From "combinatorial" monoids to bialgebras and Hopf algebras, functorially

Laurent Poinsot

LIPN \& CReA
University Paris XIII \& École de I'Air
France

June, 20th 2014

Table of contents

(1) Introduction
(2) Finite decomposition monoid
(3) Locally finite monoid
(4) Group and ring schemes

"Combinatorial" monoids

- Finite decomposition monoid: For each $x \in M$, there are only finitely many $y, z \in M$ such that $x=y * z$.

"Combinatorial" monoids

- Finite decomposition monoid: For each $x \in M$, there are only finitely many $y, z \in M$ such that $x=y * z$.
- Filtered monoid: A monoid together with a decreasing filtration $\ldots \subseteq M_{2} \subseteq M_{1} \subseteq M_{0} \subseteq M$ such that $x_{m} * x_{n} \in M_{m+n}$ and $1 \in M_{0}$.

"Combinatorial" monoids

- Finite decomposition monoid: For each $x \in M$, there are only finitely many $y, z \in M$ such that $x=y * z$.
- Filtered monoid: A monoid together with a decreasing filtration
$\ldots \subseteq M_{2} \subseteq M_{1} \subseteq M_{0} \subseteq M$ such that $x_{m} * x_{n} \in M_{m+n}$ and $1 \in M_{0}$.
- Locally finite monoid: For each $x \in M$, there are only finitely many $x_{1}, \cdots, x_{n} \in M \backslash\{1\}$ such that $x=x_{1} * \cdots * x_{n}$.

Motivations

Large algebra

The class of finite decomposition monoids is the larger class for which convolution of functions is possible.

Motivations

Large algebra

The class of finite decomposition monoids is the larger class for which convolution of functions is possible.

Let R be a commutative ring with a unit. Let M be a finite decomposition monoid. Then one can define the R-coalgebra $R^{(M)}$ (free module with basis M)

$$
\Delta(x)=\sum_{x=y * z} y \otimes z
$$

and

$$
\epsilon(x)=1 .
$$

Motivations

Large algebra

The class of finite decomposition monoids is the larger class for which convolution of functions is possible.

Let R be a commutative ring with a unit. Let M be a finite decomposition monoid. Then one can define the R-coalgebra $R^{(M)}$ (free module with basis M)

$$
\Delta(x)=\sum_{x=y * z} y \otimes z
$$

and

$$
\epsilon(x)=1 .
$$

It follows that one can consider its dual R-algebra $R[[M]]$, called the large algebra of M, of all functions from M to R. Its multiplication is given by convolution

$$
(f * g)(x)=\sum_{x=y * z} f(y) g(z) .
$$

Motivations

Möbius inversion formula

When M is a locally finite monoid, then $R[[M]]$ admits a structure of a (complete) filtered algebra.

Motivations

Möbius inversion formula

When M is a locally finite monoid, then $R[[M]]$ admits a structure of a (complete) filtered algebra.

That makes it possible to consider a star operation. Given $f \in R[[M]]$ such that $f(1)=0$, then one defines $f^{\star}=\sum_{n \geq 0} f^{n}$.

Motivations

Möbius inversion formula

When M is a locally finite monoid, then $R[[M]]$ admits a structure of a (complete) filtered algebra.

That makes it possible to consider a star operation. Given $f \in R[[M]]$ such that $f(1)=0$, then one defines $f^{\star}=\sum_{n \geq 0} f^{n}$.

It follows that $\{f \in R[[M]]: f(1)=1\}$ is a subgroup of invertible elements of $R[[M]]$. The inverse of f is given by $\left(f-\delta_{1}\right)^{\star}$.

Motivations

Möbius inversion formula

When M is a locally finite monoid, then $R[[M]]$ admits a structure of a (complete) filtered algebra.

That makes it possible to consider a star operation. Given $f \in R[[M]]$ such that $f(1)=0$, then one defines $f^{\star}=\sum_{n \geq 0} f^{n}$.

It follows that $\{f \in R[[M]]: f(1)=1\}$ is a subgroup of invertible elements of $R[[M]]$. The inverse of f is given by $\left(f-\delta_{1}\right)^{\star}$.

Möbius inversion formula: let $\zeta=\sum_{x \in M} \times$ (called the zêta function of M), and let $\mu=\zeta^{-1}$ (called the Möbius function of M).

