About the geometry groupoid of a balanced equational variety

Laurent Poinsot
LIPN - UMR CNRS 7030
Université Paris XIII, Sorbonne Paris Cité - Institut Galilée

Table of contents

(1) P. Dehornoy's geometry monoid
(2) Action of the groupoid of germs of bijections by renaming of variables
(3) The geometry groupoid of a balanced variety

4 Generalization: Lattice of balanced sub-varieties
(5) Perspectives

Balanced equations

Let Σ be a signature (graded set over the integers). An equation $u=v$ on the free algebra $\Sigma[X]$ (on a set X) is balanced when both terms u, v have the same set of variables.

Balanced equations

Let Σ be a signature (graded set over the integers). An equation $u=v$ on the free algebra $\Sigma[X]$ (on a set X) is balanced when both terms u, v have the same set of variables.

For instance, associativity $\left(x_{0} * x_{1}\right) * x_{2}=x_{0} *\left(x_{1} * x_{2}\right)$, left $1 * x_{0}=x_{0}$ or right $x_{0} * 1=x_{0}$ unit, commutativity $x_{0} * x_{1}=x_{1} * x_{0}$, quasi-inverse (in an inverse semigroup) $x_{0}^{\star} \cdot x_{0} \cdot x_{0}^{\star}=x_{0}$, all are balanced equations.

Balanced equations

Let Σ be a signature (graded set over the integers). An equation $u=v$ on the free algebra $\Sigma[X]$ (on a set X) is balanced when both terms u, v have the same set of variables.

For instance, associativity $\left(x_{0} * x_{1}\right) * x_{2}=x_{0} *\left(x_{1} * x_{2}\right)$, left $1 * x_{0}=x_{0}$ or right $x_{0} * 1=x_{0}$ unit, commutativity $x_{0} * x_{1}=x_{1} * x_{0}$, quasi-inverse (in an inverse semigroup) $x_{0}^{\star} \cdot x_{0} \cdot x_{0}^{\star}=x_{0}$, all are balanced equations.

Counter-example : left (or right) inverse $x_{0}^{-1} * x_{0}=1$.

Balanced variety

An equational variety \mathbf{V} of Σ-algebras is said to be balanced when it is determined by balanced equations on $\Sigma[\mathbb{N}]$.

Balanced variety

An equational variety \mathbf{V} of Σ-algebras is said to be balanced when it is determined by balanced equations on $\Sigma[\mathbb{N}]$.

For instance, the varieties of semigroups, of monoids or also of inverse semigroups (in commutative or non-commutative version) are balanced, while that of groups is not.

Substitution operations

Given a signature Σ, a set X and a term $t \in \Sigma[\mathbb{N}]$, P. Dehornoy defined

$$
\operatorname{Subst}_{X}(t):=\{\hat{\sigma}(t) \in \Sigma[X]: \sigma: \mathbb{N} \rightarrow \Sigma[X]\}
$$

Substitution operations

Given a signature Σ, a set X and a term $t \in \Sigma[\mathbb{N}]$, P. Dehornoy defined

$$
\operatorname{Subst}_{X}(t):=\{\hat{\sigma}(t) \in \Sigma[X]: \sigma: \mathbb{N} \rightarrow \Sigma[X]\} .
$$

For instance, $\operatorname{Subst}_{X}(n)=\Sigma[X]$ for every $n \in \mathbb{N}$.

Substitution operations

Given a signature Σ, a set X and a term $t \in \Sigma[\mathbb{N}]$, P. Dehornoy defined

$$
\operatorname{Subst}_{X}(t):=\{\hat{\sigma}(t) \in \Sigma[X]: \sigma: \mathbb{N} \rightarrow \Sigma[X]\} .
$$

For instance, Subst $_{X}(n)=\Sigma[X]$ for every $n \in \mathbb{N}$.
Let (s, t) be a balanced pair of terms (i.e., $s=t$ is a balanced equation in $\Sigma[\mathbb{N}])$.

Substitution operations

Given a signature Σ, a set X and a term $t \in \Sigma[\mathbb{N}]$, P. Dehornoy defined

$$
\operatorname{Subst}_{X}(t):=\{\hat{\sigma}(t) \in \Sigma[X]: \sigma: \mathbb{N} \rightarrow \Sigma[X]\} .
$$

For instance, $\operatorname{Subst}_{X}(n)=\Sigma[X]$ for every $n \in \mathbb{N}$.
Let (s, t) be a balanced pair of terms (i.e., $s=t$ is a balanced equation in $\Sigma[\mathbb{N}])$. One defines a map $\rho^{(s, t)}:$ Subst $_{X}(s) \rightarrow$ Subst $_{X}(t)$ by

$$
\rho^{(s, t)}(\hat{\sigma}(s)):=\hat{\sigma}(t) .
$$

Substitution operations

Given a signature Σ, a set X and a term $t \in \Sigma[\mathbb{N}]$, P. Dehornoy defined

$$
\operatorname{Subst}_{X}(t):=\{\hat{\sigma}(t) \in \Sigma[X]: \sigma: \mathbb{N} \rightarrow \Sigma[X]\} .
$$

For instance, $\operatorname{Subst}_{X}(n)=\Sigma[X]$ for every $n \in \mathbb{N}$.
Let (s, t) be a balanced pair of terms (i.e., $s=t$ is a balanced equation in $\Sigma[\mathbb{N}])$. One defines a map $\rho^{(s, t)}:$ Subst $_{X}(s) \rightarrow \operatorname{Subst}_{X}(t)$ by

$$
\rho^{(s, t)}(\hat{\sigma}(s)):=\hat{\sigma}(t) .
$$

(This is a well-defined function since all the variables in t occur in s, hence the value of $\hat{\sigma}(t)$ is entirely determined by that of $\hat{\sigma}(s)$.)

Substitution operations

Given a signature Σ, a set X and a term $t \in \Sigma[\mathbb{N}]$, P. Dehornoy defined

$$
\operatorname{Subst}_{X}(t):=\{\hat{\sigma}(t) \in \Sigma[X]: \sigma: \mathbb{N} \rightarrow \Sigma[X]\} .
$$

For instance, Subst $_{X}(n)=\Sigma[X]$ for every $n \in \mathbb{N}$.
Let (s, t) be a balanced pair of terms (i.e., $s=t$ is a balanced equation in $\Sigma[\mathbb{N}])$. One defines a map $\rho^{(s, t)}:$ Subst $_{X}(s) \rightarrow$ Subst $_{X}(t)$ by

$$
\rho^{(s, t)}(\hat{\sigma}(s)):=\hat{\sigma}(t) .
$$

(This is a well-defined function since all the variables in t occur in s, hence the value of $\hat{\sigma}(t)$ is entirely determined by that of $\hat{\sigma}(s)$.)

More generally, given a position p, one defines the translated $\rho_{\rho}^{(s, t)}$ of $\rho^{(s, t)}$ that acts in a similar way on sub-terms at position p.

Substitution operations

Given a signature Σ, a set X and a term $t \in \Sigma[\mathbb{N}]$, P. Dehornoy defined

$$
\operatorname{Subst}_{X}(t):=\{\hat{\sigma}(t) \in \Sigma[X]: \sigma: \mathbb{N} \rightarrow \Sigma[X]\} .
$$

For instance, $\operatorname{Subst}_{X}(n)=\Sigma[X]$ for every $n \in \mathbb{N}$.
Let (s, t) be a balanced pair of terms (i.e., $s=t$ is a balanced equation in $\Sigma[\mathbb{N}])$. One defines a map $\rho^{(s, t)}:$ Subst $_{X}(s) \rightarrow$ Subst $_{X}(t)$ by

$$
\rho^{(s, t)}(\hat{\sigma}(s)):=\hat{\sigma}(t) .
$$

(This is a well-defined function since all the variables in t occur in s, hence the value of $\hat{\sigma}(t)$ is entirely determined by that of $\hat{\sigma}(s)$.)

