# From "combinatorial" monoids to bialgebras and Hopf algebras, functorially

Laurent Poinsot

LIPN & CReA University Paris XIII & École de l'Air France



June, 20th 2014

# Table of contents



- 2) Finite decomposition monoid
- 3 Locally finite monoid
- ④ Group and ring schemes

## "Combinatorial" monoids

• Finite decomposition monoid: For each  $x \in M$ , there are only finitely many  $y, z \in M$  such that x = y \* z.

## "Combinatorial" monoids

- Finite decomposition monoid: For each  $x \in M$ , there are only finitely many  $y, z \in M$  such that x = y \* z.
- Filtered monoid: A monoid together with a decreasing filtration ...  $\subseteq M_2 \subseteq M_1 \subseteq M_0 \subseteq M$  such that  $x_m * x_n \in M_{m+n}$  and  $1 \in M_0$ .

## "Combinatorial" monoids

- Finite decomposition monoid: For each  $x \in M$ , there are only finitely many  $y, z \in M$  such that x = y \* z.
- Filtered monoid: A monoid together with a decreasing filtration ...  $\subseteq M_2 \subseteq M_1 \subseteq M_0 \subseteq M$  such that  $x_m * x_n \in M_{m+n}$  and  $1 \in M_0$ .
- Locally finite monoid: For each  $x \in M$ , there are only finitely many  $x_1, \dots, x_n \in M \setminus \{1\}$  such that  $x = x_1 * \dots * x_n$ .

#### Large algebra

The class of finite decomposition monoids is the larger class for which convolution of functions is possible.

#### Large algebra

The class of finite decomposition monoids is the larger class for which convolution of functions is possible.

Let R be a commutative ring with a unit. Let M be a finite decomposition monoid. Then one can define the R-coalgebra  $R^{(M)}$  (free module with basis M)

$$\Delta(x) = \sum_{x=y*z} y \otimes z$$

and

$$\epsilon(x)=1.$$

#### Large algebra

The class of finite decomposition monoids is the larger class for which convolution of functions is possible.

Let *R* be a commutative ring with a unit. Let *M* be a finite decomposition monoid. Then one can define the *R*-coalgebra  $R^{(M)}$  (free module with basis *M*)

$$\Delta(x) = \sum_{x=y*z} y \otimes z$$

 $\epsilon(x) = 1$ .

and

It follows that one can consider its dual R-algebra R[[M]], called the large algebra of M, of all functions from M to R. Its multiplication is given by convolution

$$(f * g)(x) = \sum_{x=y*z} f(y)g(z)$$

Möbius inversion formula

When M is a locally finite monoid, then R[[M]] admits a structure of a (complete) filtered algebra.

#### Möbius inversion formula

When M is a locally finite monoid, then R[[M]] admits a structure of a (complete) filtered algebra.

That makes it possible to consider a star operation. Given  $f \in R[[M]]$  such that f(1) = 0, then one defines  $f^* = \sum_{n>0} f^n$ .

#### Möbius inversion formula

When M is a locally finite monoid, then R[[M]] admits a structure of a (complete) filtered algebra.

That makes it possible to consider a star operation. Given  $f \in R[[M]]$  such that f(1) = 0, then one defines  $f^* = \sum_{n>0} f^n$ .

It follows that  $\{f \in R[[M]]: f(1) = 1\}$  is a subgroup of invertible elements of R[[M]]. The inverse of f is given by  $(f - \delta_1)^*$ .

#### Möbius inversion formula

When M is a locally finite monoid, then R[[M]] admits a structure of a (complete) filtered algebra.

That makes it possible to consider a star operation. Given  $f \in R[[M]]$  such that f(1) = 0, then one defines  $f^* = \sum_{n \ge 0} f^n$ .

It follows that  $\{f \in R[[M]]: f(1) = 1\}$  is a subgroup of invertible elements of R[[M]]. The inverse of f is given by  $(f - \delta_1)^*$ .

