Differential (Lie) algebras from a functorial point of view

Laurent Poinsot

LIPN & CReA University Paris XIII & École de l'Air France

AADIOS

Algebraic and Algorithmic Differential and Integral Operator Session

ACA 2014

New York, 9-12 July 2014

July, 10th 2014

Table of contents

2 Introduction to universal algebra

3 Differential (universal) algebra

Oifferential Lie algebras and their enveloping differential algebras

Lie algebras

Let R be a commutative ring with a unit.

A Lie algebra $(\mathfrak{g}, [-, -])$ is the data of a *R*-module \mathfrak{g} and a bilinear binary operation $[-, -]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called the Lie bracket, such that

- It is alternating: [x, x] = 0 for every $x \in \mathfrak{g}$.
- It satisfies the Jacobi identity

$$[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0$$

for each $x, y, z \in \mathfrak{g}$.

A Lie algebra is said to be commutative whenever its bracket is the zero map.

Universal enveloping algebra

Any (say unital and associative) algebra (A, \cdot) may be turned into a Lie algebra when equipped with the commutator bracket

 $[x,y] = x \cdot y - y \cdot x \; .$

Actually this defines a functor from the category Ass to the category Lie.

This functor admits a left adjoint namely the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of a Lie algebra \mathfrak{g} .

One has

$$\mathcal{U}(\mathfrak{g}) \cong \mathsf{T}(\mathfrak{g})/\langle xy - yx - [x, y] \colon x, y \in \mathfrak{g}
angle$$

where T(M) is the tensor algebra of a *R*-module *M*.

Poincaré-Birkhoff-Witt theorem

Let \mathfrak{g} be a Lie algebra (over R).

Let $j: \mathfrak{g} \to \mathcal{U}(\mathfrak{g})$ be the Lie map defined as the composition $\mathfrak{g} \xrightarrow{incl} \mathsf{T}(\mathfrak{g}) \xrightarrow{\pi} \mathcal{U}(\mathfrak{g})$ (where π is the canonical projection, and $\mathcal{U}(\mathfrak{g})$ is seen as a Lie algebra under its commutator bracket).

PBW Theorem

If R is a field, then j is one-to-one.

More generally, P.M. Cohn proved in 1963 that if the underlying R-module of \mathfrak{g} is torsion-free, then j is one-to-one.

Is there a way to extend the notion of universal enveloping algebra to the differential setting?

Is there a way to extend the notion of universal enveloping algebra to the differential setting?

Yes. And even (at least) two different ways.

Is there a way to extend the notion of universal enveloping algebra to the differential setting?

Yes. And even (at least) two different ways.

The first one is a somewhat "trivial" extension. Indeed, a derivation on an algebra is also a derivation for its commutator bracket. Moreover the universal enveloping algebra may be equipped with a derivation that extends the derivation of the Lie algebra, and the Poincaré-Birkhoff-Witt theorem remains unchanged.

Is there a way to extend the notion of universal enveloping algebra to the differential setting?

Yes. And even (at least) two different ways.

The first one is a somewhat "trivial" extension. Indeed, a derivation on an algebra is also a derivation for its commutator bracket. Moreover the universal enveloping algebra may be equipped with a derivation that extends the derivation of the Lie algebra, and the Poincaré-Birkhoff-Witt theorem remains unchanged.

The other one is rather different (since it is not based on the commutator) and is sketched hereafter.

Now, let us assume that (A, \cdot, d) is a differential commutative algebra.

There is another bracket given by the Wronskian

```
W(x,y) = x \cdot d(y) - d(x) \cdot y
```

which turns A into a Lie algebra.

The above correspondence is actually functorial.

Now, let us assume that (A, \cdot, d) is a differential commutative algebra.

There is another bracket given by the Wronskian

 $W(x,y) = x \cdot d(y) - d(x) \cdot y$

which turns A into a Lie algebra.

The above correspondence is actually functorial. Whence one can ask a few questions:

 Does it admit a left adjoint ? In other terms, is there a universal enveloping differential (commutative) algebra ? (Call it the Wronskian enveloping algebra.)

Now, let us assume that (A, \cdot, d) is a differential commutative algebra.

There is another bracket given by the Wronskian

 $W(x,y) = x \cdot d(y) - d(x) \cdot y$

which turns A into a Lie algebra.

The above correspondence is actually functorial. Whence one can ask a few questions:

Does it admit a left adjoint ? In other terms, is there a universal enveloping differential (commutative) algebra ? (Call it the Wronskian enveloping algebra.) Yes.

Now, let us assume that (A, \cdot, d) is a differential commutative algebra.

There is another bracket given by the Wronskian

 $W(x,y) = x \cdot d(y) - d(x) \cdot y$

which turns A into a Lie algebra.

The above correspondence is actually functorial. Whence one can ask a few questions:

- Does it admit a left adjoint ? In other terms, is there a universal enveloping differential (commutative) algebra ? (Call it the Wronskian enveloping algebra.) Yes.
- Onder which assumptions the canonical map from a Lie algebra to its differential enveloping algebra is one-to-one ?

Now, let us assume that (A, \cdot, d) is a differential commutative algebra.

There is another bracket given by the Wronskian

 $W(x,y) = x \cdot d(y) - d(x) \cdot y$

which turns A into a Lie algebra.

The above correspondence is actually functorial. Whence one can ask a few questions:

- Does it admit a left adjoint ? In other terms, is there a universal enveloping differential (commutative) algebra ? (Call it the Wronskian enveloping algebra.) Yes.
- Onder which assumptions the canonical map from a Lie algebra to its differential enveloping algebra is one-to-one ? Unfortunatly, I don't know the answer yet.