More generally, given a position p, one defines the translated $\rho_{\rho}^{(s, t)}$ of $\rho^{(s, t)}$ that acts in a similar way on sub-terms at position p. In particular $\rho_{\epsilon}^{(s, t)}=\rho^{(s, t)}$.

P. Dehornoy's geometry monoid

Now let us fix a set $R \subseteq \Sigma[\mathbb{N}]^{2}$ of balanced equations: some relations.

P. Dehornoy's geometry monoid

Now let us fix a set $R \subseteq \Sigma[\mathbb{N}]^{2}$ of balanced equations: some relations.
According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant under endomorphisms, congruence \cong, on $\Sigma[\mathbb{N}]$ generated by R (it is balanced because R is so) determines a unique balanced equational variety V of \sum-algebras.

P. Dehornoy's geometry monoid

Now let us fix a set $R \subseteq \Sigma[\mathbb{N}]^{2}$ of balanced equations: some relations.
According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant under endomorphisms, congruence \cong, on $\Sigma[\mathbb{N}]$ generated by R (it is balanced because R is so) determines a unique balanced equational variety \mathbf{V} of \sum-algebras. For instance, $R=\{((0 * 1) * 2,0 *(1 * 2)),(0 * e, 0),(e * 0,0)\}$ determines the variety of monoids.

P. Dehornoy's geometry monoid

Now let us fix a set $R \subseteq \Sigma[\mathbb{N}]^{2}$ of balanced equations: some relations.
According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant under endomorphisms, congruence \cong, on $\Sigma[\mathbb{N}]$ generated by R (it is balanced because R is so) determines a unique balanced equational variety \mathbf{V} of \sum-algebras. For instance, $R=\{((0 * 1) * 2,0 *(1 * 2)),(0 * e, 0),(e * 0,0)\}$ determines the variety of monoids.

Let us consider the sub-monoid $\mathrm{G}_{R}(\mathrm{~V})$ (also denoted by $\mathrm{G}(\mathrm{V})$) of partial bijections of $\Sigma[X]$ generated by $\rho_{\rho}^{(s, t)}: \Sigma[X] \rightarrow \Sigma[X],(s, t) \in R$ or $(t, s) \in R$, and the positions p.

P. Dehornoy's geometry monoid

Now let us fix a set $R \subseteq \Sigma[\mathbb{N}]^{2}$ of balanced equations: some relations.
According to HSP Theorem of G. Birkhoff, the fully invariant, i.e., invariant under endomorphisms, congruence \cong, on $\Sigma[\mathbb{N}]$ generated by R (it is balanced because R is so) determines a unique balanced equational variety \mathbf{V} of \sum-algebras. For instance, $R=\{((0 * 1) * 2,0 *(1 * 2)),(0 * e, 0),(e * 0,0)\}$ determines the variety of monoids.

Let us consider the sub-monoid $\mathrm{G}_{R}(\mathrm{~V})$ (also denoted by $\mathrm{G}(\mathrm{V})$) of partial bijections of $\Sigma[X]$ generated by $\rho_{\rho}^{(s, t)}: \Sigma[X] \rightarrow \Sigma[X],(s, t) \in R$ or $(t, s) \in R$, and the positions p.

This object $\mathbf{G}(\mathbf{V})$, introduced by P. Dehornoy, was called the monoid of geometry of the variety V .

Remark

P. Dehornoy also defined an oriented version of $\mathbf{G}(\mathrm{V})$ by only considering the generators of the form $\rho_{p}^{(s, t)}$ for $(s, t) \in R$, and positions p

Remark

P. Dehornoy also defined an oriented version of $\mathbf{G}(\mathrm{V})$ by only considering the generators of the form $\rho_{p}^{(s, t)}$ for $(s, t) \in R$, and positions p :

It is relevant to study rewrite term system.

Properties

$\mathbf{G}(\mathbf{V})$ is an inverse monoid.

Properties

$\mathrm{G}(\mathrm{V})$ is an inverse monoid.
Let recall that an inverse monoid is a monoid with a unary operation $(-)^{\star}: M \rightarrow M$ that satisfies the relations $(x y)^{\star}=y^{\star} x^{\star}, 1^{\star}=1, x x^{\star} x=x$, $\left(x^{\star}\right)^{\star}=x, x^{\star} x y^{\star} y=y^{\star} y x^{\star} x$, et $(x y)^{\star}=y^{\star} x^{\star}$.

Properties

$\mathrm{G}(\mathrm{V})$ is an inverse monoid.
Let recall that an inverse monoid is a monoid with a unary operation $(-)^{\star}: M \rightarrow M$ that satisfies the relations $(x y)^{\star}=y^{\star} x^{\star}, 1^{\star}=1, x x^{\star} x=x$, $\left(x^{\star}\right)^{\star}=x, x^{\star} x y^{\star} y=y^{\star} y x^{\star} x$, et $(x y)^{\star}=y^{\star} x^{\star}$. Inverse monoids form a variety (with monoid homomorphisms that commute with the involutions $\left.(-)^{\star}\right)$.

Geometry?

Geometric property (Dehornoy)

The monoid $\mathbf{G}(\mathbf{V})$ acts on $\Sigma[X]$ and the homogeneous space $\Sigma[X] / \mathbf{G}(\mathbf{V})$ (set of orbits) associated with this action is the free algebra $\mathrm{V}[X]$ in V on X.

Relation between $\mathbf{G}(\mathbf{V})$ and \cong

P. Dehornoy proved the following result :

Relation between $\mathbf{G}(\mathbf{V})$ and \cong

P. Dehornoy proved the following result :

Theorem (Dehornoy)
For every (non void) partial bijection θ in $\mathbf{G}(\mathbf{V})$, there is a pair of balanced terms $\left(s_{\theta}, t_{\theta}\right) \in \Sigma[\mathbb{N}]^{2}$, unique up to renaming of variables, such that $s_{\theta} \cong t_{\theta}$ and

$$
\theta=\rho^{\left(s_{\theta}, t_{\theta}\right)} .
$$

Moreover for each set of relations R and R^{\prime} that generate \cong, $\mathbf{G}_{R}(\mathbf{V}) \cong \mathbf{G}_{R^{\prime}}(\mathbf{V})$.

Relation between $\mathbf{G}(\mathbf{V})$ and \cong

P. Dehornoy proved the following result :

Theorem (Dehornoy)

For every (non void) partial bijection θ in $\mathbf{G}(\mathbf{V})$, there is a pair of balanced terms $\left(s_{\theta}, t_{\theta}\right) \in \Sigma[\mathbb{N}]^{2}$, unique up to renaming of variables, such that $s_{\theta} \cong t_{\theta}$ and

$$
\theta=\rho^{\left(s_{\theta}, t_{\theta}\right)} .
$$

Moreover for each set of relations R and R^{\prime} that generate \cong, $\mathbf{G}_{R}(\mathbf{V}) \cong \mathbf{G}_{R^{\prime}}(\mathbf{V})$.

Hence the geometry monoid $\mathbf{G}(\mathbf{V})$ is essentially the fully invariant congruence \cong on $\Sigma[\mathbb{N}]$ generated by the relations R,

Relation between $\mathrm{G}(\mathbf{V})$ and \cong

P. Dehornoy proved the following result :

Theorem (Dehornoy)

For every (non void) partial bijection θ in $\mathbf{G}(\mathbf{V})$, there is a pair of balanced terms $\left(s_{\theta}, t_{\theta}\right) \in \Sigma[\mathbb{N}]^{2}$, unique up to renaming of variables, such that $s_{\theta} \cong t_{\theta}$ and

$$
\theta=\rho^{\left(s_{\theta}, t_{\theta}\right)} .
$$

Moreover for each set of relations R and R^{\prime} that generate \cong, $\mathbf{G}_{R}(\mathbf{V}) \cong \mathbf{G}_{R^{\prime}}(\mathbf{V})$.