Möbius inversion formula: let  $\zeta = \sum_{x \in M} x$  (called the zêta function of M), and let  $\mu = \zeta^{-1}$  (called the Möbius function of M).

#### Möbius inversion formula

When M is a locally finite monoid, then R[[M]] admits a structure of a (complete) filtered algebra.

That makes it possible to consider a star operation. Given  $f \in R[[M]]$  such that f(1) = 0, then one defines  $f^* = \sum_{n \ge 0} f^n$ .

It follows that  $\{f \in R[[M]]: f(1) = 1\}$  is a subgroup of invertible elements of R[[M]]. The inverse of f is given by  $(f - \delta_1)^*$ .

Möbius inversion formula: let  $\zeta = \sum_{x \in M} x$  (called the zêta function of M), and let  $\mu = \zeta^{-1}$  (called the Möbius function of M). Then for all  $f, g \in R[[M]]$ ,

$$g(x) = \sum_{x=y*z} f(y) \Leftrightarrow f(x) = \sum_{x=y*z} g(y)\mu(z)$$
.

# Purpose of the talk

• Give a category-theoretic interpretation of these combinatorial monoids as monoid objects in a monoidal category.

# Purpose of the talk

- Give a category-theoretic interpretation of these combinatorial monoids as monoid objects in a monoidal category.
- Explain some known and new results using monoidal functors.

# Table of contents



#### Pinite decomposition monoid

- 3 Locally finite monoid
- ④ Group and ring schemes

# Finite decomposition monoid

Let M be a monoid. It is said to be a finite decomposition monoid if its product \* has finite fibers.

# Finite decomposition monoid

Let M be a monoid. It is said to be a finite decomposition monoid if its product \* has finite fibers.

In details this means that for each  $x \in M$ , there are only finitely many  $y, z \in M$  such that x = y \* z.

#### Category-theoretic interpretation

Let us consider the category **FinFibSet** of all sets with finite-fiber maps. It admits a structure of a symmetric monoidal category inherited from the set-theoretic product.

#### Category-theoretic interpretation

Let us consider the category **FinFibSet** of all sets with finite-fiber maps. It admits a structure of a symmetric monoidal category inherited from the set-theoretic product.

The category of monoid objects in **FinFibSet** in then the category of finite decomposition monoids (homomorphisms of monoids with finite fibers).

A *R*-module is said to be a topologically free *R*-module whenever it is isomorphic to a module of the form  $R^X$  for some set *X*.

A *R*-module is said to be a topologically free *R*-module whenever it is isomorphic to a module of the form  $R^X$  for some set *X*.

Each such module admits a linear topology whose basis of open neighborhoods of zero is given by  $R^{(X \setminus A)}$  for finite subsets  $A \subseteq X$ .

A *R*-module is said to be a topologically free *R*-module whenever it is isomorphic to a module of the form  $R^X$  for some set *X*.

Each such module admits a linear topology whose basis of open neighborhoods of zero is given by  $R^{(X \setminus A)}$  for finite subsets  $A \subseteq X$ .

Clearly  $\varprojlim_{A \in \mathfrak{P}_{fin}(X)} R^X / R^{(X \setminus A)} \cong \varprojlim_{A \in \mathfrak{P}_{fin}(X)} R^A \cong R^X$ , hence  $R^X$  is complete in the inverse limit topology (where all  $R^A$  are discrete), this topology is equivalent to the product topology (with R discrete).

A *R*-module is said to be a topologically free *R*-module whenever it is isomorphic to a module of the form  $R^X$  for some set *X*.

Each such module admits a linear topology whose basis of open neighborhoods of zero is given by  $R^{(X \setminus A)}$  for finite subsets  $A \subseteq X$ .

Clearly  $\varprojlim_{A \in \mathfrak{P}_{fin}(X)} R^X / R^{(X \setminus A)} \cong \varprojlim_{A \in \mathfrak{P}_{fin}(X)} R^A \cong R^X$ , hence  $R^X$  is complete in the inverse limit topology (where all  $R^A$  are discrete), this topology is equivalent to the product topology (with R discrete).