Now, let us assume that (A, \cdot, d) is a differential commutative algebra.

There is another bracket given by the Wronskian

 $W(x,y) = x \cdot d(y) - d(x) \cdot y$

which turns A into a Lie algebra.

The above correspondence is actually functorial. Whence one can ask a few questions:

- Does it admit a left adjoint ? In other terms, is there a universal enveloping differential (commutative) algebra ? (Call it the Wronskian enveloping algebra.) Yes.
- Onder which assumptions the canonical map from a Lie algebra to its differential enveloping algebra is one-to-one ? Unfortunatly, I don't know the answer yet.

In this talk I will only address the first question.

Table of contents

2 Introduction to universal algebra

- 3 Differential (universal) algebra
- ④ Differential Lie algebras and their enveloping differential algebras

Equational varieties

A class V of Σ -algebras is said to be an equational variety when each member of the class satisfies some given axioms or identities.

Each variety of Σ -algebras with its homomorphisms (maps preserving the structural operations) forms a category.

One of the key features of equational varieties is the fact that they come equipped with a forgetful functor $U_{\mathbf{V}}: \mathbf{V} \to \mathbf{Set}$ (it maps an algebra to its carrier set). So they are concrete categories over **Set** (and even monadic).

Some (counter-)examples

- Semigroups, inverse semigroups, monoids, commutative monoids, groups, abelian groups, rings, *R*-algebras for a unital commutative ring, Lie algebras, Jordan algebras, etc.
- Fields (the inverse operation is only partially defined) and the category of monoids with invertible elements (groups!), because it is not closed under sub-algebras (e.g., the sub-monoid N of Z).

Algebraic functors

Let \boldsymbol{V} and \boldsymbol{W} be two equational varieties of $\boldsymbol{\Sigma}\text{-algebras}.$

A functor $F: \mathbf{V} \to \mathbf{W}$ is said to be an algebraic functor if it preserves the forgetful functors, i.e., $U_{\mathbf{W}} \circ F = U_{\mathbf{V}}$.

Theorem (Bill Lawvere)

Any algebraic functor admits a left adjoint.

In particular the forgetful functor U_V itself has a left adjoint. Hence for any set X, there exists a free algebra V[X] in the variety V.

Table of contents

- 2 Introduction to universal algebra
- Oifferential (universal) algebra
- Oifferential Lie algebras and their enveloping differential algebras

Generalities about differential algebras

Let R be a commutative ring with a unit.

Let **V** be a variety of (not necessarily associative nor unital) *R*-algebras (i.e., *R*-modules *M* with a binary operation $\cdot: M \otimes_R M \to M$ subject to some axioms).

For V have in mind Ass or Lie.

Generalities about differential algebras

Let R be a commutative ring with a unit.

Let **V** be a variety of (not necessarily associative nor unital) *R*-algebras (i.e., *R*-modules *M* with a binary operation $\cdot: M \otimes_R M \to M$ subject to some axioms).

For V have in mind Ass or Lie.

A derivation $d: M \rightarrow M$ is a *R*-linear map that satisfies Leibniz identity

 $d(x \cdot y) = d(x) \cdot y + x \cdot d(y) .$

By considering algebras (M, \cdot) of **V** with a derivation *d* and homomorphisms of algebras commuting with derivations, one gets a variety, say **DiffV**, of differential algebras (in **V**).

Differential ideals

A (differential) ideal I of a differential algebra (M, \cdot, d) is just an ideal of (M, \cdot) (i.e., $M \cdot I \subseteq I \supseteq I \cdot M$) such that $d(I) \subseteq I$.

It turns out that M/I becomes a differential algebra with derivation $\tilde{d}(x + I) = d(x) + I$ and the natural epimorphism $M \to M/I$ is a homomorphism of differential algebras.

It makes also sense to talk about the least differential ideal generated by a set.

Reflective sub-category (1/2)

The variety V embeds into the variety **DiffV** since any algebra in V may be seen as a differential algebra with the zero (or trivial) derivation.

Of course this embedding preserves the forgetful functors, hence admits a left adjoint, i.e., V is a reflective sub-category of DiffV, this means that any differential algebra (in V) "freely generates" an algebra in V.

Reflective sub-category (1/2)

The variety V embeds into the variety **DiffV** since any algebra in V may be seen as a differential algebra with the zero (or trivial) derivation.

Of course this embedding preserves the forgetful functors, hence admits a left adjoint, i.e., V is a reflective sub-category of DiffV, this means that any differential algebra (in V) "freely generates" an algebra in V.

The construction: let (M, \cdot, d) be a member of **DiffV**. Let I_d be the (algebraic) ideal generated im(d). Thus, M/I_d is a member of **V**, and the natural projection $\pi: M \to M/I_d$ is a homomorphism of algebras.

Reflective sub-category (2/2) Universal property

Given an algebra (N, \cdot) and a homomorphism of differential algebras $\phi: (M, \cdot, d) \to (N, \cdot, 0)$, because $\phi \circ d = 0$, it passes to the quotient and gives rise to a unique homomorphism of algebras $\hat{\phi}: (M/I_d, \cdot) \to (N, \cdot)$ such that $\hat{\phi} \circ \pi = \phi$.

Forgetful functor (1/2)

Conversely, there is an obvious forgetful functor $\text{DiffV} \to \text{V}$ which also admits a left adjoint.

Hence any algebra in V "freely generates" a differential algebra (in V).

Forgetful functor (1/2)

Conversely, there is an obvious forgetful functor $\text{DiffV} \to \text{V}$ which also admits a left adjoint.

Hence any algebra in V "freely generates" a differential algebra (in V).