Motivations

Möbius inversion formula

When M is a locally finite monoid, then $R[[M]]$ admits a structure of a (complete) filtered algebra.

That makes it possible to consider a star operation. Given $f \in R[[M]]$ such that $f(1)=0$, then one defines $f^{\star}=\sum_{n \geq 0} f^{n}$.

It follows that $\{f \in R[[M]]: f(1)=1\}$ is a subgroup of invertible elements of $R[[M]]$. The inverse of f is given by $\left(f-\delta_{1}\right)^{\star}$.

Möbius inversion formula: let $\zeta=\sum_{x \in M} \times$ (called the zêta function of M), and let $\mu=\zeta^{-1}$ (called the Möbius function of M). Then for all $f, g \in R[[M]]$,

$$
g(x)=\sum_{x=y * z} f(y) \Leftrightarrow f(x)=\sum_{x=y * z} g(y) \mu(z)
$$

Purpose of the talk

- Give a category-theoretic interpretation of these combinatorial monoids as monoid objects in a monoidal category.

Purpose of the talk

- Give a category-theoretic interpretation of these combinatorial monoids as monoid objects in a monoidal category.
- Explain some known and new results using monoidal functors.

Table of contents

(1) Introduction
(2) Finite decomposition monoid
(3) Locally finite monoid
(4) Group and ring schemes

Finite decomposition monoid

Let M be a monoid. It is said to be a finite decomposition monoid if its product $*$ has finite fibers.

Finite decomposition monoid

Let M be a monoid. It is said to be a finite decomposition monoid if its product $*$ has finite fibers.

In details this means that for each $x \in M$, there are only finitely many $y, z \in M$ such that $x=y * z$.

Category-theoretic interpretation

Let us consider the category FinFibSet of all sets with finite-fiber maps. It admits a structure of a symmetric monoidal category inherited from the set-theoretic product.

Category-theoretic interpretation

Let us consider the category FinFibSet of all sets with finite-fiber maps. It admits a structure of a symmetric monoidal category inherited from the set-theoretic product.

The category of monoid objects in FinFibSet in then the category of finite decomposition monoids (homomorphisms of monoids with finite fibers).

Large algebra

A R-module is said to be a topologically free R-module whenever it is isomorphic to a module of the form R^{X} for some set X.

Large algebra

A R-module is said to be a topologically free R-module whenever it is isomorphic to a module of the form R^{X} for some set X.

Each such module admits a linear topology whose basis of open neighborhoods of zero is given by $R^{(X \backslash A)}$ for finite subsets $A \subseteq X$.

Large algebra

A R-module is said to be a topologically free R-module whenever it is isomorphic to a module of the form R^{X} for some set X.

Each such module admits a linear topology whose basis of open neighborhoods of zero is given by $R^{(X \backslash A)}$ for finite subsets $A \subseteq X$.

Clearly $\lim _{A \in \mathfrak{P}_{\text {fin }}(X)} R^{X} / R^{(X \backslash A)} \cong \lim _{\varlimsup_{A \in \mathfrak{P}_{\text {fin }}(X)}} R^{A} \cong R^{X}$, hence R^{X} is complete in the inverse limit topology (where all R^{A} are discrete), this topology is equivalent to the product topology (with R discrete).

Large algebra

A R-module is said to be a topologically free R-module whenever it is isomorphic to a module of the form R^{X} for some set X.

Each such module admits a linear topology whose basis of open neighborhoods of zero is given by $R^{(X \backslash A)}$ for finite subsets $A \subseteq X$.

Clearly $\lim _{A \in \mathfrak{P}_{\text {fin }}(X)} R^{X} / R^{(X \backslash A)} \cong \lim _{\coprod_{A \in \mathfrak{P}_{\text {fin }}(X)}} R^{A} \cong R^{X}$, hence R^{X} is complete in the inverse limit topology (where all R^{A} are discrete), this topology is equivalent to the product topology (with R discrete).

Let us denote by ${ }_{R}$ TopFreeMod the category of all topologically free modules with continuous linear maps.

Completed tensor product

Let us provide to the algebraic tensor product $R^{X} \otimes_{R} R^{Y}$ a linear topology as follows.

Completed tensor product

Let us provide to the algebraic tensor product $R^{X} \otimes_{R} R^{Y}$ a linear topology as follows.

