate =,
Gr(V) = Gr/(V).

Hence the geometry monoid G(V) is essentially the fully invariant
congruence = on X[N] generated by the relations R, and thus is largely
independent of the choice of R and the set X, and, by HSP Theorem of G.
Birkhoff, is intrinsically related to the variety V itself.
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Groupoid structure on G(V)

For 01,02 € G(V), one defines (classical construction) the restricted
product 6 - 01 := 05 0 0; if, and only if, dom(6,) = im(67).
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Groupoid structure on G(V)

For 01,02 € G(V), one defines (classical construction) the restricted
product 6 - 01 := 05 0 0; if, and only if, dom(6,) = im(67).

Remark

There is an isomorphism of categories between inverse semigroups and
inductive ordered groupoids (C. Ehresmann, M. Lawson).
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Let G be a groupoid, and let us denote by Bij the groupoid of sets with
bijections. An action of G is just a functor F from G to Bij.

If the class Ob(G) of objects of G is a small set, then one can define
2r = acon(g) F(A)-

Let us assume to simplify that F(A) N F(B) =0, A # B. The orbit O(x)
of x € F(A) is defined by { F(f)(x): do(f) = A} C ZF.

Given x,y € X F, one defines x ~¢ y if, and only if, there exists an arrow f
such that x € F(do(f)) and F(f)(x) =y.

One shows that ~F is an equivalence relation on Y ¢ and x ~f y if, and
only if, O(x) = O(y).

One defines the orbit space £ /G as g/ ~F.
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Other definition of an action

Mark V. Lawson introduced the notion of a groupoid action as follows. Let
us assume that E is a set with a map 7: E — Ob(G).

A (left) action G on (E, ) is a map from the fibered product
Arr(G) 4,%r E to E, denoted by (f,x) — f - x, that satisfies a certain
number of axioms.

Both versions of the definition of a groupoid action are equivalent.

Theorem (PL, 2014) J
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-t = 7(t).
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Renaming of variables

The symmetric group &(X) acts on £[X] by renaming of variables:
-t = 7(t).

The value of 7 - t only depends on T var(e) Hence one can consider an
action by the infinite symmetric group & (X) (permutations of X that fix
all but finitely many members of X).

But actually it is not important that 7 is a permutation on the whole X.
So one can restrict to endo-functions of X which are bijective only on a
finite set, and consider two such functions as equal as soon as they coincide
on the finite set: germs of local bijections.
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Groupoid of germs of local bijections

Let X be a set, and let us denote by P, (X) the set of finite subsets of X.

One defines a category LocBij(X) of local bijections (but not partial) on
X: the objects are the members of Py, (X), an arrow from A to B is a pair
(0,A) where o: X — X such that 0|,: A— B is a bijection (hence in
particular o(A) = B and |A| = |B|).

For finite subsets A, B C X of the same cardinal number, let
(0,A) =ag (1,A) if, and only if, 0, = 7),. The family (=a8)a,5 is a

congruence.

The quotient category Germy.(X) is actually a groupoid, with
[0, A]™t = [(01,) %, o(A)], called the groupoid of germs of bijections of X.
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Action of Germ,(X) on X[X]

Let [0, A] - t := G,(t) for each term t such that var(t) = A.

17/38



Action of Germ,(X) on X[X]

Let [0, A] - t := G),(t) for each term t such that var(t) = A. This defines a
(left) action Germo,(X) on (X[X], var).

17/38



Action of Germ,(X) on X[X]

Let [0, A] - t := G),(t) for each term t such that var(t) = A. This defines a
(left) action Germo,(X) on (X[X], var).

The orbit O(t) is just the set of terms obtained from t by renaming of
variables,

17/38



Action of Germ,(X) on X[X]

Let [0, A] - t := G),(t) for each term t such that var(t) = A. This defines a
(left) action Germo,(X) on (X[X], var).

The orbit O(t) is just the set of terms obtained from t by renaming of
variables, and so s ~ t if, and only if, s and t are equal up to renaming of

variables.
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Action on a balanced congruence

If = is a balanced (i.e., u = v = var(s) = var(t)) and fully invariant (i.e.,
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Action on a balanced congruence

If = is a balanced (i.e., u = v = var(s) = var(t)) and fully invariant (i.e.,
invariant under all endomorphisms) congruence of X[X],

then Germ,(X) also acts on = by a diagonal action
[0, A] - (4, v) := (81, (1), 61,,(v))

for every u = v such that var(u) = A = var(v).
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Notations

Let X be a set and = be a fully invariant balanced congruence on X[X].