The construction: let (M, \cdot) be an algebra in **V**. Let FDiffV(|M|) be the free differential algebra generated by the set |M| (carrier set of (M, \cdot)), and let $j: |M| \rightarrow |FDiffV(|M|)|$ be the canonical inclusion. Let I be the differential ideal generated by j(x + y) - j(x) - j(y), $j(x \cdot y) - j(x)j(y)$, j(rx) - rj(x), $x, y \in |M|$, $r \in R$.

Then, FDiffV(|M|)/I is the free differential algebra generated by (M, \cdot) .

Forgetful functor (2/2) Universal property

Let (N, \cdot, e) be a differential algebra, and let $\phi: (M, \cdot) \to (N, \cdot)$ be an algebra map.

Let $\hat{\phi}$: *FDiffV*(|M|) \rightarrow (N, \cdot, e) be the unique differential algebra map such that $\hat{\phi} \circ j = \phi$.

Of course $I \subseteq \ker \hat{\phi}$ (since ϕ is an algebra map).

Hence there is a unique differential algebra map $\tilde{\phi} \colon FDiffV(|M|)/I \to (N, \cdot, e)$ such that $\tilde{\phi} \circ \pi \circ j = \phi$.

Table of contents

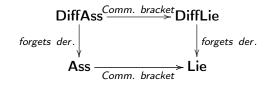
- 2 Introduction to universal algebra
- 3 Differential (universal) algebra

Extension of the usual universal enveloping algebra to the differential setting

Let (A, d) be a differential (associative) algebra.

One has d([x, y]) = d(xy - yx) = d(x)y + xd(y) - d(y)x - yd(x) = [d(x), y] + [x, d(y)]. Hence, (A, [-, -], d) is a differential Lie algebra.

This gives rise to a functor **DiffAss** \rightarrow **DiffLie** which makes commute the following diagram (of forgetful functors).



All functors in this diagram admit a left adjoint.

A construction

Let $(\mathfrak{g}, [-, -], d)$ be a differential Lie algebra.

Let ∂ be the unique derivation on T(g) that extends d. It satisfies $\partial(xy - yx - [x, y]) = d(x)y + xd(y) - d(y)x - yd(x) - [d(x), y] - [x, d(y)] = d(x)y - yd(x) - [d(x), y] + xd(y) - d(y)x - [x, d(y)]$, so it factors as a linear map $\tilde{\partial}: \mathcal{U}(g) \to \mathcal{U}(g)$ which is easily seen to be a derivation.

 $(\mathcal{U}(\mathfrak{g}), \tilde{\partial})$ satisfies the following universal property:

Let (A, D) be a differential algebra, and let $\phi: (\mathfrak{g}, [-, -], d) \rightarrow (A, [-, -], D)$ be a homomorphism of differential Lie algebras.

Then, there is a unique homomorphism of differential algebras $\hat{\phi} : (\mathcal{U}(\mathfrak{g}), \tilde{\partial}) \to (A, D)$ such that $\hat{\phi} \circ j = \phi$.

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations.

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations. Let $\bar{\phi} \colon \mathsf{T}(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ .

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations. Let $\bar{\phi} \colon \mathsf{T}(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ . Of course, $\bar{\phi} = \hat{\phi} \circ \pi$.

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations. Let $\bar{\phi}: \mathsf{T}(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ . Of course, $\bar{\phi} = \hat{\phi} \circ \pi$. By recurrence (on the length of a simple tensor) one can check that $\bar{\phi} \circ \partial = D \circ \bar{\phi}$ (one uses the fact that ϕ commutes to the derivations).

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations. Let $\bar{\phi}: T(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ . Of course, $\bar{\phi} = \hat{\phi} \circ \pi$. By recurrence (on the length of a simple tensor) one can check that $\bar{\phi} \circ \partial = D \circ \bar{\phi}$ (one uses the fact that ϕ commutes to the derivations). Thus, one has $\hat{\phi} \circ \tilde{\partial} \circ \pi = \hat{\phi} \circ \pi \circ \partial$

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations. Let $\bar{\phi}: T(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ . Of course, $\bar{\phi} = \hat{\phi} \circ \pi$. By recurrence (on the length of a simple tensor) one can check that $\bar{\phi} \circ \partial = D \circ \bar{\phi}$ (one uses the fact that ϕ commutes to the derivations). Thus, one has $\hat{\phi} \circ \tilde{\partial} \circ \pi = \hat{\phi} \circ \pi \circ \partial = \bar{\phi} \circ \partial$

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations. Let $\bar{\phi}: T(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ . Of course, $\bar{\phi} = \hat{\phi} \circ \pi$. By recurrence (on the length of a simple tensor) one can check that $\bar{\phi} \circ \partial = D \circ \bar{\phi}$ (one uses the fact that ϕ commutes to the derivations). Thus, one has $\hat{\phi} \circ \tilde{\partial} \circ \pi = \hat{\phi} \circ \pi \circ \partial = \phi \circ \partial = D \circ \bar{\phi}$

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations. Let $\bar{\phi}: T(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ . Of course, $\bar{\phi} = \hat{\phi} \circ \pi$. By recurrence (on the length of a simple tensor) one can check that $\bar{\phi} \circ \partial = D \circ \bar{\phi}$ (one uses the fact that ϕ commutes to the derivations). Thus, one has $\hat{\phi} \circ \tilde{\partial} \circ \pi = \hat{\phi} \circ \pi \circ \partial = \bar{\phi} \circ \partial = D \circ \bar{\phi} = D \circ \hat{\phi} \circ \pi$.