For each $A \in \mathfrak{P}_{\text {fin }}(X)$ and $B \in \mathfrak{P}_{\text {fin }}(Y)$, let us consider the canonical map $R^{X} \otimes_{R} R^{Y} \rightarrow R^{A} \otimes_{R} R^{B} \cong R^{A \times B}$.

Completed tensor product

Let us provide to the algebraic tensor product $R^{X} \otimes_{R} R^{Y}$ a linear topology as follows.

For each $A \in \mathfrak{P}_{\text {fin }}(X)$ and $B \in \mathfrak{P}_{\text {fin }}(Y)$, let us consider the canonical map $R^{X} \otimes_{R} R^{Y} \rightarrow R^{A} \otimes_{R} R^{B} \cong R^{A \times B}$.

The kernels, say $K_{A, B}$, of these maps form the basis of the topology.

Completed tensor product

Let us provide to the algebraic tensor product $R^{X} \otimes_{R} R^{Y}$ a linear topology as follows.

For each $A \in \mathfrak{P}_{\text {fin }}(X)$ and $B \in \mathfrak{P}_{\text {fin }}(Y)$, let us consider the canonical map $R^{X} \otimes_{R} R^{Y} \rightarrow R^{A} \otimes_{R} R^{B} \cong R^{A \times B}$.

The kernels, say $K_{A, B}$, of these maps form the basis of the topology.
And

$$
R^{X \times Y} \cong \lim _{\overleftarrow{A, B}} R^{A \times B} \cong \lim _{\overleftarrow{A, B}}\left(R^{X} \otimes_{R} R^{Y}\right) / K_{A, B}
$$

Completed tensor product

One thus defines $R^{X} \hat{\otimes}_{R} R^{Y}=R^{X \times Y}$ ($\hat{\otimes}$ is a bifunctor), so that $R^{X} \hat{\otimes}_{R} R^{Y}$ is the completion of $R^{X} \otimes_{R} R^{Y}$ (in the linear topology).

Completed tensor product

One thus defines $R^{X} \hat{\otimes}_{R} R^{Y}=R^{X \times Y}$ ($\hat{\otimes}$ is a bifunctor), so that $R^{X} \hat{\otimes}_{R} R^{Y}$ is the completion of $R^{X} \otimes_{R} R^{Y}$ (in the linear topology).

There exists a continuous R-bilinear map can: $R^{X} \times R^{Y} \rightarrow R^{X} \hat{\otimes} R^{Y}$.

Completed tensor product

One thus defines $R^{X} \hat{\otimes}_{R} R^{Y}=R^{X \times Y}$ ($\hat{\otimes}$ is a bifunctor), so that $R^{X} \hat{\otimes}_{R} R^{Y}$ is the completion of $R^{X} \otimes_{R} R^{Y}$ (in the linear topology).

There exists a continuous R-bilinear map can: $R^{X} \times R^{Y} \rightarrow R^{X} \hat{\otimes} R^{Y}$.
Theorem (Universal property of $\hat{\otimes}$)
Let $\phi: R^{X} \times R^{Y} \rightarrow R^{Z}$ be a continuous R-bilinear map. Then, there exists a unique continuous R-linear map $\phi_{0}: R^{X} \hat{\otimes}_{R} R^{Y} \rightarrow R^{Z}$ such that $\phi_{0} \circ \mathrm{can}=\phi$.

Monoidal category

${ }_{R}$ TopFreeMod with $\hat{\otimes}$ becomes a symmetric monoidal category.

Monoidal category

R TopFreeMod with $\hat{\otimes}$ becomes a symmetric monoidal category.
Let us define a functor R^{-}: FinFibSet \rightarrow_{R} TopFreeMod such that

$$
X \mapsto R^{X}
$$

Monoidal category

${ }_{R}$ TopFreeMod with $\hat{\otimes}$ becomes a symmetric monoidal category.
Let us define a functor R^{-}: FinFibSet \rightarrow_{R} TopFreeMod such that

$$
X \mapsto R^{X}
$$

and for $\phi: X \rightarrow Y$, let $R^{\phi}: R^{X} \rightarrow R^{Y}$ be given by

$$
\left(R^{\phi}\right)(f)(y)=\sum_{x \in \phi^{-1}(\{y\})} f(x)
$$

$f \in R^{X}, y \in Y$.

