Moduli space of pairings on complex roots of unity

Laurent Poinsot
LIPN - UMR CNRS 7030
Université Paris XIII, Sorbonne Paris Cité - Institut Galilée

Joint-work with Nadia El Mrabet - Université Paris 8

Séminaire Protection de l'information
Vendredi 29 novembre 2013

Table of contents

(1) Introduction
(2) Category of pairings
(3) A symmetric monoidal structure on $\mathrm{Bil}_{\mathrm{Abfin}}(c)$
4) Moduli space of pairings
(5) Geometric interpretation of the moduli space of pairings

6 Classification of pairings on \mathbb{Q} / \mathbb{Z}

Pairings

Let A, B, C be three modules over some commutative ring R with a unit.
A pairing is a non-degenerate bilinear map $f: A \times B \rightarrow C$.
Non-degeneracy means that

$$
\gamma_{f}: a \in A \mapsto f(a, \cdot)
$$

and

$$
\delta_{f}: b \in B \mapsto f(\cdot, b)
$$

are both one-to-one.

Examples

- Let $1 \rightarrow A \rightarrow G \rightarrow B \rightarrow 1$ be a short exact sequence of groups, where A, B are abelian, and A lies in $Z(G)$. The commutator $[\cdot, \cdot]$ of G factors to a bilinear map $[\cdot, \cdot]: B \times B \rightarrow A$ which is non-degenerate if, and only if, $A=Z(G)$ (R. Baer, 1938).
- Let $\langle\cdot \mid \cdot\rangle: A \times \widehat{A} \rightarrow \mathbb{R} / \mathbb{Z}$ defined by $\langle a \mid \chi\rangle=\chi(a)$.
- Weil, Tate pairings and their recent generalizations to Abelian varieties.
- Let \mathbb{K} be any field, and X be any set. Let us denote by $\mathbb{K}^{(X)}$ the vector space of finitely supported maps (i.e., the vector space with basis X). The $\operatorname{map}\langle\cdot \mid \cdot\rangle: \mathbb{K}^{X} \times \mathbb{K}^{(X)} \rightarrow \mathbb{K}$ given by $\langle f \mid g\rangle=\sum_{x \in X} f(x) g(x)$ is a pairing.

Cryptographic applications

- MOV attack to solve the discrete logarithm problem by transport from an elliptic curve to a finite field.
- A. Joux's one-round key exchange tri-partite Diffie-Hellman protocol.
- Identity-based cryptography.

Objective of this talk

- Provide a categorical setting to study pairings in a unified way in several categories (e.g., abelian groups, modules or commutative monoids).
- Provide a classification of pairings - under a suitable equivalence relation - from finite abelian groups to the complex unit circle (this classification is rather disappointing).
- Show that the set of equivalence classes of pairings is almost a moduli space: it is actually a subset of rational points of some (pro-)affine algebraic variety.

Warning: The classification from this talk is of course different from C.T.C Wall's classification of skew or symmetric non-singular bilinear forms on finite abelian groups (1964) because the equivalence relations under consideration are not the same. My equivalence relation is of a categorical nature, since it is the relation of isomorphism in a suitable category, and it is strictly coarser than C.T.C Wall's relation (more pairings are identified).

Table of contents

(1) Introduction
(2) Category of pairings
(3) A symmetric monoidal structure on $\mathrm{Bil}_{\mathrm{Abfin}}(c)$

4 Moduli space of pairings
(5) Geometric interpretation of the moduli space of pairings
(6) Classification of pairings on \mathbb{Q} / \mathbb{Z}

Table of contents

(1) Introduction

(2) Category of pairings
(3) A symmetric monoidal structure on $\mathrm{Bil}_{\mathrm{Abfin}}(c)$
(4) Moduli space of pairings
(5) Geometric interpretation of the moduli space of pairings
(6) Classification of pairings on \mathbb{Q} / \mathbb{Z}

Bilinear maps

Let c be an abelian group (e.g., $c=\mathbb{Q} / \mathbb{Z}$).

- A bilinear map on c is a pair $(f,(a, b))$ where a, b are both finite abelian groups and f is a group homomorphism $f: a \otimes b \rightarrow c$ (\otimes being the usual tensor product of abelian groups that classifies bi-additive maps).