Let us denote by  $_{R}$ **TopFreeMod** the category of all topologically free modules with continuous linear maps.

Let us provide to the algebraic tensor product  $R^X \otimes_R R^Y$  a linear topology as follows.

Let us provide to the algebraic tensor product  $R^X \otimes_R R^Y$  a linear topology as follows.

For each  $A \in \mathfrak{P}_{fin}(X)$  and  $B \in \mathfrak{P}_{fin}(Y)$ , let us consider the canonical map  $R^X \otimes_R R^Y \to R^A \otimes_R R^B \cong R^{A \times B}$ .

Let us provide to the algebraic tensor product  $R^X \otimes_R R^Y$  a linear topology as follows.

For each  $A \in \mathfrak{P}_{fin}(X)$  and  $B \in \mathfrak{P}_{fin}(Y)$ , let us consider the canonical map  $R^X \otimes_R R^Y \to R^A \otimes_R R^B \cong R^{A \times B}$ .

The kernels, say  $K_{A,B}$ , of these maps form the basis of the topology.

Let us provide to the algebraic tensor product  $R^X \otimes_R R^Y$  a linear topology as follows.

For each  $A \in \mathfrak{P}_{fin}(X)$  and  $B \in \mathfrak{P}_{fin}(Y)$ , let us consider the canonical map  $R^X \otimes_R R^Y \to R^A \otimes_R R^B \cong R^{A \times B}$ .

The kernels, say  $K_{A,B}$ , of these maps form the basis of the topology.

And

$$R^{X \times Y} \cong \lim_{\lambda, B} R^{A \times B} \cong \lim_{\lambda, B} (R^X \otimes_R R^Y) / K_{A,B} .$$

One thus defines  $R^X \hat{\otimes}_R R^Y = R^{X \times Y}$  ( $\hat{\otimes}$  is a bifunctor), so that  $R^X \hat{\otimes}_R R^Y$  is the completion of  $R^X \otimes_R R^Y$  (in the linear topology).

One thus defines  $R^X \hat{\otimes}_R R^Y = R^{X \times Y}$  ( $\hat{\otimes}$  is a bifunctor), so that  $R^X \hat{\otimes}_R R^Y$  is the completion of  $R^X \otimes_R R^Y$  (in the linear topology).

There exists a continuous *R*-bilinear map can:  $R^X \times R^Y \to R^X \hat{\otimes} R^Y$ .

One thus defines  $R^X \hat{\otimes}_R R^Y = R^{X \times Y}$  ( $\hat{\otimes}$  is a bifunctor), so that  $R^X \hat{\otimes}_R R^Y$  is the completion of  $R^X \otimes_R R^Y$  (in the linear topology).

There exists a continuous *R*-bilinear map can:  $R^X \times R^Y \to R^X \hat{\otimes} R^Y$ .

#### Theorem (Universal property of $\hat{\otimes}$ )

Let  $\phi: R^X \times R^Y \to R^Z$  be a continuous *R*-bilinear map. Then, there exists a unique continuous *R*-linear map  $\phi_0: R^X \hat{\otimes}_R R^Y \to R^Z$  such that  $\phi_0 \circ can = \phi$ .

 $_{R}$ **TopFreeMod** with  $\hat{\otimes}$  becomes a symmetric monoidal category.

 $_{R}$ **TopFreeMod** with  $\hat{\otimes}$  becomes a symmetric monoidal category.

Let us define a functor  $R^-$ : FinFibSet  $\rightarrow R$ TopFreeMod such that

 $X \mapsto R^X$ 

 $_{R}$ **TopFreeMod** with  $\hat{\otimes}$  becomes a symmetric monoidal category.

Let us define a functor  $R^-$ : FinFibSet  $\rightarrow R$ TopFreeMod such that

 $X \mapsto R^X$ 

and for  $\phi: X \to Y$ , let  $R^{\phi}: R^X \to R^Y$  be given by

$$(R^{\phi})(f)(y) = \sum_{x \in \phi^{-1}(\{y\})} f(x)$$

 $f \in R^X$ ,  $y \in Y$ .