Monoidal category

R_{R} TopFreeMod with $\hat{\otimes}$ becomes a symmetric monoidal category.
Let us define a functor R^{-}: FinFibSet \rightarrow_{R} TopFreeMod such that

$$
X \mapsto R^{X}
$$

and for $\phi: X \rightarrow Y$, let $R^{\phi}: R^{X} \rightarrow R^{Y}$ be given by

$$
\left(R^{\phi}\right)(f)(y)=\sum_{x \in \phi^{-1}(\{y\})} f(x)
$$

$f \in R^{X}, y \in Y$.
R^{-}is a monoidal functor,

Monoidal category

R_{R} TopFreeMod with $\hat{\otimes}$ becomes a symmetric monoidal category.
Let us define a functor R^{-}: FinFibSet \rightarrow_{R} TopFreeMod such that

$$
X \mapsto R^{X}
$$

and for $\phi: X \rightarrow Y$, let $R^{\phi}: R^{X} \rightarrow R^{Y}$ be given by

$$
\left(R^{\phi}\right)(f)(y)=\sum_{x \in \phi^{-1}(\{y\})} f(x)
$$

$f \in R^{X}, y \in Y$.
R^{-}is a monoidal functor, hence it lifts to a functor between categories of monoid objects (it is a property of monoidal functors).

Monoidal category

R_{R} TopFreeMod with $\hat{\otimes}$ becomes a symmetric monoidal category.
Let us define a functor R^{-}: FinFibSet \rightarrow_{R} TopFreeMod such that

$$
X \mapsto R^{X}
$$

and for $\phi: X \rightarrow Y$, let $R^{\phi}: R^{X} \rightarrow R^{Y}$ be given by

$$
\left(R^{\phi}\right)(f)(y)=\sum_{x \in \phi^{-1}(\{y\})} f(x)
$$

$f \in R^{X}, y \in Y$.
R^{-}is a monoidal functor, hence it lifts to a functor between categories of monoid objects (it is a property of monoidal functors). One recovers $M \mapsto R[[M]]$, where M is a finite decomposition monoid, and this corrects the lack of functoriality of the large algebra as defined usually.

Table of contents

(1) Introduction

(2) Finite decomposition monoid
(3) Locally finite monoid
(4) Group and ring schemes

Filtered sets

A (decreasing) filtration on a set X is a decreasing sequence $\left(X_{n}\right)_{n}$ of finite subsets of $X .\left(X,\left(X_{n}\right)_{n}\right)$ is thus called a filtered set.

Filtered sets

A (decreasing) filtration on a set X is a decreasing sequence $\left(X_{n}\right)_{n}$ of finite subsets of $X .\left(X,\left(X_{n}\right)_{n}\right)$ is thus called a filtered set.

A morphism $f:\left(X,\left(X_{n}\right)_{n}\right) \rightarrow\left(Y,\left(Y_{n}\right)_{n}\right)$ is a set-theoretic map $f: X \rightarrow Y$ such that for each $n, f\left(X_{n}\right) \subseteq Y_{n}$. Such a map is said to be a filtration-preserving map.

Filtered sets

A (decreasing) filtration on a set X is a decreasing sequence $\left(X_{n}\right)_{n}$ of finite subsets of $X .\left(X,\left(X_{n}\right)_{n}\right)$ is thus called a filtered set.

A morphism $f:\left(X,\left(X_{n}\right)_{n}\right) \rightarrow\left(Y,\left(Y_{n}\right)_{n}\right)$ is a set-theoretic map $f: X \rightarrow Y$ such that for each $n, f\left(X_{n}\right) \subseteq Y_{n}$. Such a map is said to be a filtration-preserving map.

The category of all filtered sets admits a monoidal tensor $\left(X,\left(X_{n}\right)_{n}\right) \otimes\left(Y,\left(Y_{n}\right)_{n}\right)=\left(X \times Y,\left(T^{n}(X, Y)\right)_{n}\right)$ with

$$
T^{n}(X, Y)=\bigcup_{i=0}^{n} X_{i} \times Y_{n-i}
$$

Filtered sets

A (decreasing) filtration on a set X is a decreasing sequence $\left(X_{n}\right)_{n}$ of finite subsets of $X .\left(X,\left(X_{n}\right)_{n}\right)$ is thus called a filtered set.