Bilinear maps

Let c be an abelian group (e.g., $c=\mathbb{Q} / \mathbb{Z}$).

- A bilinear map on c is a pair $(f,(a, b))$ where a, b are both finite abelian groups and f is a group homomorphism $f: a \otimes b \rightarrow c$ (\otimes being the usual tensor product of abelian groups that classifies bi-additive maps).
- A pair (α, β) of group homomorphisms between finite abelian groups, $\alpha: a \rightarrow d, \beta: b \rightarrow e$, is said to be an arrow or a morphism $(\alpha, \beta):(f,(a, b)) \rightarrow(g,(d, e))$ if the following triangle commutes

Bilinear maps

Let c be an abelian group (e.g., $c=\mathbb{Q} / \mathbb{Z}$).

- A bilinear map on c is a pair $(f,(a, b))$ where a, b are both finite abelian groups and f is a group homomorphism $f: a \otimes b \rightarrow c$ (\otimes being the usual tensor product of abelian groups that classifies bi-additive maps).
- A pair (α, β) of group homomorphisms between finite abelian groups, $\alpha: a \rightarrow d, \beta: b \rightarrow e$, is said to be an arrow or a morphism $(\alpha, \beta):(f,(a, b)) \rightarrow(g,(d, e))$ if the following triangle commutes

$$
\begin{equation*}
a \otimes b \xrightarrow[c]{\alpha \otimes \beta} d \otimes e \tag{1}
\end{equation*}
$$

In other terms, $g_{0}(\alpha(x), \beta(y))=f_{0}(x, y)$ for every $x \in a, y \in b$ (where $f_{0}: a \times b \rightarrow c$ and $g_{0}: d \times e \rightarrow c$ are the bi-additive maps associated to f and g respectively).

Bilinear maps (cont'd)

- Bilinear maps on c with these morphisms form a category denoted by $\operatorname{Bil}_{\text {Abfin }}(c)$, the composition of morphisms being defined component-wise $\left(\alpha_{1}, \beta_{1}\right) \circ\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1} \circ \alpha_{2}, \beta_{1} \circ \beta_{2}\right)$, and the identity morphism $i d_{(f,(a, b))}$ on $(f,(a, b))$ being just $\left(i d_{a}, i d_{b}\right)$.

Bilinear maps (cont'd)

- Bilinear maps on c with these morphisms form a category denoted by $\operatorname{Bil}_{\text {Abfin }}(c)$, the composition of morphisms being defined component-wise $\left(\alpha_{1}, \beta_{1}\right) \circ\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1} \circ \alpha_{2}, \beta_{1} \circ \beta_{2}\right)$, and the identity morphism $i d_{(f,(a, b))}$ on $(f,(a, b))$ being just $\left(i d_{a}, i d_{b}\right)$.
- An isomorphism (α, β) from $(f,(a, b))$ to $(g,(d, e))$ is just an arrow $(\alpha, \beta):(f,(a, b)) \rightarrow(g,(c, d))$ such that $\alpha: a \rightarrow d$ and $\beta: b \rightarrow e$ are both group isomorphisms

Bilinear maps (cont'd)

- Bilinear maps on c with these morphisms form a category denoted by $\operatorname{Bil}_{\text {Abfin }}(c)$, the composition of morphisms being defined component-wise $\left(\alpha_{1}, \beta_{1}\right) \circ\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1} \circ \alpha_{2}, \beta_{1} \circ \beta_{2}\right)$, and the identity morphism $i d_{(f,(a, b))}$ on $(f,(a, b))$ being just $\left(i d_{a}, i d_{b}\right)$.
- An isomorphism (α, β) from $(f,(a, b))$ to $(g,(d, e))$ is just an arrow $(\alpha, \beta):(f,(a, b)) \rightarrow(g,(c, d))$ such that $\alpha: a \rightarrow d$ and $\beta: b \rightarrow e$ are both group isomorphisms (thus $(f,(a, b)) \cong(g,(d, e))$ implies $a \cong d$ and $b \cong e$ as finite abelian groups).