 $_{R}$ **TopFreeMod** with  $\hat{\otimes}$  becomes a symmetric monoidal category.

Let us define a functor  $R^-$ : FinFibSet  $\rightarrow R$ TopFreeMod such that

 $X \mapsto R^X$ 

and for  $\phi: X \to Y$ , let  $R^{\phi}: R^X \to R^Y$  be given by

$$(R^{\phi})(f)(y) = \sum_{x \in \phi^{-1}(\{y\})} f(x)$$

 $f \in R^X$ ,  $y \in Y$ .

 $R^-$  is a monoidal functor,

 $_{R}$ **TopFreeMod** with  $\hat{\otimes}$  becomes a symmetric monoidal category.

Let us define a functor  $R^-$ : FinFibSet  $\rightarrow R$ TopFreeMod such that

 $X \mapsto R^X$ 

and for  $\phi \colon X \to Y$ , let  $R^{\phi} \colon R^X \to R^Y$  be given by

$$(R^{\phi})(f)(y) = \sum_{x \in \phi^{-1}(\{y\})} f(x)$$

 $f \in R^X$ ,  $y \in Y$ .

 $R^-$  is a monoidal functor, hence it lifts to a functor between categories of monoid objects (it is a property of monoidal functors).

#### Monoidal category

 $_{R}$ **TopFreeMod** with  $\hat{\otimes}$  becomes a symmetric monoidal category.

Let us define a functor  $R^-$ : FinFibSet  $\rightarrow R$ TopFreeMod such that

 $X \mapsto R^X$ 

and for  $\phi: X \to Y$ , let  $R^{\phi}: R^X \to R^Y$  be given by

$$(R^{\phi})(f)(y) = \sum_{x \in \phi^{-1}(\{y\})} f(x)$$

 $f \in R^X$ ,  $y \in Y$ .

 $R^-$  is a monoidal functor, hence it lifts to a functor between categories of monoid objects (it is a property of monoidal functors). One recovers  $M \mapsto R[[M]]$ , where M is a finite decomposition monoid, and this corrects the lack of functoriality of the large algebra as defined usually.

# Table of contents



- 2 Finite decomposition monoid
- 3 Locally finite monoid
- ④ Group and ring schemes

A (decreasing) filtration on a set X is a decreasing sequence  $(X_n)_n$  of finite subsets of X.  $(X, (X_n)_n)$  is thus called a filtered set.

A (decreasing) filtration on a set X is a decreasing sequence  $(X_n)_n$  of finite subsets of X.  $(X, (X_n)_n)$  is thus called a filtered set.

A morphism  $f: (X, (X_n)_n) \to (Y, (Y_n)_n)$  is a set-theoretic map  $f: X \to Y$  such that for each  $n, f(X_n) \subseteq Y_n$ . Such a map is said to be a filtration-preserving map.

A (decreasing) filtration on a set X is a decreasing sequence  $(X_n)_n$  of finite subsets of X.  $(X, (X_n)_n)$  is thus called a filtered set.

A morphism  $f: (X, (X_n)_n) \to (Y, (Y_n)_n)$  is a set-theoretic map  $f: X \to Y$  such that for each  $n, f(X_n) \subseteq Y_n$ . Such a map is said to be a filtration-preserving map.

The category of all filtered sets admits a monoidal tensor  $(X, (X_n)_n) \otimes (Y, (Y_n)_n) = (X \times Y, (T^n(X, Y))_n)$  with

$$T^n(X,Y) = \bigcup_{i=0}^n X_i \times Y_{n-i} .$$

A (decreasing) filtration on a set X is a decreasing sequence  $(X_n)_n$  of finite subsets of X.  $(X, (X_n)_n)$  is thus called a filtered set.

A morphism  $f: (X, (X_n)_n) \to (Y, (Y_n)_n)$  is a set-theoretic map  $f: X \to Y$  such that for each  $n, f(X_n) \subseteq Y_n$ . Such a map is said to be a filtration-preserving map.