A morphism $f:\left(X,\left(X_{n}\right)_{n}\right) \rightarrow\left(Y,\left(Y_{n}\right)_{n}\right)$ is a set-theoretic map $f: X \rightarrow Y$ such that for each $n, f\left(X_{n}\right) \subseteq Y_{n}$. Such a map is said to be a filtration-preserving map.

The category of all filtered sets admits a monoidal tensor $\left(X,\left(X_{n}\right)_{n}\right) \otimes\left(Y,\left(Y_{n}\right)_{n}\right)=\left(X \times Y,\left(T^{n}(X, Y)\right)_{n}\right)$ with

$$
T^{n}(X, Y)=\bigcup_{i=0}^{n} X_{i} \times Y_{n-i}
$$

The unit is the one-point set $*$ with filtration $*_{n}=\emptyset$ for all $n>0$ and $*_{0}=*$.

Sub-monoidal categories

A filtered set $\left(X,\left(X_{n}\right)_{n}\right)$ is

- Exhausted if $X=X_{0}$;
- Separated if $\bigcap_{n \geq 0} X_{n}=\emptyset$;
- Connected if it is both separated and exhausted, and $X_{0} \backslash X_{1}=*$.

Sub-monoidal categories

A filtered set $\left(X,\left(X_{n}\right)_{n}\right)$ is

- Exhausted if $X=X_{0}$;
- Separated if $\bigcap_{n \geq 0} X_{n}=\emptyset$;
- Connected if it is both separated and exhausted, and $X_{0} \backslash X_{1}=*$.

A set X with an exhausted and separated filtration is equivalent to a set X with a length function $\ell: X \rightarrow \mathbb{N} .\left(X_{n}:=\{x \in X: \ell(x) \geq n\}\right.$ and $\ell(x):=\sup \left\{n \in \mathbb{N}: x \in X_{n}\right\}$.)

A filtered set is connected if, and only if, there is a unique element of length zero.

Locally finite monoid

A monoid M is said to be a locally finite monoid if for each $x \in M$, there are only finitely many $x_{1}, \cdots, x_{n} \in M \backslash\{1\}$ such that $x=x_{1} * \cdots * x_{n}$.

Locally finite monoid

A monoid M is said to be a locally finite monoid if for each $x \in M$, there are only finitely many $x_{1}, \cdots, x_{n} \in M \backslash\{1\}$ such that $x=x_{1} * \cdots * x_{n}$.

Such a monoid is necessarily a finite decomposition monoid.

Locally finite monoid

A monoid M is said to be a locally finite monoid if for each $x \in M$, there are only finitely many $x_{1}, \cdots, x_{n} \in M \backslash\{1\}$ such that $x=x_{1} * \cdots * x_{n}$.

Such a monoid is necessarily a finite decomposition monoid.
It may be equipped with a length function
$\ell(x)=\sup \left\{n \in \mathbb{N}: \exists\left(x_{1}, \cdots, x_{n}\right) \in M \backslash\{1\}, x=x_{1} * \cdots * x_{n}\right\}$

Locally finite monoid

A monoid M is said to be a locally finite monoid if for each $x \in M$, there are only finitely many $x_{1}, \cdots, x_{n} \in M \backslash\{1\}$ such that $x=x_{1} * \cdots * x_{n}$.

Such a monoid is necessarily a finite decomposition monoid.
It may be equipped with a length function $\ell(x)=\sup \left\{n \in \mathbb{N}: \exists\left(x_{1}, \cdots, x_{n}\right) \in M \backslash\{1\}, x=x_{1} * \cdots * x_{n}\right\}$ that satisfies $\ell(x * y) \geq \ell(x)+\ell(y)$ and $\ell(x)=0$ if, and only if, $x=1$. It is called the canonical length function.

Locally finite monoid

A monoid M is said to be a locally finite monoid if for each $x \in M$, there are only finitely many $x_{1}, \cdots, x_{n} \in M \backslash\{1\}$ such that $x=x_{1} * \cdots * x_{n}$.

Such a monoid is necessarily a finite decomposition monoid.
It may be equipped with a length function
$\ell(x)=\sup \left\{n \in \mathbb{N}: \exists\left(x_{1}, \cdots, x_{n}\right) \in M \backslash\{1\}, x=x_{1} * \cdots * x_{n}\right\}$ that satisfies $\ell(x * y) \geq \ell(x)+\ell(y)$ and $\ell(x)=0$ if, and only if, $x=1$. It is called the canonical length function.