Hence the geometry monoid $\mathbf{G}(\mathbf{V})$ is essentially the fully invariant congruence \cong on $\Sigma[\mathbb{N}]$ generated by the relations R, and thus is largely independent of the choice of R and the set X,

Relation between $\mathrm{G}(\mathbf{V})$ and \cong

P. Dehornoy proved the following result :

Theorem (Dehornoy)

For every (non void) partial bijection θ in $\mathbf{G}(\mathbf{V})$, there is a pair of balanced terms $\left(s_{\theta}, t_{\theta}\right) \in \Sigma[\mathbb{N}]^{2}$, unique up to renaming of variables, such that $s_{\theta} \cong t_{\theta}$ and

$$
\theta=\rho^{\left(s_{\theta}, t_{\theta}\right)} .
$$

Moreover for each set of relations R and R^{\prime} that generate \cong, $\mathbf{G}_{R}(\mathbf{V}) \cong \mathbf{G}_{R^{\prime}}(\mathbf{V})$.

Hence the geometry monoid $\mathbf{G}(\mathbf{V})$ is essentially the fully invariant congruence \cong on $\Sigma[\mathbb{N}]$ generated by the relations R, and thus is largely independent of the choice of R and the set X, and, by HSP Theorem of G. Birkhoff, is intrinsically related to the variety V itself.

Groupoid structure on $G(V)$

For $\theta_{1}, \theta_{2} \in \mathbf{G}(\mathbf{V})$, one defines (classical construction) the restricted product $\theta_{2} \cdot \theta_{1}:=\theta_{2} \circ \theta_{1}$ if, and only if, $\operatorname{dom}\left(\theta_{2}\right)=\operatorname{im}\left(\theta_{1}\right)$.

Groupoid structure on $\mathrm{G}(\mathrm{V})$

For $\theta_{1}, \theta_{2} \in \mathbf{G}(\mathbf{V})$, one defines (classical construction) the restricted product $\theta_{2} \cdot \theta_{1}:=\theta_{2} \circ \theta_{1}$ if, and only if, $\operatorname{dom}\left(\theta_{2}\right)=\operatorname{im}\left(\theta_{1}\right)$.

Remark

There is an isomorphism of categories between inverse semigroups and inductive ordered groupoids (C. Ehresmann, M. Lawson).

Table of contents

(1) P. Dehornoy's geometry monoid
(2) Action of the groupoid of germs of bijections by renaming of variables
(3) The geometry groupoid of a balanced variety
(4) Generalization: Lattice of balanced sub-varieties
(5) Perspectives

Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with bijections.

Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with bijections. An action of G is just a functor F from G to Bij .

Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with bijections. An action of G is just a functor F from G to Bij .

If the class $\mathrm{Ob}(\mathbf{G})$ of objects of G is a small set, then one can define $\Sigma_{F}:=\bigsqcup_{A \in \mathbf{O b}(\mathbf{G})} F(A)$.

Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with bijections. An action of \mathbf{G} is just a functor F from \mathbf{G} to $\mathbf{B i j}$.

If the class $\mathrm{Ob}(\mathbf{G})$ of objects of G is a small set, then one can define $\Sigma_{F}:=\bigsqcup_{A \in \mathbf{O b}(\mathbf{G})} F(A)$.

Let us assume to simplify that $F(A) \cap F(B)=\emptyset, A \neq B$.

Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with bijections. An action of \mathbf{G} is just a functor F from \mathbf{G} to $\mathbf{B i j}$.

If the class $\mathrm{Ob}(\mathbf{G})$ of objects of G is a small set, then one can define $\Sigma_{F}:=\bigsqcup_{A \in \mathbf{O b}(\mathbf{G})} F(A)$.

Let us assume to simplify that $F(A) \cap F(B)=\emptyset, A \neq B$. The orbit $\mathcal{O}(x)$ of $x \in F(A)$ is defined by $\left\{F(f)(x): d_{0}(f)=A\right\} \subseteq \Sigma_{F}$.

Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with bijections. An action of \mathbf{G} is just a functor F from \mathbf{G} to $\mathbf{B i j}$.

If the class $\mathrm{Ob}(\mathbf{G})$ of objects of G is a small set, then one can define $\Sigma_{F}:=\bigsqcup_{A \in \mathbf{O b}(\mathbf{G})} F(A)$.

Let us assume to simplify that $F(A) \cap F(B)=\emptyset, A \neq B$. The orbit $\mathcal{O}(x)$ of $x \in F(A)$ is defined by $\left\{F(f)(x): d_{0}(f)=A\right\} \subseteq \Sigma_{F}$.

Given $x, y \in \Sigma_{F}$, one defines $x \sim_{F} y$ if, and only if, there exists an arrow f such that $x \in F\left(d_{0}(f)\right)$ and $F(f)(x)=y$.

Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with bijections. An action of \mathbf{G} is just a functor F from \mathbf{G} to $\mathbf{B i j}$.

If the class $\mathrm{Ob}(\mathbf{G})$ of objects of G is a small set, then one can define $\Sigma_{F}:=\bigsqcup_{A \in \mathbf{O b}(\mathbf{G})} F(A)$.

Let us assume to simplify that $F(A) \cap F(B)=\emptyset, A \neq B$. The orbit $\mathcal{O}(x)$ of $x \in F(A)$ is defined by $\left\{F(f)(x): d_{0}(f)=A\right\} \subseteq \Sigma_{F}$.

Given $x, y \in \Sigma_{F}$, one defines $x \sim_{F} y$ if, and only if, there exists an arrow f such that $x \in F\left(d_{0}(f)\right)$ and $F(f)(x)=y$.

One shows that \sim_{F} is an equivalence relation on Σ_{F} and $x \sim_{F} y$ if, and only if, $\mathcal{O}(x)=\mathcal{O}(y)$.

Action of a groupoid

Let G be a groupoid, and let us denote by Bij the groupoid of sets with bijections. An action of \mathbf{G} is just a functor F from \mathbf{G} to $\mathbf{B i j}$.

If the class $\mathbf{O b}(\mathbf{G})$ of objects of \mathbf{G} is a small set, then one can define $\Sigma_{F}:=\bigsqcup_{A \in \mathbf{O b}(\mathbf{G})} F(A)$.

Let us assume to simplify that $F(A) \cap F(B)=\emptyset, A \neq B$. The orbit $\mathcal{O}(x)$ of $x \in F(A)$ is defined by $\left\{F(f)(x): d_{0}(f)=A\right\} \subseteq \Sigma_{F}$.

Given $x, y \in \Sigma_{F}$, one defines $x \sim_{F} y$ if, and only if, there exists an arrow f such that $x \in F\left(d_{0}(f)\right)$ and $F(f)(x)=y$.

One shows that \sim_{F} is an equivalence relation on Σ_{F} and $x \sim_{F} y$ if, and only if, $\mathcal{O}(x)=\mathcal{O}(y)$.

One defines the orbit space Σ_{F} / \mathbf{G} as Σ_{F} / \sim_{F}.

Other definition of an action

Mark V. Lawson introduced the notion of a groupoid action as follows.

Other definition of an action

Mark V. Lawson introduced the notion of a groupoid action as follows. Let us assume that E is a set with a map $\pi: E \rightarrow \mathbf{O b}(\mathrm{G})$.