The category of all filtered sets admits a monoidal tensor  $(X, (X_n)_n) \otimes (Y, (Y_n)_n) = (X \times Y, (T^n(X, Y))_n)$  with

$$T^n(X,Y) = \bigcup_{i=0}^n X_i \times Y_{n-i} .$$

The unit is the one-point set \* with filtration  $*_n = \emptyset$  for all n > 0 and  $*_0 = *$ .

#### Sub-monoidal categories

- A filtered set  $(X, (X_n)_n)$  is
- Exhausted if  $X = X_0$ ;
- Separated if  $\bigcap_{n\geq 0} X_n = \emptyset$ ;
- Connected if it is both separated and exhausted, and  $X_0 \setminus X_1 = *$ .

#### Sub-monoidal categories

- A filtered set  $(X, (X_n)_n)$  is
- Exhausted if  $X = X_0$ ;
- Separated if  $\bigcap_{n\geq 0} X_n = \emptyset$ ;
- Connected if it is both separated and exhausted, and  $X_0 \setminus X_1 = *$ .

A set X with an exhausted and separated filtration is equivalent to a set X with a length function  $\ell: X \to \mathbb{N}$ .  $(X_n := \{x \in X : \ell(x) \ge n\}$  and  $\ell(x) := \sup\{n \in \mathbb{N} : x \in X_n\}$ .)

A filtered set is connected if, and only if, there is a unique element of length zero.

A monoid M is said to be a locally finite monoid if for each  $x \in M$ , there are only finitely many  $x_1, \dots, x_n \in M \setminus \{1\}$  such that  $x = x_1 * \dots * x_n$ .

A monoid M is said to be a locally finite monoid if for each  $x \in M$ , there are only finitely many  $x_1, \dots, x_n \in M \setminus \{1\}$  such that  $x = x_1 * \dots * x_n$ .

Such a monoid is necessarily a finite decomposition monoid.

A monoid M is said to be a locally finite monoid if for each  $x \in M$ , there are only finitely many  $x_1, \dots, x_n \in M \setminus \{1\}$  such that  $x = x_1 * \dots * x_n$ .

Such a monoid is necessarily a finite decomposition monoid.

It may be equipped with a length function  $\ell(x) = \sup\{ n \in \mathbb{N} \colon \exists (x_1, \cdots, x_n) \in M \setminus \{1\}, \ x = x_1 * \cdots * x_n \}$ 

A monoid M is said to be a locally finite monoid if for each  $x \in M$ , there are only finitely many  $x_1, \dots, x_n \in M \setminus \{1\}$  such that  $x = x_1 * \dots * x_n$ .

Such a monoid is necessarily a finite decomposition monoid.

It may be equipped with a length function  $\ell(x) = \sup\{n \in \mathbb{N} : \exists (x_1, \dots, x_n) \in M \setminus \{1\}, x = x_1 * \dots * x_n\}$  that satisfies  $\ell(x * y) \ge \ell(x) + \ell(y)$  and  $\ell(x) = 0$  if, and only if, x = 1. It is called the canonical length function.

A monoid M is said to be a locally finite monoid if for each  $x \in M$ , there are only finitely many  $x_1, \dots, x_n \in M \setminus \{1\}$  such that  $x = x_1 * \dots * x_n$ .

Such a monoid is necessarily a finite decomposition monoid.

It may be equipped with a length function  $\ell(x) = \sup\{n \in \mathbb{N} : \exists (x_1, \dots, x_n) \in M \setminus \{1\}, x = x_1 * \dots * x_n\}$  that satisfies  $\ell(x * y) \ge \ell(x) + \ell(y)$  and  $\ell(x) = 0$  if, and only if, x = 1. It is called the canonical length function.

Hence a locally finite monoid is also a monoid object in the monoidal category of connected filtered sets.

## Monoid objects

One now considers the category cSet of all connected filtered sets with finite-fiber and filtration-preserving maps. It is a monoidal category.