Hence a locally finite monoid is also a monoid object in the monoidal category of connected filtered sets.

Monoid objects

One now considers the category cSet of all connected filtered sets with finite-fiber and filtration-preserving maps. It is a monoidal category.

Monoid objects

One now considers the category cSet of all connected filtered sets with finite-fiber and filtration-preserving maps. It is a monoidal category.

Theorem

A monoid object in cSet is precisely a locally finite monoid.

Monoid objects

One now considers the category cSet of all connected filtered sets with finite-fiber and filtration-preserving maps. It is a monoidal category.

Theorem

A monoid object in cSet is precisely a locally finite monoid.
Proof: A monoid object in cSet is thus a usual monoid M with a connected filtration $\left(M_{n}\right)_{n}$ of (two-sided) ideals of M. Let ℓ be its associated length function. It thus satisfies $\ell(x * y) \geq \ell(x)+\ell(y)$. Since it is connected, $\ell^{-1}(\{0\})=\{1\}$. Let us assume that there exists some $x \in M$ with arbitrary long non-trivial decompositions. Then, for every n, $\ell(x) \geq n$ (since $x=x_{1} * \cdots * x_{m}, m \geq n, x_{i} \neq 1$) which is impossible since the filtration is separated.

Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M_{k} of submodules.

Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M_{k} of submodules.

Filtered maps: Linear maps that respect the filtrations.

Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M_{k} of submodules.

Filtered maps: Linear maps that respect the filtrations.
Complete filtered module: $M \cong \lim _{\leftrightarrows_{n}} M / M_{k}$.

Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M_{k} of submodules.

Filtered maps: Linear maps that respect the filtrations.
Complete filtered module: $M \cong \lim _{\leftrightarrows_{n}} M / M_{k}$. Any filtered module M admits a completion, namely $\hat{M}=\lim _{\leftrightarrows_{n}} M / M_{k}$.

Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M_{k} of submodules.

Filtered maps: Linear maps that respect the filtrations.
Complete filtered module: $M \cong \lim _{\leftrightarrows_{n}} M / M_{k}$. Any filtered module M admits a completion, namely $\hat{M}=\lim _{\curvearrowleft} M / M_{k}$. Let \hat{M}_{n} be the kernel of the projection $\hat{M} \rightarrow M / M_{n}$. Then \hat{M} is filtered (with $\left.\left(\hat{M}_{n}\right)_{n}\right)$ and $\hat{M} \cong \lim _{n} \hat{M} / \hat{M}_{n}$.

Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M_{k} of submodules.

Filtered maps: Linear maps that respect the filtrations.
Complete filtered module: $M \cong \lim _{{ }_{n}} M / M_{k}$. Any filtered module M admits a completion, namely $\hat{M}=\lim _{\curvearrowleft} M / M_{k}$. Let \hat{M}_{n} be the kernel of the projection $\hat{M} \rightarrow M / M_{n}$. Then \hat{M} is filtered (with $\left.\left(\hat{M}_{n}\right)_{n}\right)$ and $\hat{M} \cong \lim _{n} \hat{M} / \hat{M}_{n}$.

Filtered tensor product: The algebraic tensor product $M \otimes_{R} N$ together with the filtration $\sum_{i+j=n} M_{i} \otimes_{R} N_{j}$.

Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M_{k} of submodules.

Filtered maps: Linear maps that respect the filtrations.
Complete filtered module: $M \cong \lim _{{ }_{n}} M / M_{k}$. Any filtered module M admits a completion, namely $\hat{M}=\lim _{n} M / M_{k}$. Let \hat{M}_{n} be the kernel of the projection $\hat{M} \rightarrow M / M_{n}$. Then \hat{M} is filtered (with $\left.\left(\hat{M}_{n}\right)_{n}\right)$ and $\hat{M} \cong \lim _{n} \hat{M} / \hat{M}_{n}$.

Filtered tensor product: The algebraic tensor product $M \otimes_{R} N$ together with the filtration $\sum_{i+j=n} M_{i} \otimes_{R} N_{j}$.

Completed tensor product: $M \hat{\otimes} N=\widehat{M \otimes_{R}} N$.

Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M_{k} of submodules.