Notations

O(t) and O denote respectively the orbit of t € X[X] and any orbit under
the action of the groupoid of germs of bijections, O®)(s, t) and O®)
denote respectively the orbit of (s, t) with s = t, and any orbit under the
(diagonal) action of Germ,,(X) on =.
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Reflexive directed graph

One defines a structure of (small) directed graph:
- The set of vertices is X[X]/Germy(X),
- The set of edges is = /Germy,(X),

- The source and target maps: let us define dp(s,t) = s and d1(s,t) =t
for all s = t, then there is a unique (well-defined) map
di: = /Germy(X) — X[X]/Germy,(X) such that

di(0P(s, 1)) = Opy(s.0)
i=01.

- The loops: the map i: [X] -= /Germy(X), defined by
i(t) := O@)(t, t), passes to the quotient to provide a map that satisfies
W(O(t)) = O)(t, t) for every t € L[X].
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Structure of multiplicative graph

Deformation of the groupoid structure of an equivalence relation

- Let us define m: {((s,t),(r,s’)) €2: s’ € O(s) } — Z[X] x [X] by

m((s,t),(r,s")) := (r,[o,var(s)] - t)

where [o,var(s)]-s = 5.

- One observes that im(m) C=.

- It can be shown that there is a unique well-defined map
v: (2 /Germyo (X)) gy Xd, (= /Germy (X)) — (= /Germ (X)) such
that

(0D (5,8),0D(r,5) = 0F o) -

22/38



Groupoid structure

Therefore 2 /Germq,(X) is a (small) category.
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Groupoid structure

Therefore = /Germy,(X) is a (small) category. Moreover, for every orbit
OB)(s, t) €2 /Germ,.(X) has an inverse namely O (t, s): this provides
a structure of groupoid.

This defines the geometry groupoid Geom(V) of the balanced variety V
determined by =.
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Refinement of G. Birkhoff's HSP Theorem

Theorem (PL, 2014)

The map V — Geom(V) is a Galois connection between the lattice of
balanced sub-varieties of ¥ -algebras and a sub-poset of small groupoids.
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Groupoid action on X[X]

Let X be a set.

Lemma (Dehornoy)

For all terms s, t € ¥[N], Substx(s) = Substx(t) if, and only if,
O(s) = O(t).
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Groupoid action on X[X]

Let X be a set.

Lemma (Dehornoy)

For all terms s, t € ¥[N], Substx(s) = Substx(t) if, and only if,
O(s) = O(t).

It follows that one can define Substx(O(t)) := Substx(t) independently
of the choice of the representative t.

For all X, one defines an action of Geom(V) by the functor Fx given by
Fx(O) := Substx(O) and

Fx(O®)(s,1)): Substx(O(s)) = Substx(O(t)), Fx(O@ (s, t)) := p(=t)
(does not depend on the choice of (s, t)).
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Recover G(V) from Geom(V)

When X is not void Fx is faithful and injective on objects.
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Recover G(V) from Geom(V)

When X is not void Fx is faithful and injective on objects.

It follows that the image of Fx (i.e., the classes of sets
Fx(X[N]/Germy(N)) and of bijections Fx(= /Germy(N))) is a
sub-groupoid of Bij: more precisely it is the groupoid associated to the
geometry monoid of P. Dehornoy.

26 /38



Remark

The equivalence relation ~ induced by the action of Germ,(X) on X[X]
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Remark

The equivalence relation ~ induced by the action of Germ,(X) on X[X]
(i.e., u~ v if, and only if, O(s) = O(t)) is not in general a congruence, so
that the orbit space X[X]/Germy(X) is not canonically equipped with a
structure of a X-algebra.

For instance, let x,y € X, x #2y. Then x ~ x and x ~ y but x % x ¢ x* y.
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A X -algebra structure on the orbit space

Nevertheless, in case of X = N, it is possible to define a X-algebra
structure (Lawson)
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A X -algebra structure on the orbit space

Nevertheless, in case of X = N, it is possible to define a X-algebra
structure (Lawson): let f € X(n), and vy, -+, u, € X[N], we let

F'(ut,- - un) = O(F(v1, -+, va))

for vi € O(uj), i =1,---, n such that var(v;) Nvar(v;) =0, i # j (it is
possible since the set of variables is infinite). Of course this definition does
not depend on the choice of such that var(v;) Nvar(v;) = 0.