Other definition of an action

Mark V. Lawson introduced the notion of a groupoid action as follows. Let us assume that E is a set with a map $\pi: E \rightarrow \mathbf{O b}(\mathrm{G})$.

A (left) action \mathbf{G} on (E, π) is a map from the fibered product $\operatorname{Arr}(G){ }_{d_{0}} \times{ }_{\pi} E$ to E, denoted by $(f, x) \mapsto f \cdot x$, that satisfies a certain number of axioms.

Other definition of an action

Mark V. Lawson introduced the notion of a groupoid action as follows. Let us assume that E is a set with a map $\pi: E \rightarrow \mathbf{O b}(\mathrm{G})$.

A (left) action \mathbf{G} on (E, π) is a map from the fibered product $\operatorname{Arr}(G){ }_{d_{0}} \times_{\pi} E$ to E, denoted by $(f, x) \mapsto f \cdot x$, that satisfies a certain number of axioms.

Theorem (PL, 2014)

Both versions of the definition of a groupoid action are equivalent.

Renaming of variables

The symmetric group $\mathfrak{S}(X)$ acts on $\Sigma[X]$ by renaming of variables: $\pi \cdot t:=\hat{\pi}(t)$.

Renaming of variables

The symmetric group $\mathfrak{S}(X)$ acts on $\Sigma[X]$ by renaming of variables: $\pi \cdot t:=\hat{\pi}(t)$.

The value of $\pi \cdot t$ only depends on $\pi_{\left.\right|_{\operatorname{var}(t)}}$.

Renaming of variables

The symmetric group $\mathfrak{S}(X)$ acts on $\Sigma[X]$ by renaming of variables: $\pi \cdot t:=\hat{\pi}(t)$.

The value of $\pi \cdot t$ only depends on $\pi_{\mid \operatorname{var}(t)}$. Hence one can consider an action by the infinite symmetric group $\mathfrak{S}_{\infty}(X)$ (permutations of X that fix all but finitely many members of X).

Renaming of variables

The symmetric group $\mathfrak{S}(X)$ acts on $\Sigma[X]$ by renaming of variables: $\pi \cdot t:=\hat{\pi}(t)$.

The value of $\pi \cdot t$ only depends on $\pi_{\mid v a r(t)}$. Hence one can consider an action by the infinite symmetric group $\mathfrak{S}_{\infty}(X)$ (permutations of X that fix all but finitely many members of X).

But actually it is not important that π is a permutation on the whole X.

Renaming of variables

The symmetric group $\mathfrak{S}(X)$ acts on $\Sigma[X]$ by renaming of variables: $\pi \cdot t:=\hat{\pi}(t)$.

The value of $\pi \cdot t$ only depends on $\pi_{\mid \operatorname{var}(t)}$. Hence one can consider an action by the infinite symmetric group $\mathfrak{S}_{\infty}(X)$ (permutations of X that fix all but finitely many members of X).

But actually it is not important that π is a permutation on the whole X. So one can restrict to endo-functions of X which are bijective only on a finite set,

Renaming of variables

The symmetric group $\mathfrak{S}(X)$ acts on $\Sigma[X]$ by renaming of variables: $\pi \cdot t:=\hat{\pi}(t)$.

The value of $\pi \cdot t$ only depends on $\pi_{\mid v a r(t)}$. Hence one can consider an action by the infinite symmetric group $\mathfrak{S}_{\infty}(X)$ (permutations of X that fix all but finitely many members of X).

But actually it is not important that π is a permutation on the whole X. So one can restrict to endo-functions of X which are bijective only on a finite set, and consider two such functions as equal as soon as they coincide on the finite set: germs of local bijections.

Groupoid of germs of local bijections

Let X be a set, and let us denote by $\mathfrak{P}_{\text {fin }}(X)$ the set of finite subsets of X.

Groupoid of germs of local bijections

Let X be a set, and let us denote by $\mathfrak{P}_{\mathrm{fin}}(X)$ the set of finite subsets of X.
One defines a category $\operatorname{LocBij}(X)$ of local bijections (but not partial) on X

Groupoid of germs of local bijections

Let X be a set, and let us denote by $\mathfrak{P}_{\text {fin }}(X)$ the set of finite subsets of X.
One defines a category LocBij (X) of local bijections (but not partial) on X : the objects are the members of $\mathfrak{P}_{\mathrm{fin}}(X)$,

Groupoid of germs of local bijections

Let X be a set, and let us denote by $\mathfrak{P}_{\text {fin }}(X)$ the set of finite subsets of X.
One defines a category $\operatorname{LocBij}(X)$ of local bijections (but not partial) on X : the objects are the members of $\mathfrak{P}_{\text {fin }}(X)$, an arrow from A to B is a pair (σ, A) where $\sigma: X \rightarrow X$ such that $\sigma_{\left.\right|_{A}}: A \rightarrow B$ is a bijection (hence in particular $\sigma(A)=B$ and $|A|=|B|)$.

Groupoid of germs of local bijections

Let X be a set, and let us denote by $\mathfrak{P}_{\mathrm{fin}}(X)$ the set of finite subsets of X.
One defines a category $\operatorname{LocBij}(X)$ of local bijections (but not partial) on X : the objects are the members of $\mathfrak{P}_{\text {fin }}(X)$, an arrow from A to B is a pair (σ, A) where $\sigma: X \rightarrow X$ such that $\sigma_{\left.\right|_{A}}: A \rightarrow B$ is a bijection (hence in particular $\sigma(A)=B$ and $|A|=|B|)$.

For finite subsets $A, B \subseteq X$ of the same cardinal number, let $(\sigma, A) \equiv_{A, B}(\tau, A)$ if, and only if, $\sigma_{\left.\right|_{A}}=\tau_{\left.\right|_{A}}$.

Groupoid of germs of local bijections

Let X be a set, and let us denote by $\mathfrak{P}_{\mathrm{fin}}(X)$ the set of finite subsets of X.
One defines a category $\operatorname{LocBij}(X)$ of local bijections (but not partial) on X : the objects are the members of $\mathfrak{P}_{\text {fin }}(X)$, an arrow from A to B is a pair (σ, A) where $\sigma: X \rightarrow X$ such that $\sigma_{\left.\right|_{A}}: A \rightarrow B$ is a bijection (hence in particular $\sigma(A)=B$ and $|A|=|B|)$.

For finite subsets $A, B \subseteq X$ of the same cardinal number, let $(\sigma, A) \equiv_{A, B}(\tau, A)$ if, and only if, $\sigma_{\left.\right|_{A}}=\tau_{\left.\right|_{A}}$. The family $\left(\equiv_{A, B}\right)_{A, B}$ is a congruence.

Groupoid of germs of local bijections

Let X be a set, and let us denote by $\mathfrak{P}_{\mathrm{fin}}(X)$ the set of finite subsets of X.
One defines a category $\operatorname{LocBij}(X)$ of local bijections (but not partial) on X : the objects are the members of $\mathfrak{P}_{\text {fin }}(X)$, an arrow from A to B is a pair (σ, A) where $\sigma: X \rightarrow X$ such that $\sigma_{\left.\right|_{A}}: A \rightarrow B$ is a bijection (hence in particular $\sigma(A)=B$ and $|A|=|B|)$.

For finite subsets $A, B \subseteq X$ of the same cardinal number, let $(\sigma, A) \equiv_{A, B}(\tau, A)$ if, and only if, $\sigma_{\left.\right|_{A}}=\tau_{\left.\right|_{A}}$. The family $\left(\equiv_{A, B}\right)_{A, B}$ is a congruence.