Filtered maps: Linear maps that respect the filtrations.
Complete filtered module: $M \cong \lim _{{ }_{n}} M / M_{k}$. Any filtered module M admits a completion, namely $\hat{M}=\lim _{n} M / M_{k}$. Let \hat{M}_{n} be the kernel of the projection $\hat{M} \rightarrow M / M_{n}$. Then \hat{M} is filtered (with $\left.\left(\hat{M}_{n}\right)_{n}\right)$ and $\hat{M} \cong \lim _{n} \hat{M} / \hat{M}_{n}$.

Filtered tensor product: The algebraic tensor product $M \otimes_{R} N$ together with the filtration $\sum_{i+j=n} M_{i} \otimes_{R} N_{j}$.

Completed tensor product: $M \hat{\otimes} N=\widehat{M \otimes_{R}} N$.
Monoid objects: Filtered (complete) R-algebras.

Large algebra

Let M be a locally finite monoid. Then, its canonical filtration induces (functorially) a structure of an exhausted and separated filtered algebra on $R[[M]]$.

Large algebra

Let M be a locally finite monoid. Then, its canonical filtration induces (functorially) a structure of an exhausted and separated filtered algebra on $R[[M]]$.

It is given by $\mathfrak{I}_{n}=\left\{f \in R^{M}: \forall x(\ell(x)<n \Rightarrow f(x)=0)\right\}$.

Large algebra

Let M be a locally finite monoid. Then, its canonical filtration induces (functorially) a structure of an exhausted and separated filtered algebra on $R[[M]]$.

It is given by $\mathfrak{I}_{n}=\left\{f \in R^{M}: \forall x(\ell(x)<n \Rightarrow f(x)=0)\right\}$.
The associated (linear) topology is always stronger than the product topology (i.e., the canonical projections are continuous), and can be even strictly stronger.

Large algebra

Let M be a locally finite monoid. Then, its canonical filtration induces (functorially) a structure of an exhausted and separated filtered algebra on $R[[M]]$.

It is given by $\mathfrak{I}_{n}=\left\{f \in R^{M}: \forall x(\ell(x)<n \Rightarrow f(x)=0)\right\}$.
The associated (linear) topology is always stronger than the product topology (i.e., the canonical projections are continuous), and can be even strictly stronger.
$R[[M]]$ is complete in this topology but is not necessarily the completion of $R[M]$ with the induced topology.

Remark

Of course R^{-}is again a monoidal functor from the category of connected filtered sets (with finite-fiber and filtration-preserving maps) to that of complete filtered modules.

Remark

Of course R^{-}is again a monoidal functor from the category of connected filtered sets (with finite-fiber and filtration-preserving maps) to that of complete filtered modules.

Hence it lifts to a functor $R[[-]]$ from the category of locally finite monoids to that of complete filtered algebras.

Remark

Of course R^{-}is again a monoidal functor from the category of connected filtered sets (with finite-fiber and filtration-preserving maps) to that of complete filtered modules.

Hence it lifts to a functor $R[[-]]$ from the category of locally finite monoids to that of complete filtered algebras.

Remark

$R[[M]]$ is an augmented algebra with augmentation ideal \mathfrak{I}_{1} (this is due to the fact that M is connected as a filtered set).

Table of contents

(1) Introduction

(2) Finite decomposition monoid
(3) Locally finite monoid

4 Group and ring schemes

From large algebra to representable functor

Let M be a finite decomposition monoid.
Let us define a functor $(-)^{M}:{ }_{c} \mathbf{A l g}_{R} \rightarrow$ Set by $A \mapsto A^{M}$.
It is representable with coordinate ring $R\left[x_{a}: a \in M\right.$] (polynomial ring in the indeterminates $\left.x_{a}, a \in M\right)$.

Ring scheme (or Hopf ring)

Actually the multiplicative and additive structures of $A[[M]]$ are natural in the commutative algebra A. Hence $A \mapsto A[[M]]$ forms a ring object in the category of representable functors.

Ring scheme (or Hopf ring)

Actually the multiplicative and additive structures of $A[[M]]$ are natural in the commutative algebra A. Hence $A \mapsto A[[M]]$ forms a ring object in the category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on $R\left[x_{a}: a \in M\right]$ (i.e., a ring object in the category of cocommutative coalgebras or a monoid object in the category of "abelian" Hopf algebras).