Indeed, ϕ is of course a homomorphism of Lie algebras from $(\mathfrak{g}, [-, -])$ to (A, [-, -]), hence there is a unique algebra map $\hat{\phi} \colon \mathcal{U}(\mathfrak{g}) \to A$ such that $\hat{\phi} \circ j = \phi$.

It remains to check that $\hat{\phi}$ commutes to the derivations. Let $\bar{\phi}: T(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ . Of course, $\bar{\phi} = \hat{\phi} \circ \pi$. By recurrence (on the length of a simple tensor) one can check that $\bar{\phi} \circ \partial = D \circ \bar{\phi}$ (one uses the fact that ϕ commutes to the derivations). Thus, one has $\hat{\phi} \circ \tilde{\partial} \circ \pi = \hat{\phi} \circ \pi \circ \partial = \bar{\phi} \circ \partial = D \circ \bar{\phi} = D \circ \hat{\phi} \circ \pi$. Hence $\hat{\phi} \circ \tilde{\partial} = D \circ \hat{\phi}$ (since π is onto).

The Wronskian bracket

Let (A, d) be a commutative differential (associative and unital) *R*-algebra.

Let us define the Wronskian bracket

W(x,y) := xd(y) - d(x)y .

Of course it is alternating W(x, x) = xd(x) - d(x)x = 0 (since A is commutative).

Moreover it satisfies Jacobi identity.

Hence (A, W) turns to be a Lie algebra.

Moreover d(W(x, y)) = d(xd(y) - d(x)y) = $d(x)d(y) + xd^2(y) - d^2(x)y - d(x)d(y) = xd^2(y) - d^2(x)y.$

While

 $W(d(x), y) + W(x, d(y)) = d(x)d(y) - d^{2}(x)y + xd^{2}(y) - d(x)d(y).$

Hence (A, W, d) is a differential Lie algebra.

This defines a functor, say the Wronskian, $(A, d) \mapsto (A, W, d)$ from DiffComAss to DiffLie.

Wronskian enveloping algebra

One observes that the Wronskian functor preserves the obvious forgetful functors,

so it is an algebraic functor,

and it admits a left adjoint $\ensuremath{\mathcal{W}}$, the Wronskian enveloping algebra.

Construction of the differential enveloping algebra (1/2)

Let $(\mathfrak{g}, [-, -], d)$ be a differential Lie algebra.

Let $S(\mathfrak{g})$ be the symmetric algebra of the module \mathfrak{g} which becomes a differential algebra with the unique derivation ∂ that extends the map $\partial(x) = d(x)$ on the generators $x \in \mathfrak{g}$

Remark

Actually, one defines the derivation ∂ on the tensor algebra $T(\mathfrak{g})$, and since it commutes to the permutation of variables, it factors through $S(\mathfrak{g})$.

Construction of the Wronskian enveloping algebra (2/2)

Let us consider the (algebraic) ideal I generated by d(x)y - xd(y) - [x, y], $x, y \in \mathfrak{g}$.

One observes that $\partial(I) \subseteq I$. Hence I is actually a differential ideal.

Then, the Wronskian enveloping algebra $\mathcal{W}(\mathfrak{g}, [-, -], d)$ is $(S(\mathfrak{g})/I, \tilde{\partial})$.

Universal property of the Wronskian enveloping algebra

Let (A, δ) be any commutative differential algebra, and let $\phi : (g, [-, -], d) \mapsto (A, W, \delta)$ be a homomorphism of differential Lie algebras.

Then, there exists a unique differential algebra map $\tilde{\phi} \colon (\mathsf{S}(\mathfrak{g})/I, \tilde{\partial}) \to (A, \delta)$ such that $\tilde{\phi}(x + I) = \phi(x)$ for each $x \in \mathfrak{g}$.

Let $\hat{\phi} \colon \mathsf{S}(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ .

Let $\hat{\phi} \colon \mathsf{S}(\mathfrak{g}) \to \mathsf{A}$ be the unique algebra map that extends ϕ .

One easily observes that $\hat{\phi}$ commutes to the derivations, and so defines a homomorphism of differential algebras.

Let $\hat{\phi} \colon \mathsf{S}(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ .

One easily observes that $\hat{\phi}$ commutes to the derivations, and so defines a homomorphism of differential algebras.

Moreover it satisfies $\hat{\phi}(d(x)y - xd(y) - [x, y]) = \delta(\phi(x))\phi(y) - \phi(x)\delta(\phi(y)) - [\phi(x), \phi(y)]$

Let $\hat{\phi} \colon \mathsf{S}(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ .

One easily observes that $\hat{\phi}$ commutes to the derivations, and so defines a homomorphism of differential algebras.

Moreover it satisfies $\hat{\phi}(d(x)y - xd(y) - [x, y]) = \delta(\phi(x))\phi(y) - \phi(x)\delta(\phi(y)) - [\phi(x), \phi(y)] = W(\phi(x), \phi(y)) - [\phi(x), \phi(y)]$

Let $\hat{\phi} \colon \mathsf{S}(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ .

One easily observes that $\hat{\phi}$ commutes to the derivations, and so defines a homomorphism of differential algebras.

Moreover it satisfies $\hat{\phi}(d(x)y - xd(y) - [x, y]) = \delta(\phi(x))\phi(y) - \phi(x)\delta(\phi(y)) - [\phi(x), \phi(y)] = W(\phi(x), \phi(y)) - [\phi(x), \phi(y)] = 0.$

Let $\hat{\phi} \colon \mathsf{S}(\mathfrak{g}) \to A$ be the unique algebra map that extends ϕ .

One easily observes that $\hat{\phi}$ commutes to the derivations, and so defines a homomorphism of differential algebras.