One shows that there exists one, and only one, well-defined map such that

F(O(u1), -+, O(up)) = O(f(vi, -+, v)) with v; € O(w;), i =1,-++ ,n
such that var(v;) Nvar(v;) =0, i #J.
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A ¥ -algebra structure on Geom(V)

The previous construction may also be applied to = /Germq(X).
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A ¥ -algebra structure on Geom(V)

The previous construction may also be applied to = /Germq(X).

Proposition (PL, 2014)
Geom(V) is a X-algebra in the category of (small) groupoids. J
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Action of the groupoid of germs on V[X]

The groupoid Germ,(X) of germs of bijections acts also on V[X] by a
quotient action
[07 A] ' W(t) = 7T([O_a A] : t)

where t € X[X] such that var(t) = A, and 7: X[X] — V[X] is the
canonical epimorphism.
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Action of the groupoid of germs on V[X]

The groupoid Germ,(X) of germs of bijections acts also on V[X] by a
quotient action

[0, A] - m(t) = 7([o, A] - £)

where t € X[X] such that var(t) = A, and 7: X[X] — V[X] is the
canonical epimorphism.

Since V is a balanced variety, the notion of set of variables remains defined
in V[X]. It follows that one can talk about balanced congruences on V[X].
One shows that if = is a (fully invariant) balanced congruence on V[X],
then Germo,(X) acts on = by a diagonal action.
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The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of X-algebras and = be a balanced fully
invariant congruence on V[N].
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The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of X-algebras and = be a balanced fully
invariant congruence on V[N].

2 determines a unique balanced sub-variety W of V.

Then one can define a (small) groupoid Geomy (W) whose set of objects
is V[N]/Germ(N) and that of arrows is = /Germ(N), which is called
the relative geometry groupoid of W (with respect to V).

Remark

Of course one recovers Geom(W) by considering Geomy (W) with V the
variety of all X-algebras (which is balanced).
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One can also equips V[N]/Germy(N) and = /Germ(N) with structures
of X-algebras (as already done in case of X[N]).
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One can also equips V[N]/Germy(N) and = /Germ(N) with structures
of X-algebras (as already done in case of X[N]).

Nevertheless one cannot go further in general: V[N]/Germy(N) is
generally not an algebra of the variety V. (A different number of
occurrences of a same variable in two equivalent terms is an obstruction to
this.)
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Definition

A balanced congruence on ¥[X] is said to be linearly generated (or simply
linear) if it admits a set of generators R C ¥[X]? such that for each

(s,t) € R, every variable in s (hence in t) occurs one and only one time in
s and in t.
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Definition

A balanced congruence on ¥[X] is said to be linearly generated (or simply
linear) if it admits a set of generators R C ¥[X]? such that for each

(s,t) € R, every variable in s (hence in t) occurs one and only one time in
s and in t.

For instance, associativity, left or right units are linear. On the other side
the inverse relation (for inverse semigroups) x* - x - x* = x is not.

Definition
A balanced variety determined by a linear congruence is called a linear
variety.
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Algebra in V

Theorem (PL, 2014)

Let V be a linear variety of >-algebras and let = be a balanced and fully

invariant congruence on V[N] that (uniquely) determines a balanced
sub-variety W of V.
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Algebra in V

Theorem (PL, 2014)

Let V be a linear variety of >-algebras and let = be a balanced and fully
invariant congruence on V[N] that (uniquely) determines a balanced
sub-variety W of V.

Then Geomy (W) is an algebra in the variety V in the category of (small)
groupoids.
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Some examples

- Let = be a balanced and fully invariant congruence on N* = Mon|N],
and let W be the associated sub-variety of monoids.
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Some examples

- Let = be a balanced and fully invariant congruence on N* = Mon|N],
and let W be the associated sub-variety of monoids. Then Geompmen(W)
is a (strict) monoidal groupoid.

- In particular if 2 is the commutativity, then Geompmoen(ComMon) is a
symmetric monoidal groupoid.

- Similarly Geomypmon(InvMon) is an “involutive” monoidal groupoid
(where xMon is the variety of monoids with an involution).
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Perspectives

- Non symmetric version adapted to term (or even word) rewrite systems
with help of a geometry category 7

- Linear varieties extend to varieties of modules (for instance, the variety of
monoids corresponds to that of algebras over a ring). This approach should
be applied to (plain set) operads and also to polynomial rewrite systems
(Bergman's reduction systems or Groebner bases ).

- Links with monads, Lawvere theories and clones.

- Of course, links with Lawson's work.
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