# Monoid objects

One now considers the category cSet of all connected filtered sets with finite-fiber and filtration-preserving maps. It is a monoidal category.

Theorem

A monoid object in **cSet** is precisely a locally finite monoid.

### Monoid objects

One now considers the category cSet of all connected filtered sets with finite-fiber and filtration-preserving maps. It is a monoidal category.

#### Theorem

A monoid object in **cSet** is precisely a locally finite monoid.

**Proof:** A monoid object in **cSet** is thus a usual monoid M with a connected filtration  $(M_n)_n$  of (two-sided) ideals of M. Let  $\ell$  be its associated length function. It thus satisfies  $\ell(x * y) \ge \ell(x) + \ell(y)$ . Since it is connected,  $\ell^{-1}(\{0\}) = \{1\}$ . Let us assume that there exists some  $x \in M$  with arbitrary long non-trivial decompositions. Then, for every n,  $\ell(x) \ge n$  (since  $x = x_1 * \cdots * x_m$ ,  $m \ge n$ ,  $x_i \ne 1$ ) which is impossible since the filtration is separated.

Filtered module: A R-module M endowed with a (decreasing) filtration  $M_k$  of submodules.

Filtered module: A *R*-module *M* endowed with a (decreasing) filtration  $M_k$  of submodules.

Filtered maps: Linear maps that respect the filtrations.

Filtered module: A *R*-module *M* endowed with a (decreasing) filtration  $M_k$  of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module:  $M \cong \varprojlim_n M/M_k$ .

Filtered module: A *R*-module *M* endowed with a (decreasing) filtration  $M_k$  of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module:  $M \cong \varprojlim_n M/M_k$ . Any filtered module M admits a completion, namely  $\hat{M} = \varprojlim_n M/M_k$ .

Filtered module: A *R*-module *M* endowed with a (decreasing) filtration  $M_k$  of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module:  $M \cong \varprojlim_n M/M_k$ . Any filtered module M admits a completion, namely  $\hat{M} = \varprojlim_n M/M_k$ . Let  $\hat{M}_n$  be the kernel of the projection  $\hat{M} \to M/M_n$ . Then  $\hat{M}$  is filtered (with  $(\hat{M}_n)_n$ ) and  $\hat{M} \cong \varprojlim_n \hat{M}/\hat{M}_n$ .

Filtered module: A *R*-module *M* endowed with a (decreasing) filtration  $M_k$  of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module:  $M \cong \varprojlim_n M/M_k$ . Any filtered module M admits a completion, namely  $\hat{M} = \varprojlim_n M/M_k$ . Let  $\hat{M}_n$  be the kernel of the projection  $\hat{M} \to M/M_n$ . Then  $\hat{M}$  is filtered (with  $(\hat{M}_n)_n$ ) and  $\hat{M} \cong \varprojlim_n \hat{M}/\hat{M}_n$ .

Filtered tensor product: The algebraic tensor product  $M \otimes_R N$  together with the filtration  $\sum_{i+j=n} M_i \otimes_R N_j$ .

Filtered module: A *R*-module *M* endowed with a (decreasing) filtration  $M_k$  of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module:  $M \cong \varprojlim_n M/M_k$ . Any filtered module M admits a completion, namely  $\hat{M} = \varprojlim_n M/M_k$ . Let  $\hat{M}_n$  be the kernel of the projection  $\hat{M} \to M/M_n$ . Then  $\hat{M}$  is filtered (with  $(\hat{M}_n)_n$ ) and  $\hat{M} \cong \varprojlim_n \hat{M}/\hat{M}_n$ .

Filtered tensor product: The algebraic tensor product  $M \otimes_R N$  together with the filtration  $\sum_{i+j=n} M_i \otimes_R N_j$ .

Completed tensor product:  $M \hat{\otimes} N = \widehat{M \otimes_R N}$ .