Moreover it satisfies $\hat{\phi}(d(x)y - xd(y) - [x, y]) = \delta(\phi(x))\phi(y) - \phi(x)\delta(\phi(y)) - [\phi(x), \phi(y)] = W(\phi(x), \phi(y)) - [\phi(x), \phi(y)] = 0.$

Hence it factors through I and provides a unique homomorphism of differential algebras $\tilde{\phi}$ from $(S(\mathfrak{g})/I, \tilde{\partial})$ to (A, δ) such that $\tilde{\phi}(x + I) = \phi(x), x \in \mathfrak{g}$.

A special case: a Lie algebra with the zero derivation

Let $(\mathfrak{g}, [-, -])$ be a Lie algebra. Then it may be faithfully identified with the differential Lie algebra $(\mathfrak{g}, [-, -], \mathbf{0})$.

The derivation on $\mathsf{S}(\mathfrak{g})$ that extends the zero derivation is also just the zero derivation.

The differential ideal *I* is equal to the (algebraic) ideal generated by [x, y], $x, y \in \mathfrak{g}$.

Hence it follows that in case \mathfrak{g} is not commutative (i.e., [-, -] is not identically null), \mathfrak{g} does not embed into its universal enveloping differential (commutative) algebra $\mathcal{W}(\mathfrak{g})$ even if R is a field!

Of course if \mathfrak{g} is a commutative Lie algebra (i.e., with a zero bracket), then it embeds into its Wronskian enveloping algebra which is just $S(\mathfrak{g})$ (and the same as its universal enveloping algebra).

$\mathfrak{sl}_2(\mathbb{K})$

Let $\mathbb K$ be a field of characteristic zero.

The Lie algebra $\mathfrak{sl}_2(\mathbb{K})$ embeds into the algebra of vector fields of $\mathbb{K}[x]$ by the identification of the elements of its Chevalley basis e = -1, h = -2x, and $f = x^2$ (the familiar commutation rules are satisfied [h, e] = 2e, [h, f] = -2f and [e, f] = h).

It is a differential Lie algebra when equipped with the usual derivation of polynomials.

Hence it embeds into the commutative differential algebra $(\mathbb{K}[x], \partial)$ as a sub-Lie algebra under the Wronskian bracket, therefore it embeds into its Wronskian enveloping algebra.

Conclusion

The problem of embeddability of a differential Lie algebra into its Wronskian enveloping algebra seems to be quite harder than the classical situation (e.g., the case of a non-commutative differential Lie algebra with a zero derivation).

It also seems to be connected to the (faithful) realization of a Lie algebra as a Lie algebra of vector fields. For instance, given two polynomials (seen as vector fields) $P(x)\frac{d}{dx}$, $Q(x)\frac{d}{dx}$, one has $[P(x)\frac{d}{dx}, Q(x)\frac{d}{dx}] = W(P(x), Q(x))\frac{d}{dx}$.

But Lie algebras of vector fields satisfy some non-trivial identities.

Let R be a commutative ring with a unit.

Let *R* be a commutative ring with a unit. Let **V** be a variety of (not necessarily associative nor unital) *R*-algebras (i.e., modules *M* with a bilinear binary operation $\cdot: M \times M \to M$).

Let *R* be a commutative ring with a unit. Let **V** be a variety of (not necessarily associative nor unital) *R*-algebras (i.e., modules *M* with a bilinear binary operation $\cdot: M \times M \to M$).

A Rota-Baxter operator (of weight zero) $B: M \to M$ is a *R*-linear map satisfying the Rota-Baxter identity

 $B(x) \cdot B(y) = B(B(x) \cdot y + x \cdot B(y)) .$

Let *R* be a commutative ring with a unit. Let **V** be a variety of (not necessarily associative nor unital) *R*-algebras (i.e., modules *M* with a bilinear binary operation $\cdot: M \times M \to M$).

A Rota-Baxter operator (of weight zero) $B: M \to M$ is a *R*-linear map satisfying the Rota-Baxter identity

 $B(x) \cdot B(y) = B(B(x) \cdot y + x \cdot B(y)) .$

By considering algebras (M, \cdot) of **V** with a Rota-Baxter operator R and homomorphisms commuting with the Rota-Baxter operators, one obtains a variety **RBV** of Rota-Baxter algebras.

Let *R* be a commutative ring with a unit. Let **V** be a variety of (not necessarily associative nor unital) *R*-algebras (i.e., modules *M* with a bilinear binary operation $\cdot: M \times M \to M$).

A Rota-Baxter operator (of weight zero) $B: M \to M$ is a *R*-linear map satisfying the Rota-Baxter identity

 $B(x) \cdot B(y) = B(B(x) \cdot y + x \cdot B(y)) .$

By considering algebras (M, \cdot) of **V** with a Rota-Baxter operator R and homomorphisms commuting with the Rota-Baxter operators, one obtains a variety **RBV** of Rota-Baxter algebras. In what follows we are interested in the cases where **V** = **Ass** and **V** = **Lie**.

Let *R* be a commutative ring with a unit. Let **V** be a variety of (not necessarily associative nor unital) *R*-algebras (i.e., modules *M* with a bilinear binary operation $\cdot: M \times M \to M$).

A Rota-Baxter operator (of weight zero) $B: M \to M$ is a *R*-linear map satisfying the Rota-Baxter identity

 $B(x) \cdot B(y) = B(B(x) \cdot y + x \cdot B(y)) .$

By considering algebras (M, \cdot) of **V** with a Rota-Baxter operator R and homomorphisms commuting with the Rota-Baxter operators, one obtains a variety **RBV** of Rota-Baxter algebras. In what follows we are interested in the cases where **V** = **Ass** and **V** = **Lie**.