The quotient category $\operatorname{Germ}_{\infty}(X)$ is actually a groupoid, with $[\sigma, A]^{-1}=\left[\left(\sigma_{\left.\right|_{A}}\right)^{-1}, \sigma(A)\right]$, called the groupoid of germs of bijections of X.

Action of $\operatorname{Germ}_{\infty}(X)$ on $\Sigma[X]$

Let $[\sigma, A] \cdot t:=\hat{\sigma}_{\left.\right|_{A}}(t)$ for each term t such that $\operatorname{var}(t)=A$.

Action of $\operatorname{Germ}_{\infty}(X)$ on $\Sigma[X]$

Let $[\sigma, A] \cdot t:=\hat{\sigma}_{\left.\right|_{A}}(t)$ for each term t such that $\operatorname{var}(t)=A$. This defines a (left) action $\operatorname{Germ}_{\infty}(X)$ on ($\Sigma[X]$, var).

Action of $\operatorname{Germ}_{\infty}(X)$ on $\Sigma[X]$

Let $[\sigma, A] \cdot t:=\hat{\sigma}_{\left.\right|_{A}}(t)$ for each term t such that $\operatorname{var}(t)=A$. This defines a (left) action $\operatorname{Germ}_{\infty}(X)$ on ($\Sigma[X]$, var).

The orbit $\mathcal{O}(t)$ is just the set of terms obtained from t by renaming of variables,

Action of $\operatorname{Germ}_{\infty}(X)$ on $\Sigma[X]$

Let $[\sigma, A] \cdot t:=\hat{\sigma}_{\left.\right|_{A}}(t)$ for each term t such that $\operatorname{var}(t)=A$. This defines a (left) action $\operatorname{Germ}_{\infty}(X)$ on ($\Sigma[X]$, var).

The orbit $\mathcal{O}(t)$ is just the set of terms obtained from t by renaming of variables, and so $s \sim t$ if, and only if, s and t are equal up to renaming of variables.

Action on a balanced congruence

If \cong is a balanced (i.e., $u \cong v \Rightarrow \operatorname{var}(s)=\operatorname{var}(t)$) and fully invariant (i.e., invariant under all endomorphisms) congruence of $\Sigma[X]$,

Action on a balanced congruence

If \cong is a balanced (i.e., $u \cong v \Rightarrow \operatorname{var}(s)=\operatorname{var}(t)$) and fully invariant (i.e., invariant under all endomorphisms) congruence of $\Sigma[X]$,
then $\operatorname{Germ}_{\infty}(X)$ also acts on \cong by a diagonal action

Action on a balanced congruence

If \cong is a balanced (i.e., $u \cong v \Rightarrow \operatorname{var}(s)=\operatorname{var}(t)$) and fully invariant (i.e., invariant under all endomorphisms) congruence of $\Sigma[X]$,
then $\operatorname{Germ}_{\infty}(X)$ also acts on \cong by a diagonal action

$$
[\sigma, A] \cdot(u, v):=\left(\hat{\sigma}_{\left.\right|_{A}}(u), \hat{\sigma}_{\left.\right|_{A}}(v)\right)
$$

for every $u \cong v$ such that $\operatorname{var}(u)=A=\operatorname{var}(v)$.

Table of contents

(1) P. Dehornoy's geometry monoid

(2) Action of the groupoid of germs of bijections by renaming of variables
(3) The geometry groupoid of a balanced variety

4 Generalization: Lattice of balanced sub-varieties
(5) Perspectives

Notations

Let X be a set and \cong be a fully invariant balanced congruence on $\Sigma[X]$.

Notations

Let X be a set and \cong be a fully invariant balanced congruence on $\Sigma[X]$.

Notations

$\mathcal{O}(t)$ and \mathcal{O} denote respectively the orbit of $t \in \Sigma[X]$ and any orbit under the action of the groupoid of germs of bijections,

Notations

Let X be a set and \cong be a fully invariant balanced congruence on $\Sigma[X]$.

Notations

$\mathcal{O}(t)$ and \mathcal{O} denote respectively the orbit of $t \in \Sigma[X]$ and any orbit under the action of the groupoid of germs of bijections, $\mathcal{O}^{(2)}(s, t)$ and $\mathcal{O}^{(2)}$ denote respectively the orbit of (s, t) with $s \cong t$, and any orbit under the (diagonal) action of $\operatorname{Germ}_{\infty}(X)$ on \cong.

Reflexive directed graph

One defines a structure of (small) directed graph:

Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is $\Sigma[X] / \operatorname{Germ}_{\infty}(X)$,

Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is $\Sigma[X] / \operatorname{Germ}_{\infty}(X)$,
- The set of edges is $\cong / \operatorname{Germ}_{\infty}(X)$,

Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is $\Sigma[X] / \operatorname{Germ}_{\infty}(X)$,
- The set of edges is $\cong / \operatorname{Germ}_{\infty}(X)$,
- The source and target maps: let us define $\partial_{0}(s, t)=s$ and $\partial_{1}(s, t)=t$ for all $s \cong t$,

Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is $\Sigma[X] / \operatorname{Germ}_{\infty}(X)$,
- The set of edges is $\cong / \operatorname{Germ}_{\infty}(X)$,
- The source and target maps: let us define $\partial_{0}(s, t)=s$ and $\partial_{1}(s, t)=t$ for all $s \cong t$, then there is a unique (well-defined) map $d_{i}: \cong / \operatorname{Germ}_{\infty}(X) \rightarrow \Sigma[X] / \operatorname{Germ}_{\infty}(X)$ such that

$$
d_{i}\left(\mathcal{O}^{(2)}(s, t)\right)=\mathcal{O}_{\partial_{i}(s, t)}
$$

$i=0,1$.

Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is $\Sigma[X] / \operatorname{Germ}_{\infty}(X)$,
- The set of edges is $\cong / \operatorname{Germ}_{\infty}(X)$,
- The source and target maps: let us define $\partial_{0}(s, t)=s$ and $\partial_{1}(s, t)=t$ for all $s \cong t$, then there is a unique (well-defined) map $d_{i}: \cong / \operatorname{Germ}_{\infty}(X) \rightarrow \Sigma[X] / \operatorname{Germ}_{\infty}(X)$ such that

$$
d_{i}\left(\mathcal{O}^{(2)}(s, t)\right)=\mathcal{O}_{\partial_{i}(s, t)}
$$

$$
i=0,1
$$

- The loops:

Reflexive directed graph

One defines a structure of (small) directed graph:

- The set of vertices is $\Sigma[X] / \operatorname{Germ}_{\infty}(X)$,
- The set of edges is $\cong / \operatorname{Germ}_{\infty}(X)$,
- The source and target maps: let us define $\partial_{0}(s, t)=s$ and $\partial_{1}(s, t)=t$ for all $s \cong t$, then there is a unique (well-defined) map $d_{i}: \cong / \operatorname{Germ}_{\infty}(X) \rightarrow \Sigma[X] / \operatorname{Germ}_{\infty}(X)$ such that

$$
d_{i}\left(\mathcal{O}^{(2)}(s, t)\right)=\mathcal{O}_{\partial_{i}(s, t)}
$$

$$
i=0,1
$$

- The loops: the map $i: \Sigma[X] \rightarrow \cong / \operatorname{Germ}_{\infty}(X)$, defined by $i(t):=\mathcal{O}^{(2)}(t, t)$, passes to the quotient to provide a map that satisfies $\iota(\mathcal{O}(t))=\mathcal{O}^{(2)}(t, t)$ for every $t \in \Sigma[X]$.