Filtered module: A *R*-module *M* endowed with a (decreasing) filtration  $M_k$  of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module:  $M \cong \varprojlim_n M/M_k$ . Any filtered module M admits a completion, namely  $\hat{M} = \varprojlim_n M/M_k$ . Let  $\hat{M}_n$  be the kernel of the projection  $\hat{M} \to M/M_n$ . Then  $\hat{M}$  is filtered (with  $(\hat{M}_n)_n$ ) and  $\hat{M} \cong \varprojlim_n \hat{M}/\hat{M}_n$ .

Filtered tensor product: The algebraic tensor product  $M \otimes_R N$  together with the filtration  $\sum_{i+j=n} M_i \otimes_R N_j$ .

Completed tensor product:  $M \hat{\otimes} N = \widehat{M \otimes_R N}$ .

Monoid objects: Filtered (complete) *R*-algebras.

Let M be a locally finite monoid. Then, its canonical filtration induces (functorially) a structure of an exhausted and separated filtered algebra on R[[M]].

Let M be a locally finite monoid. Then, its canonical filtration induces (functorially) a structure of an exhausted and separated filtered algebra on R[[M]].

It is given by  $\mathfrak{I}_n = \{ f \in \mathbb{R}^M : \forall x (\ell(x) < n \Rightarrow f(x) = 0) \}.$ 

Let M be a locally finite monoid. Then, its canonical filtration induces (functorially) a structure of an exhausted and separated filtered algebra on R[[M]].

It is given by  $\mathfrak{I}_n = \{ f \in \mathbb{R}^M : \forall x (\ell(x) < n \Rightarrow f(x) = 0) \}.$ 

The associated (linear) topology is always stronger than the product topology (i.e., the canonical projections are continuous), and can be even strictly stronger.

Let M be a locally finite monoid. Then, its canonical filtration induces (functorially) a structure of an exhausted and separated filtered algebra on R[[M]].

It is given by  $\mathfrak{I}_n = \{ f \in \mathbb{R}^M : \forall x(\ell(x) < n \Rightarrow f(x) = 0) \}.$ 

The associated (linear) topology is always stronger than the product topology (i.e., the canonical projections are continuous), and can be even strictly stronger.

R[[M]] is complete in this topology but is not necessarily the completion of R[M] with the induced topology.

#### Remark

Of course  $R^-$  is again a monoidal functor from the category of connected filtered sets (with finite-fiber and filtration-preserving maps) to that of complete filtered modules.

### Remark

Of course  $R^-$  is again a monoidal functor from the category of connected filtered sets (with finite-fiber and filtration-preserving maps) to that of complete filtered modules.

Hence it lifts to a functor R[[-]] from the category of locally finite monoids to that of complete filtered algebras.

### Remark

Of course  $R^-$  is again a monoidal functor from the category of connected filtered sets (with finite-fiber and filtration-preserving maps) to that of complete filtered modules.

Hence it lifts to a functor R[[-]] from the category of locally finite monoids to that of complete filtered algebras.

#### Remark

R[[M]] is an augmented algebra with augmentation ideal  $\mathfrak{I}_1$  (this is due to the fact that M is connected as a filtered set).

# Table of contents



- 2) Finite decomposition monoid
- 3 Locally finite monoid



#### From large algebra to representable functor

Let M be a finite decomposition monoid.

Let us define a functor  $(-)^M : {}_c \mathbf{Alg}_R \to \mathbf{Set}$  by  $A \mapsto A^M$ .

It is representable with coordinate ring  $R[x_a: a \in M]$  (polynomial ring in the indeterminates  $x_a$ ,  $a \in M$ ).

Actually the multiplicative and additive structures of A[[M]] are natural in the commutative algebra A. Hence  $A \mapsto A[[M]]$  forms a ring object in the category of representable functors.

Actually the multiplicative and additive structures of A[[M]] are natural in the commutative algebra A. Hence  $A \mapsto A[[M]]$  forms a ring object in the category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on  $R[x_a: a \in M]$ (i.e., a ring object in the category of cocommutative coalgebras or a monoid object in the category of "abelian" Hopf algebras).