The variety **V** embeds into the variety **RBV** since any algebra in **V** may be seen as a Rota-Baxter algebra with the trivial Rota-Baxter operator.

Let us consider a Rota-Baxter (associative) algebra (of weight zero) (A, \cdot, B) .

Let us consider a Rota-Baxter (associative) algebra (of weight zero) (A, \cdot, B) .

Let us define the double product

 $x *_B y := B(x) \cdot y + x \cdot B(y)$.

Let us consider a Rota-Baxter (associative) algebra (of weight zero) (A, \cdot, B) .

Let us define the double product

$$x *_B y := B(x) \cdot y + x \cdot B(y)$$
.

This bilinear product is associative, so that $(A, *_B)$ is an (associative) algebra.

Let us consider a Rota-Baxter (associative) algebra (of weight zero) (A, \cdot, B) .

Let us define the double product

$$x *_B y := B(x) \cdot y + x \cdot B(y)$$
.

This bilinear product is associative, so that $(A, *_B)$ is an (associative) algebra.

Moreover, *B* becomes an algebra map from $(A, *_B)$ to (A, \cdot) .

 $(A, *_B, B)$ is again a Rota-Baxter algebra.

 $(A, *_B, B)$ is again a Rota-Baxter algebra.

Indeed, $B(x) *_B B(y) = B^2(x) \cdot B(y) + B(x) \cdot B^2(y)$

 $(A, *_B, B)$ is again a Rota-Baxter algebra.

Indeed, $B(x) *_B B(y) = B^2(x) \cdot B(y) + B(x) \cdot B^2(y) = B(B(x) *_B y + x *_B B(y)).$

 $(A, *_B, B)$ is again a Rota-Baxter algebra.

Indeed, $P(y) = P(y) = P^2(y) = P(y)$

 $B(x) *_B B(y) = B^2(x) \cdot B(y) + B(x) \cdot B^2(y) = B(B(x) *_B y + x *_B B(y)).$

Moreover, given a Rota-Baxter map $\phi: (A_1, \cdot, B_1) \to (A_2, \cdot, B_2)$, then ϕ is also a Rota-Baxter map from $(A_1, *_{B_1}, B_1)$ to $(A_2, *_{B_2}, B_2)$.

 $(A, *_B, B)$ is again a Rota-Baxter algebra.

Indeed,

 $B(x) *_B B(y) = B^2(x) \cdot B(y) + B(x) \cdot B^2(y) = B(B(x) *_B y + x *_B B(y)).$

Moreover, given a Rota-Baxter map $\phi: (A_1, \cdot, B_1) \to (A_2, \cdot, B_2)$, then ϕ is also a Rota-Baxter map from $(A_1, *_{B_1}, B_1)$ to $(A_2, *_{B_2}, B_2)$. Indeed, $\phi(x *_{B_1} y) = \phi(B_1(x)) \cdot \phi(y) + \phi(x) \cdot \phi(B_1(y))$

 $(A, *_B, B)$ is again a Rota-Baxter algebra.

Indeed,

 $B(x) *_B B(y) = B^2(x) \cdot B(y) + B(x) \cdot B^2(y) = B(B(x) *_B y + x *_B B(y)).$

Moreover, given a Rota-Baxter map $\phi: (A_1, \cdot, B_1) \to (A_2, \cdot, B_2)$, then ϕ is also a Rota-Baxter map from $(A_1, *_{B_1}, B_1)$ to $(A_2, *_{B_2}, B_2)$. Indeed, $\phi(x *_{B_1} y) = \phi(B_1(x)) \cdot \phi(y) + \phi(x) \cdot \phi(B_1(y)) = B_2(\phi(x)) \cdot \phi(y) + \phi(x) \cdot B_2(\phi(y))$

 $(A, *_B, B)$ is again a Rota-Baxter algebra.

Indeed,

 $B(x) *_B B(y) = B^2(x) \cdot B(y) + B(x) \cdot B^2(y) = B(B(x) *_B y + x *_B B(y)).$

Moreover, given a Rota-Baxter map $\phi: (A_1, \cdot, B_1) \to (A_2, \cdot, B_2)$, then ϕ is also a Rota-Baxter map from $(A_1, *_{B_1}, B_1)$ to $(A_2, *_{B_2}, B_2)$. Indeed, $\phi(x *_{B_1} y) = \phi(B_1(x)) \cdot \phi(y) + \phi(x) \cdot \phi(B_1(y)) = B_2(\phi(x)) \cdot \phi(y) + \phi(x) \cdot B_2(\phi(y)) = \phi(x) *_{B_2} \phi(y)$.

 $(A, *_B, B)$ is again a Rota-Baxter algebra.

Indeed,

 $B(x) *_B B(y) = B^2(x) \cdot B(y) + B(x) \cdot B^2(y) = B(B(x) *_B y + x *_B B(y)).$

Moreover, given a Rota-Baxter map $\phi: (A_1, \cdot, B_1) \to (A_2, \cdot, B_2)$, then ϕ is also a Rota-Baxter map from $(A_1, *_{B_1}, B_1)$ to $(A_2, *_{B_2}, B_2)$. Indeed, $\phi(x *_{B_1} y) = \phi(B_1(x)) \cdot \phi(y) + \phi(x) \cdot \phi(B_1(y)) = B_2(\phi(x)) \cdot \phi(y) + \phi(x) \cdot B_2(\phi(y)) = \phi(x) *_{B_2} \phi(y)$.

Hence one gets a functor Dbl: **RBAss** \rightarrow **RBAss**.

Rota-Baxter Lie algebras

The same phenomenon occurs in the case of Rota-Baxter Lie algebras.

Rota-Baxter Lie algebras

The same phenomenon occurs in the case of Rota-Baxter Lie algebras.