Structure of multiplicative graph

Deformation of the groupoid structure of an equivalence relation

- Let us define $m:\left\{\left((s, t),\left(r, s^{\prime}\right)\right) \in^{\cong}{ }^{2}: s^{\prime} \in \mathcal{O}(s)\right\} \rightarrow \Sigma[X] \times \Sigma[X]$ by

$$
m\left((s, t),\left(r, s^{\prime}\right)\right):=(r,[\sigma, \operatorname{var}(s)] \cdot t)
$$

where $[\sigma, \operatorname{var}(s)] \cdot s=s^{\prime}$.

- One observes that $\operatorname{im}(m) \subseteq \cong$.
- It can be shown that there is a unique well-defined map
$\gamma:\left(\cong / \operatorname{Germ}_{\infty}(X)\right) d_{0} \times d_{1}\left(\cong / \operatorname{Germ}_{\infty}(X)\right) \rightarrow\left(\cong / \operatorname{Germ}_{\infty}(X)\right)$ such that

$$
\gamma\left(\mathcal{O}^{(2)}(s, t), \mathcal{O}^{(2)}\left(r, s^{\prime}\right)\right)=\mathcal{O}_{m\left((s, t),\left(r, s^{\prime}\right)\right)}^{(2)} .
$$

Groupoid structure

Therefore $\cong / \operatorname{Germ}_{\infty}(X)$ is a (small) category.

Groupoid structure

Therefore $\cong / \operatorname{Germ}_{\infty}(X)$ is a (small) category. Moreover, for every orbit $\mathcal{O}^{(2)}(s, t) \in \cong / \operatorname{Germ}_{\infty}(X)$ has an inverse namely $\mathcal{O}^{(2)}(t, s)$

Groupoid structure

Therefore $\cong / \operatorname{Germ}_{\infty}(X)$ is a (small) category. Moreover, for every orbit $\mathcal{O}^{(2)}(s, t) \in \cong \operatorname{Germ}_{\infty}(X)$ has an inverse namely $\mathcal{O}^{(2)}(t, s)$: this provides a structure of groupoid.

Groupoid structure

Therefore $\cong / \operatorname{Germ}_{\infty}(X)$ is a (small) category. Moreover, for every orbit $\mathcal{O}^{(2)}(s, t) \in \cong / \operatorname{Germ}_{\infty}(X)$ has an inverse namely $\mathcal{O}^{(2)}(t, s)$: this provides a structure of groupoid.

This defines the geometry groupoid $\mathbf{G e o m}(\mathbf{V})$ of the balanced variety \mathbf{V} determined by \cong.

Refinement of G. Birkhoff's HSP Theorem

Theorem (PL, 2014)
The map $\mathbf{V} \mapsto \mathbf{G e o m}(\mathbf{V})$ is a Galois connection between the lattice of balanced sub-varieties of Σ-algebras and a sub-poset of small groupoids.

Groupoid action on $\Sigma[X]$

Let X be a set.
Lemma (Dehornoy)
For all terms $s, t \in \Sigma[\mathbb{N}]$, Subst $_{X}(s)=$ Subst $_{X}(t)$ if, and only if, $\mathcal{O}(s)=\mathcal{O}(t)$.

Groupoid action on $\Sigma[X]$

Let X be a set.
Lemma (Dehornoy)
For all terms $s, t \in \Sigma[\mathbb{N}]$, $\operatorname{Subst}_{X}(s)=\operatorname{Subst}_{X}(t)$ if, and only if, $\mathcal{O}(s)=\mathcal{O}(t)$.

It follows that one can define $\operatorname{Subst}_{X}(\mathcal{O}(t)):=\operatorname{Subst}_{X}(t)$ independently of the choice of the representative t.

Groupoid action on $\Sigma[X]$

Let X be a set.
Lemma (Dehornoy)
For all terms $s, t \in \Sigma[\mathbb{N}]$, Subst $_{X}(s)=$ Subst $_{X}(t)$ if, and only if, $\mathcal{O}(s)=\mathcal{O}(t)$.

It follows that one can define $\operatorname{Subst}_{X}(\mathcal{O}(t)):=\operatorname{Subst}_{X}(t)$ independently of the choice of the representative t.

For all X, one defines an action of $\operatorname{Geom}(\mathbf{V})$ by the functor F_{X} given by $F_{X}(\mathcal{O}):=\operatorname{Subst}_{X}(\mathcal{O})$

Groupoid action on $\Sigma[X]$

Let X be a set.

Lemma (Dehornoy)

For all terms $s, t \in \Sigma[\mathbb{N}]$, Subst $_{X}(s)=$ Subst $_{X}(t)$ if, and only if, $\mathcal{O}(s)=\mathcal{O}(t)$.

It follows that one can define $\operatorname{Subst}_{X}(\mathcal{O}(t)):=\operatorname{Subst}_{X}(t)$ independently of the choice of the representative t.

For all X, one defines an action of $\operatorname{Geom}(\mathbf{V})$ by the functor F_{X} given by $F_{X}(\mathcal{O}):=\operatorname{Subst}_{X}(\mathcal{O})$ and
$F_{X}\left(\mathcal{O}^{(2)}(s, t)\right):$ Subst $_{X}(\mathcal{O}(s)) \rightarrow$ Subst $_{X}(\mathcal{O}(t)), F_{X}\left(\mathcal{O}^{(2)}(s, t)\right):=\rho^{(s, t)}$ (does not depend on the choice of (s, t)).

Recover $\mathbf{G}(\mathbf{V})$ from $\mathbf{G e o m}(\mathbf{V})$

When X is not void F_{X} is faithful and injective on objects.

Recover $\mathbf{G}(\mathbf{V})$ from Geom(\mathbf{V})

When X is not void F_{X} is faithful and injective on objects.
It follows that the image of F_{X} (i.e., the classes of sets $F_{X}\left(\Sigma[\mathbb{N}] / \operatorname{Germ}_{\infty}(\mathbb{N})\right)$ and of bijections $\left.F_{X}\left(\cong / \operatorname{Germ}_{\infty}(\mathbb{N})\right)\right)$

Recover $\mathbf{G}(\mathbf{V})$ from Geom(\mathbf{V})

When X is not void F_{X} is faithful and injective on objects.
It follows that the image of F_{X} (i.e., the classes of sets $F_{X}\left(\Sigma[\mathbb{N}] / \operatorname{Germ}_{\infty}(\mathbb{N})\right)$ and of bijections $\left.F_{X}\left(\cong / \operatorname{Germ}_{\infty}(\mathbb{N})\right)\right)$ is a sub-groupoid of Bij

Recover $\mathbf{G}(\mathbf{V})$ from Geom(\mathbf{V})

When X is not void F_{X} is faithful and injective on objects.
It follows that the image of F_{X} (i.e., the classes of sets $F_{X}\left(\Sigma[\mathbb{N}] / \operatorname{Germ}_{\infty}(\mathbb{N})\right)$ and of bijections $\left.F_{X}\left(\cong / \operatorname{Germ}_{\infty}(\mathbb{N})\right)\right)$ is a sub-groupoid of Bij : more precisely it is the groupoid associated to the geometry monoid of P. Dehornoy.

Remark

The equivalence relation \sim induced by the action of $\operatorname{Germ}_{\infty}(X)$ on $\Sigma[X]$ (i.e., $u \sim v$ if, and only if, $\mathcal{O}(s)=\mathcal{O}(t)$) is not in general a congruence,

Remark

The equivalence relation \sim induced by the action of $\operatorname{Germ}_{\infty}(X)$ on $\Sigma[X]$ (i.e., $u \sim v$ if, and only if, $\mathcal{O}(s)=\mathcal{O}(t)$) is not in general a congruence, so that the orbit space $\Sigma[X] / \operatorname{Germ}_{\infty}(X)$ is not canonically equipped with a structure of a Σ-algebra.