Ring scheme (or Hopf ring)

Actually the multiplicative and additive structures of $A[[M]]$ are natural in the commutative algebra A. Hence $A \mapsto A[[M]]$ forms a ring object in the category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on $R\left[x_{a}: a \in M\right]$ (i.e., a ring object in the category of cocommutative coalgebras or a monoid object in the category of "abelian" Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra structure maps $\Delta_{\text {prim }}\left(x_{a}\right)=x_{a} \otimes 1+1 \otimes x_{a}, \epsilon_{\text {prim }}\left(x_{a}\right)=0$ and $S_{\text {prim }}\left(x_{a}\right)=-x_{a}, a \in M$.

Ring scheme (or Hopf ring)

Actually the multiplicative and additive structures of $A[[M]]$ are natural in the commutative algebra A. Hence $A \mapsto A[[M]]$ forms a ring object in the category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on $R\left[x_{a}: a \in M\right]$ (i.e., a ring object in the category of cocommutative coalgebras or a monoid object in the category of "abelian" Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra structure maps $\Delta_{\text {prim }}\left(x_{a}\right)=x_{a} \otimes 1+1 \otimes x_{a}, \epsilon_{\text {prim }}\left(x_{a}\right)=0$ and $S_{\text {prim }}\left(x_{a}\right)=-x_{a}, a \in M$.

The multiplicative part induces a bialgebra with $\Delta\left(x_{a}\right)=\sum_{b * c=a} x_{b} \otimes x_{c}$ and $\epsilon\left(x_{a}\right)=1$.

Ring scheme (or Hopf ring)

Actually the multiplicative and additive structures of $A[[M]]$ are natural in the commutative algebra A. Hence $A \mapsto A[[M]]$ forms a ring object in the category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on $R\left[x_{a}: a \in M\right]$ (i.e., a ring object in the category of cocommutative coalgebras or a monoid object in the category of "abelian" Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra structure maps $\Delta_{\text {prim }}\left(x_{a}\right)=x_{a} \otimes 1+1 \otimes x_{a}, \epsilon_{\text {prim }}\left(x_{a}\right)=0$ and $S_{\text {prim }}\left(x_{a}\right)=-x_{a}, a \in M$.

The multiplicative part induces a bialgebra with $\Delta\left(x_{a}\right)=\sum_{b * c=a} x_{b} \otimes x_{c}$ and $\epsilon\left(x_{a}\right)=1$.

Of course both structures are related so that ring axioms hold.

Reconstruction theorem

Theorem
The large algebra $R[[M]]$ is isomorphic to the ring of R-rational points of the ring scheme $(-)[[M]]$.

Reconstruction theorem

Theorem

The large algebra $R[[M]]$ is isomorphic to the ring of R-rational points of the ring scheme $(-)[[M]]$.

Proof: This comes from ${ }_{c} \operatorname{Alg}_{R}\left(R\left[x_{a}: a \in M\right], R\right) \cong R[[M]]$ (of course as sets but also as rings).

Locally finite monoids to Hopf algebras

Let M be a locally finite monoid.

Locally finite monoids to Hopf algebras

Let M be a locally finite monoid.
Let A be a commutative R-algebra with a unit. Let us define $1+\mathfrak{I}_{1}(A)=\{f: M \rightarrow A: f(1)=1\}$. It is a subgroup of the group of invertible elements of $A[[M]]$.

Locally finite monoids to Hopf algebras

Let M be a locally finite monoid.
Let A be a commutative R-algebra with a unit. Let us define $1+\mathfrak{I}_{1}(A)=\{f: M \rightarrow A: f(1)=1\}$. It is a subgroup of the group of invertible elements of $A[[M]]$.

It defines a group scheme $A \mapsto 1+\mathfrak{I}_{1}(A)$ with representing (or coordinate) Hopf algebra $R\left[x_{a}: a \in M \backslash\{1\}\right]$.

Locally finite monoids to Hopf algebras

Let M be a locally finite monoid.
Let A be a commutative R-algebra with a unit. Let us define $1+\mathfrak{I}_{1}(A)=\{f: M \rightarrow A: f(1)=1\}$. It is a subgroup of the group of invertible elements of $A[[M]]$.

It defines a group scheme $A \mapsto 1+\mathfrak{I}_{1}(A)$ with representing (or coordinate) Hopf algebra $R\left[x_{a}: a \in M \backslash\{1\}\right]$.

The antipode S is given by $S\left(x_{a}\right)=\mu(a)$ for each $a \in M \backslash\{1\}$, where μ is the Möbius function of M.