A Rota-Baxter Lie algebra is given as a 3-tuple $(\mathfrak{g}, [-, -], B)$ where $(\mathfrak{g}, [-, -])$ is a Lie algebra and $B \colon \mathfrak{g} \to \mathfrak{g}$ is a linear map satisfying the Rota-Baxter identity

[B(x), B(y)] = [[B(x), y] + [x, B(y)]] .

Rota-Baxter Lie algebras

The same phenomenon occurs in the case of Rota-Baxter Lie algebras.

A Rota-Baxter Lie algebra is given as a 3-tuple $(\mathfrak{g}, [-, -], B)$ where $(\mathfrak{g}, [-, -])$ is a Lie algebra and $B \colon \mathfrak{g} \to \mathfrak{g}$ is a linear map satisfying the Rota-Baxter identity

[B(x), B(y)] = [[B(x), y] + [x, B(y)]] .

Let us once again define the double bracket

 $[x, y]_B := [B(x), y] + [x, B(y)]$.

The double bracket is of course alternating (since [-, -] is so).

The double bracket is of course alternating (since [-,-] is so).

It satisfies Jacobi identity.

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)]$

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])]

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])] =[B(x), [B(y), z]] + [B(x), [y, B(z)]] + [x, [B(y), B(z)]].

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])] =[B(x), [B(y), z]] + [B(x), [y, B(z)]] + [x, [B(y), B(z)]].

 $[[x, y]_B, z]_B = [B([x, y]_B), z] + [[x, y]_B, B(z)]$

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])] =[B(x), [B(y), z]] + [B(x), [y, B(z)]] + [x, [B(y), B(z)]].

$$[[x, y]_B, z]_B = [B([x, y]_B), z] + [[x, y]_B, B(z)] = [B([B(x), y] + [x, B(y)]), z] + [[B(x), y] + [x, B(y)], B(z)]$$

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])] =[B(x), [B(y), z]] + [B(x), [y, B(z)]] + [x, [B(y), B(z)]].

$$[[x, y]_B, z]_B = [B([x, y]_B), z] + [[x, y]_B, B(z)] = [B([B(x), y] + [x, B(y)]), z] + [[B(x), y] + [x, B(y)], B(z)] = [[B(x), B(y)], z] + [[B(x), y], B(z)] + [[x, B(y)], B(z)].$$

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])] =[B(x), [B(y), z]] + [B(x), [y, B(z)]] + [x, [B(y), B(z)]].

$$[[x, y]_B, z]_B = [B([x, y]_B), z] + [[x, y]_B, B(z)] = [B([B(x), y] + [x, B(y)]), z] + [[B(x), y] + [x, B(y)], B(z)] = [[B(x), B(y)], z] + [[B(x), y], B(z)] + [[x, B(y)], B(z)].$$

 $[y, [x, z]_B]_B = [B(y), [x, z]_B] + [y, B([x, z]_B)$

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])] =[B(x), [B(y), z]] + [B(x), [y, B(z)]] + [x, [B(y), B(z)]].

$$\begin{split} & [[x, y]_B, z]_B = [B([x, y]_B), z] + [[x, y]_B, B(z)] = \\ & [B([B(x), y] + [x, B(y)]), z] + [[B(x), y] + [x, B(y)], B(z)] = \\ & [[B(x), B(y)], z] + [[B(x), y], B(z)] + [[x, B(y)], B(z)]. \end{split}$$

 $[y, [x, z]_B]_B = [B(y), [x, z]_B] + [y, B([x, z]_B)] =$ [B(y), [B(x), z] + [x, B(z)]] + [y, B([B(x), z] + [x, B(z)])]

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])] =[B(x), [B(y), z]] + [B(x), [y, B(z)]] + [x, [B(y), B(z)]].

$$\begin{split} & [[x, y]_B, z]_B = [B([x, y]_B), z] + [[x, y]_B, B(z)] = \\ & [B([B(x), y] + [x, B(y)]), z] + [[B(x), y] + [x, B(y)], B(z)] = \\ & [[B(x), B(y)], z] + [[B(x), y], B(z)] + [[x, B(y)], B(z)]. \end{split}$$

 $[y, [x, z]_B]_B = [B(y), [x, z]_B] + [y, B([x, z]_B)] =$ [B(y), [B(x), z] + [x, B(z)]] + [y, B([B(x), z] + [x, B(z)])] =[B(y), [B(x), z]] + [B(y), [x, B(z)]] + [y, [B(x), B(z)]].

The double bracket is of course alternating (since [-, -] is so).

It satisfies Jacobi identity. Indeed, $[x, [y, z]_B]_B = [B(x), [y, z]_B] + [x, B([y, z]_B)] =$ [B(x), [B(y), z] + [y, B(z)]] + [x, B([B(y), z] + [y, B(z)])] =[B(x), [B(y), z]] + [B(x), [y, B(z)]] + [x, [B(y), B(z)]].

$$\begin{split} & [[x, y]_B, z]_B = [B([x, y]_B), z] + [[x, y]_B, B(z)] = \\ & [B([B(x), y] + [x, B(y)]), z] + [[B(x), y] + [x, B(y)], B(z)] = \\ & [[B(x), B(y)], z] + [[B(x), y], B(z)] + [[x, B(y)], B(z)]. \end{split}$$

 $[y, [x, z]_B]_B = [B(y), [x, z]_B] + [y, B([x, z]_B)] =$ [B(y), [B(x), z] + [x, B(z)]] + [y, B([B(x), z] + [x, B(z)])] =[B(y), [B(x), z]] + [B(y), [x, B(z)]] + [y, [B(x), B(z)]].