Remark

The equivalence relation \sim induced by the action of $\operatorname{Germ}_{\infty}(X)$ on $\Sigma[X]$ (i.e., $u \sim v$ if, and only if, $\mathcal{O}(s)=\mathcal{O}(t)$) is not in general a congruence, so that the orbit space $\Sigma[X] / \operatorname{Germ}_{\infty}(X)$ is not canonically equipped with a structure of a Σ-algebra.

For instance, let $x, y \in X, x \neq y$. Then $x \sim x$ and $x \sim y$ but $x * x \nsim x * y$.

A \sum-algebra structure on the orbit space

Nevertheless, in case of $X=\mathbb{N}$, it is possible to define a Σ-algebra structure (Lawson)

A \sum-algebra structure on the orbit space

Nevertheless, in case of $X=\mathbb{N}$, it is possible to define a Σ-algebra structure (Lawson): let $f \in \Sigma(n)$, and $u_{1}, \cdots, u_{n} \in \Sigma[\mathbb{N}]$,

A \sum-algebra structure on the orbit space

Nevertheless, in case of $X=\mathbb{N}$, it is possible to define a Σ-algebra structure (Lawson): let $f \in \Sigma(n)$, and $u_{1}, \cdots, u_{n} \in \Sigma[\mathbb{N}]$, we let

$$
f^{\prime}\left(u_{1}, \cdots, u_{n}\right):=\mathcal{O}\left(f\left(v_{1}, \cdots, v_{n}\right)\right)
$$

for $v_{i} \in \mathcal{O}\left(u_{i}\right), i=1, \cdots, n$ such that $\operatorname{var}\left(v_{i}\right) \cap \operatorname{var}\left(v_{j}\right)=\emptyset, i \neq j$ (it is possible since the set of variables is infinite).

A \sum-algebra structure on the orbit space

Nevertheless, in case of $X=\mathbb{N}$, it is possible to define a Σ-algebra structure (Lawson): let $f \in \Sigma(n)$, and $u_{1}, \cdots, u_{n} \in \Sigma[\mathbb{N}]$, we let

$$
f^{\prime}\left(u_{1}, \cdots, u_{n}\right):=\mathcal{O}\left(f\left(v_{1}, \cdots, v_{n}\right)\right)
$$

for $v_{i} \in \mathcal{O}\left(u_{i}\right), i=1, \cdots, n$ such that $\operatorname{var}\left(v_{i}\right) \cap \operatorname{var}\left(v_{j}\right)=\emptyset, i \neq j$ (it is possible since the set of variables is infinite). Of course this definition does not depend on the choice of such that $\operatorname{var}\left(v_{i}\right) \cap \operatorname{var}\left(v_{j}\right)=\emptyset$.

A \sum-algebra structure on the orbit space

Nevertheless, in case of $X=\mathbb{N}$, it is possible to define a Σ-algebra structure (Lawson): let $f \in \Sigma(n)$, and $u_{1}, \cdots, u_{n} \in \Sigma[\mathbb{N}]$, we let

$$
f^{\prime}\left(u_{1}, \cdots, u_{n}\right):=\mathcal{O}\left(f\left(v_{1}, \cdots, v_{n}\right)\right)
$$

for $v_{i} \in \mathcal{O}\left(u_{i}\right), i=1, \cdots, n$ such that $\operatorname{var}\left(v_{i}\right) \cap \operatorname{var}\left(v_{j}\right)=\emptyset, i \neq j$ (it is possible since the set of variables is infinite). Of course this definition does not depend on the choice of such that $\operatorname{var}\left(v_{i}\right) \cap \operatorname{var}\left(v_{j}\right)=\emptyset$.

One shows that there exists one, and only one, well-defined map such that $\bar{f}\left(\mathcal{O}\left(u_{1}\right), \cdots, \mathcal{O}\left(u_{n}\right)\right)=\mathcal{O}\left(f\left(v_{1}, \cdots, v_{n}\right)\right)$ with $v_{i} \in \mathcal{O}\left(u_{i}\right), i=1, \cdots, n$ such that $\operatorname{var}\left(v_{i}\right) \cap \operatorname{var}\left(v_{j}\right)=\emptyset, i \neq j$.

A \sum-algebra structure on Geom(V)

The previous construction may also be applied to $\cong / \operatorname{Germ}_{\infty}(X)$.

A \sum-algebra structure on Geom(V)

The previous construction may also be applied to $\cong / \operatorname{Germ}_{\infty}(X)$.

Proposition (PL, 2014)
Geom(\mathbf{V}) is a Σ-algebra in the category of (small) groupoids.

Table of contents

(1) P. Dehornoy's geometry monoid
(2) Action of the groupoid of germs of bijections by renaming of variables
(3) The geometry groupoid of a balanced variety

44 Generalization: Lattice of balanced sub-varieties
(5) Perspectives

Action of the groupoid of germs on $\mathbf{V}[X]$

The groupoid $\operatorname{Germ}_{\infty}(X)$ of germs of bijections acts also on $\mathrm{V}[X]$ by a quotient action

$$
[\sigma, A] \cdot \pi(t)=\pi([\sigma, A] \cdot t)
$$

where $t \in \Sigma[X]$ such that $\operatorname{var}(t)=A$, and $\pi: \Sigma[X] \rightarrow \mathbf{V}[X]$ is the canonical epimorphism.

Action of the groupoid of germs on $\mathrm{V}[X]$

The groupoid $\operatorname{Germ}_{\infty}(X)$ of germs of bijections acts also on $\mathrm{V}[X]$ by a quotient action

$$
[\sigma, A] \cdot \pi(t)=\pi([\sigma, A] \cdot t)
$$

where $t \in \Sigma[X]$ such that $\operatorname{var}(t)=A$, and $\pi: \Sigma[X] \rightarrow \mathbf{V}[X]$ is the canonical epimorphism.

Since \mathbf{V} is a balanced variety, the notion of set of variables remains defined in $\mathrm{V}[X]$.

Action of the groupoid of germs on $\mathrm{V}[X]$

The groupoid $\operatorname{Germ}_{\infty}(X)$ of germs of bijections acts also on $\mathrm{V}[X]$ by a quotient action

$$
[\sigma, A] \cdot \pi(t)=\pi([\sigma, A] \cdot t)
$$

where $t \in \Sigma[X]$ such that $\operatorname{var}(t)=A$, and $\pi: \Sigma[X] \rightarrow \mathbf{V}[X]$ is the canonical epimorphism.

Since \mathbf{V} is a balanced variety, the notion of set of variables remains defined in $\mathrm{V}[X]$. It follows that one can talk about balanced congruences on $\mathrm{V}[X]$.

Action of the groupoid of germs on $\mathrm{V}[X]$

The groupoid $\operatorname{Germ}_{\infty}(X)$ of germs of bijections acts also on $\mathrm{V}[X]$ by a quotient action

$$
[\sigma, A] \cdot \pi(t)=\pi([\sigma, A] \cdot t)
$$

where $t \in \Sigma[X]$ such that $\operatorname{var}(t)=A$, and $\pi: \Sigma[X] \rightarrow \mathbf{V}[X]$ is the canonical epimorphism.

Since \mathbf{V} is a balanced variety, the notion of set of variables remains defined in $\mathrm{V}[X]$. It follows that one can talk about balanced congruences on $\mathrm{V}[X]$. One shows that if \cong is a (fully invariant) balanced congruence on $\mathrm{V}[X]$, then $\operatorname{Germ}_{\infty}(X)$ acts on \cong by a diagonal action.

The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of Σ-algebras and \cong be a balanced fully invariant congruence on $\mathrm{V}[\mathbb{N}]$.