Actually the multiplicative and additive structures of A[[M]] are natural in the commutative algebra A. Hence  $A \mapsto A[[M]]$  forms a ring object in the category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on  $R[x_a: a \in M]$ (i.e., a ring object in the category of cocommutative coalgebras or a monoid object in the category of "abelian" Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra structure maps  $\Delta_{\text{prim}}(x_a) = x_a \otimes 1 + 1 \otimes x_a$ ,  $\epsilon_{\text{prim}}(x_a) = 0$  and  $S_{\text{prim}}(x_a) = -x_a$ ,  $a \in M$ .

Actually the multiplicative and additive structures of A[[M]] are natural in the commutative algebra A. Hence  $A \mapsto A[[M]]$  forms a ring object in the category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on  $R[x_a: a \in M]$ (i.e., a ring object in the category of cocommutative coalgebras or a monoid object in the category of "abelian" Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra structure maps  $\Delta_{\text{prim}}(x_a) = x_a \otimes 1 + 1 \otimes x_a$ ,  $\epsilon_{\text{prim}}(x_a) = 0$  and  $S_{\text{prim}}(x_a) = -x_a$ ,  $a \in M$ .

The multiplicative part induces a bialgebra with  $\Delta(x_a) = \sum_{b*c=a} x_b \otimes x_c$ and  $\epsilon(x_a) = 1$ .

Actually the multiplicative and additive structures of A[[M]] are natural in the commutative algebra A. Hence  $A \mapsto A[[M]]$  forms a ring object in the category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on  $R[x_a: a \in M]$ (i.e., a ring object in the category of cocommutative coalgebras or a monoid object in the category of "abelian" Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra structure maps  $\Delta_{\text{prim}}(x_a) = x_a \otimes 1 + 1 \otimes x_a$ ,  $\epsilon_{\text{prim}}(x_a) = 0$  and  $S_{\text{prim}}(x_a) = -x_a$ ,  $a \in M$ .

The multiplicative part induces a bialgebra with  $\Delta(x_a) = \sum_{b*c=a} x_b \otimes x_c$ and  $\epsilon(x_a) = 1$ .

Of course both structures are related so that ring axioms hold.

#### Reconstruction theorem

#### Theorem

The large algebra R[[M]] is isomorphic to the ring of *R*-rational points of the ring scheme (-)[[M]].

#### Reconstruction theorem

#### Theorem

The large algebra R[[M]] is isomorphic to the ring of *R*-rational points of the ring scheme (-)[[M]].

Proof: This comes from  ${}_{c}\mathbf{Alg}_{R}(R[x_{a}: a \in M], R) \cong R[[M]]$  (of course as sets but also as rings).

Let M be a locally finite monoid.

Let M be a locally finite monoid.

Let A be a commutative R-algebra with a unit. Let us define  $1 + \mathfrak{I}_1(A) = \{ f : M \to A : f(1) = 1 \}$ . It is a subgroup of the group of invertible elements of A[[M]].

Let M be a locally finite monoid.

Let A be a commutative R-algebra with a unit. Let us define  $1 + \mathfrak{I}_1(A) = \{ f : M \to A : f(1) = 1 \}$ . It is a subgroup of the group of invertible elements of A[[M]].

It defines a group scheme  $A \mapsto 1 + \mathfrak{I}_1(A)$  with representing (or coordinate) Hopf algebra  $R[x_a: a \in M \setminus \{1\}]$ .

Let M be a locally finite monoid.

Let A be a commutative R-algebra with a unit. Let us define  $1 + \mathfrak{I}_1(A) = \{ f : M \to A : f(1) = 1 \}$ . It is a subgroup of the group of invertible elements of A[[M]].

It defines a group scheme  $A \mapsto 1 + \mathfrak{I}_1(A)$  with representing (or coordinate) Hopf algebra  $R[x_a: a \in M \setminus \{1\}]$ .

The antipode S is given by  $S(x_a) = \mu(a)$  for each  $a \in M \setminus \{1\}$ , where  $\mu$  is the Möbius function of M.