Hence $(\mathfrak{g}, [-, -]_B)$ is again a Lie algebra

Moreover $B([x, y]_B) = B([B(x), y] + [x, B(y)]) = [B(x), B(y)]$ hence B is a Lie map from $(\mathfrak{g}, [-, -]_B)$ to $(\mathfrak{g}, [-, -])$.

Moreover $B([x, y]_B) = B([B(x), y] + [x, B(y)]) = [B(x), B(y)]$ hence B is a Lie map from $(\mathfrak{g}, [-, -]_B)$ to $(\mathfrak{g}, [-, -])$.

It follows that $[B(x), B(y)]_B = [B^2(x), B(y)] + [B(x), B^2(y)]$

Moreover $B([x, y]_B) = B([B(x), y] + [x, B(y)]) = [B(x), B(y)]$ hence B is a Lie map from $(\mathfrak{g}, [-, -]_B)$ to $(\mathfrak{g}, [-, -])$.

It follows that $[B(x), B(y)]_B = [B^2(x), B(y)] + [B(x), B^2(y)] = B([B(x), y] + [x, B(y)])$

Moreover $B([x, y]_B) = B([B(x), y] + [x, B(y)]) = [B(x), B(y)]$ hence B is a Lie map from $(\mathfrak{g}, [-, -]_B)$ to $(\mathfrak{g}, [-, -])$.

It follows that $[B(x), B(y)]_B = [B^2(x), B(y)] + [B(x), B^2(y)] = B([B(x), y] + [x, B(y)])$ $= B([x, y]_B),$

Moreover $B([x, y]_B) = B([B(x), y] + [x, B(y)]) = [B(x), B(y)]$ hence B is a Lie map from $(\mathfrak{g}, [-, -]_B)$ to $(\mathfrak{g}, [-, -])$.

It follows that $[B(x), B(y)]_B = [B^2(x), B(y)] + [B(x), B^2(y)] = B([B(x), y] + [x, B(y)])$ = $B([x, y]_B)$, hence $(\mathfrak{g}, [-, -]_B, B)$ is a Rota-Baxter Lie algebra.

Moreover $B([x, y]_B) = B([B(x), y] + [x, B(y)]) = [B(x), B(y)]$ hence B is a Lie map from $(\mathfrak{g}, [-, -]_B)$ to $(\mathfrak{g}, [-, -])$.

It follows that $[B(x), B(y)]_B = [B^2(x), B(y)] + [B(x), B^2(y)] = B([B(x), y] + [x, B(y)])$ = $B([x, y]_B)$, hence $(g, [-, -]_B, B)$ is a Rota-Baxter Lie algebra.

Therefore one gets a functor $\mathsf{Dbl}_{\mathsf{Lie}}$: $\mathsf{RBLie} \to \mathsf{RBLie}$.

Let (A, \cdot, B) be a Rota-Baxter algebra.

Let (A, \cdot, B) be a Rota-Baxter algebra. Then, (A, [-, -], B) is a Rota-Baxter Lie algebra (where [-, -] is the commutator bracket).

Let (A, \cdot, B) be a Rota-Baxter algebra. Then, (A, [-, -], B) is a Rota-Baxter Lie algebra (where [-, -] is the commutator bracket).

Indeed, [B(x), B(y)] = B(x)B(y) - B(y)B(x)

Let (A, \cdot, B) be a Rota-Baxter algebra. Then, (A, [-, -], B) is a Rota-Baxter Lie algebra (where [-, -] is the commutator bracket).

Indeed, [B(x), B(y)] = B(x)B(y) - B(y)B(x) = B(B(x)y + xB(y) - B(y)x - yB(x))

Let (A, \cdot, B) be a Rota-Baxter algebra. Then, (A, [-, -], B) is a Rota-Baxter Lie algebra (where [-, -] is the commutator bracket).

Indeed, [B(x), B(y)] = B(x)B(y) - B(y)B(x) = B(B(x)y + xB(y) - B(y)x - yB(x)) = B(B(x)y - yB(x) + xB(y) - B(y)x)

Let (A, \cdot, B) be a Rota-Baxter algebra. Then, (A, [-, -], B) is a Rota-Baxter Lie algebra (where [-, -] is the commutator bracket).

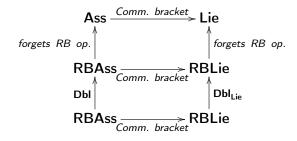
Indeed, [B(x), B(y)] = B(x)B(y) - B(y)B(x) = B(B(x)y + xB(y) - B(y)x - yB(x)) = B(B(x)y - yB(x) + xB(y) - B(y)x) = B([B(x), y] + [x, B(y)]).

Let (A, \cdot, B) be a Rota-Baxter algebra. Then, (A, [-, -], B) is a Rota-Baxter Lie algebra (where [-, -] is the commutator bracket).

Indeed, [B(x), B(y)] = B(x)B(y) - B(y)B(x) = B(B(x)y + xB(y) - B(y)x - yB(x)) = B(B(x)y - yB(x) + xB(y) - B(y)x) = B([B(x), y] + [x, B(y)]).

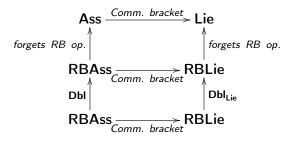
Therefore, one gets a functor $RBAss \rightarrow RBLie$.

Commutative diagram of "forgetful" functors



Each of these functors is algebraic, hence admits a left adjoint.

Commutative diagram of "forgetful" functors



Each of these functors is algebraic, hence admits a left adjoint. In particular, one can form the universal enveloping Rota-Baxter algebra on a Rota-Baxter Lie algebra.