The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of Σ-algebras and \cong be a balanced fully invariant congruence on $\mathrm{V}[\mathbb{N}]$.
\cong determines a unique balanced sub-variety \mathbf{W} of \mathbf{V}.

The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of Σ-algebras and \cong be a balanced fully invariant congruence on $\mathrm{V}[\mathbb{N}]$.
\cong determines a unique balanced sub-variety \mathbf{W} of \mathbf{V}.
Then one can define a (small) groupoid $\mathrm{Geom}_{\mathbf{V}}(\mathrm{W})$ whose set of objects is $\mathrm{V}[\mathbb{N}] / \operatorname{Germ}_{\infty}(\mathbb{N})$ and that of arrows is $\cong / \operatorname{Germ}_{\infty}(\mathbb{N})$, which is called the relative geometry groupoid of W (with respect to V).

The groupoid of geometry of a balanced sub-variety

Let V be a balanced variety of Σ-algebras and \cong be a balanced fully invariant congruence on $\mathrm{V}[\mathbb{N}]$.
\cong determines a unique balanced sub-variety W of V .
Then one can define a (small) groupoid Geomv (W) whose set of objects is $\mathrm{V}[\mathbb{N}] / \operatorname{Germ}_{\infty}(\mathbb{N})$ and that of arrows is $\cong / \operatorname{Germ}_{\infty}(\mathbb{N})$, which is called the relative geometry groupoid of W (with respect to V).

Remark

Of course one recovers Geom (\mathbf{W}) by considering $\operatorname{Geom}_{\mathbf{V}}(\mathbf{W})$ with \mathbf{V} the variety of all Σ-algebras (which is balanced).

One can also equips $\mathrm{V}[\mathbb{N}] / \operatorname{Germ}_{\infty}(\mathbb{N})$ and $\cong / \operatorname{Germ}_{\infty}(\mathbb{N})$ with structures of Σ-algebras (as already done in case of $\Sigma[\mathbb{N}]$).

One can also equips $\mathrm{V}[\mathbb{N}] / \operatorname{Germ}_{\infty}(\mathbb{N})$ and $\cong / \operatorname{Germ}_{\infty}(\mathbb{N})$ with structures of Σ-algebras (as already done in case of $\Sigma[\mathbb{N}]$).

Nevertheless one cannot go further in general: $\mathrm{V}[\mathbb{N}] / \operatorname{Germ}_{\infty}(\mathbb{N})$ is generally not an algebra of the variety V . (A different number of occurrences of a same variable in two equivalent terms is an obstruction to this.)

Definition

A balanced congruence on $\Sigma[X]$ is said to be linearly generated (or simply linear) if it admits a set of generators $R \subseteq \Sigma[X]^{2}$ such that for each $(s, t) \in R$, every variable in s (hence in t) occurs one and only one time in s and in t.

Abstract

Definition A balanced congruence on $\Sigma[X]$ is said to be linearly generated (or simply linear) if it admits a set of generators $R \subseteq \Sigma[X]^{2}$ such that for each $(s, t) \in R$, every variable in s (hence in t) occurs one and only one time in s and in t.

For instance, associativity, left or right units are linear.

Abstract

Definition A balanced congruence on $\Sigma[X]$ is said to be linearly generated (or simply linear) if it admits a set of generators $R \subseteq \Sigma[X]^{2}$ such that for each $(s, t) \in R$, every variable in s (hence in t) occurs one and only one time in s and in t.

For instance, associativity, left or right units are linear. On the other side the inverse relation (for inverse semigroups) $x^{\star} \cdot x \cdot x^{\star}=x$ is not.

```
Definition
A balanced congruence on \(\Sigma[X]\) is said to be linearly generated (or simply linear) if it admits a set of generators \(R \subseteq \Sigma[X]^{2}\) such that for each \((s, t) \in R\), every variable in \(s\) (hence in \(t\) ) occurs one and only one time in \(s\) and in \(t\).
```

For instance, associativity, left or right units are linear. On the other side the inverse relation (for inverse semigroups) $x^{\star} \cdot x \cdot x^{\star}=x$ is not.

Definition

A balanced variety determined by a linear congruence is called a linear variety.

Algebra in V

Theorem (PL, 2014)
Let \mathbf{V} be a linear variety of \sum-algebras and let \cong be a balanced and fully invariant congruence on $\mathrm{V}[\mathbb{N}]$ that (uniquely) determines a balanced sub-variety W of V .

Algebra in V

Theorem (PL, 2014)
Let \mathbf{V} be a linear variety of \sum-algebras and let \cong be a balanced and fully invariant congruence on $\mathrm{V}[\mathbb{N}]$ that (uniquely) determines a balanced sub-variety W of V .

Then $\mathrm{Geom}_{\mathbf{V}}(\mathrm{W})$ is an algebra in the variety \mathbf{V} in the category of (small) groupoids.

Some examples

- Let \cong be a balanced and fully invariant congruence on $\mathbb{N}^{\star}=\operatorname{Mon}[\mathbb{N}]$, and let W be the associated sub-variety of monoids.

Some examples

- Let \cong be a balanced and fully invariant congruence on $\mathbb{N}^{\star}=\operatorname{Mon}[\mathbb{N}]$, and let \mathbf{W} be the associated sub-variety of monoids. Then Geom $_{\text {Mon }}(\mathbf{W})$ is a (strict) monoidal groupoid.

Some examples

- Let \cong be a balanced and fully invariant congruence on $\mathbb{N}^{\star}=\operatorname{Mon}[\mathbb{N}]$, and let \mathbf{W} be the associated sub-variety of monoids. Then Geom $_{\text {Mon }}(\mathbf{W})$ is a (strict) monoidal groupoid.
- In particular if \cong is the commutativity, then Geom Mon(ComMon) is a symmetric monoidal groupoid.

Some examples

- Let \cong be a balanced and fully invariant congruence on $\mathbb{N}^{\star}=\operatorname{Mon}[\mathbb{N}]$, and let \mathbf{W} be the associated sub-variety of monoids. Then Geom $_{\text {Mon }}(\mathbf{W})$ is a (strict) monoidal groupoid.
- In particular if \cong is the commutativity, then Geom Mon(ComMon) is a symmetric monoidal groupoid.
- Similarly Geom ${ }_{\star \text { Mon }}$ (InvMon) is an "involutive" monoidal groupoid (where \star Mon is the variety of monoids with an involution).

Table of contents

(1) P. Dehornoy's geometry monoid
(2) Action of the groupoid of germs of bijections by renaming of variables
(3) The geometry groupoid of a balanced variety

44 Generalization: Lattice of balanced sub-varieties
(5) Perspectives

Perspectives

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?

Perspectives

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?
- Linear varieties extend to varieties of modules (for instance, the variety of monoids corresponds to that of algebras over a ring).

Perspectives

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?
- Linear varieties extend to varieties of modules (for instance, the variety of monoids corresponds to that of algebras over a ring). This approach should be applied to (plain set) operads and also to polynomial rewrite systems (Bergman's reduction systems or Groebner bases).

Perspectives

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?
- Linear varieties extend to varieties of modules (for instance, the variety of monoids corresponds to that of algebras over a ring). This approach should be applied to (plain set) operads and also to polynomial rewrite systems (Bergman's reduction systems or Groebner bases).
- Links with monads, Lawvere theories and clones.

Perspectives

- Non symmetric version adapted to term (or even word) rewrite systems with help of a geometry category ?
- Linear varieties extend to varieties of modules (for instance, the variety of monoids corresponds to that of algebras over a ring). This approach should be applied to (plain set) operads and also to polynomial rewrite systems (Bergman's reduction systems or Groebner bases).
- Links with monads, Lawvere theories and clones.
- Of course, links with Lawson's work.