(Perfect) Pairings

- A (perfect) pairing (on c) is a bilinear map $(f,(a, b))$ on c such that γ_{f} and δ_{f} are both monomorphisms (respectively, isomorphisms) (recall from the introduction that $\gamma_{f}(x)=f_{0}(x, \cdot)$ and $\left.\delta_{f}(y)=f_{0}(\cdot, y)\right)$.

Remark

In category-theoretical terms, a monomorphism f is a left-cancellable morphism. For the categories of sets, abelian groups, commutative monoids, modules over some commutative unital ring, and many other categories but not all, monomorphisms coincide with one-to-one maps.

(Perfect) Pairings

- A (perfect) pairing (on c) is a bilinear map $(f,(a, b))$ on c such that γ_{f} and δ_{f} are both monomorphisms (respectively, isomorphisms) (recall from the introduction that $\gamma_{f}(x)=f_{0}(x, \cdot)$ and $\left.\delta_{f}(y)=f_{0}(\cdot, y)\right)$.

Remark

In category-theoretical terms, a monomorphism f is a left-cancellable morphism. For the categories of sets, abelian groups, commutative monoids, modules over some commutative unital ring, and many other categories but not all, monomorphisms coincide with one-to-one maps.

- Let us denote by Pair $_{\text {Abfin }}(c)$ (resp. $\left.\operatorname{Perf}_{\text {Abfin }}(c)\right)$ the full sub-category of $\mathrm{Bil}_{\mathrm{Abfin}}(c)$ with objects the (perfect) pairings on c.

(Perfect) Pairings

- A (perfect) pairing (on c) is a bilinear map $(f,(a, b))$ on c such that γ_{f} and δ_{f} are both monomorphisms (respectively, isomorphisms) (recall from the introduction that $\gamma_{f}(x)=f_{0}(x, \cdot)$ and $\left.\delta_{f}(y)=f_{0}(\cdot, y)\right)$.

Remark

In category-theoretical terms, a monomorphism f is a left-cancellable morphism. For the categories of sets, abelian groups, commutative monoids, modules over some commutative unital ring, and many other categories but not all, monomorphisms coincide with one-to-one maps.

- Let us denote by Pair $_{\text {Abfin }}(c)$ (resp. $\left.\operatorname{Perf}_{\text {Abfin }}(c)\right)$ the full sub-category of $\mathrm{Bil}_{\mathrm{Abfin}}(c)$ with objects the (perfect) pairings on c.
- $\operatorname{Perf}_{\text {Abfin }}(c)$ is of course a full sub-category of $\operatorname{Pair}_{\text {Abfin }}(c)$.

Some easy functorial properties

- Functorially, if $c_{1} \hookrightarrow c_{2}$, then $\operatorname{Pair}_{\text {Abfin }}\left(c_{1}\right) \hookrightarrow \operatorname{Pair}_{\text {abfin }}\left(c_{2}\right)$ (full embedding of categories).

Some easy functorial properties

- Functorially, if $c_{1} \hookrightarrow c_{2}$, then $\operatorname{Pair}_{\text {Abfin }}\left(c_{1}\right) \hookrightarrow \operatorname{Pair}_{\text {Abfin }}\left(c_{2}\right)$ (full embedding of categories).
- Functorially, if $c_{1} \cong c_{2}$, then $\operatorname{Perf}_{\text {Abfin }}\left(c_{1}\right) \cong \operatorname{Perf}_{\text {Abfin }}\left(c_{2}\right)$ (isomorphic categories).

Some easy functorial properties

- Functorially, if $c_{1} \hookrightarrow c_{2}$, then $\operatorname{Pair}_{\text {Abfin }}\left(c_{1}\right) \hookrightarrow \operatorname{Pair}_{\text {Abfin }}\left(c_{2}\right)$ (full embedding of categories).
- Functorially, if $c_{1} \cong c_{2}$, then $\operatorname{Perf}_{\text {Abfin }}\left(c_{1}\right) \cong \operatorname{Perf}_{\text {Abfin }}\left(c_{2}\right)$ (isomorphic categories).
- Of course, if $c_{1} \cong c_{2}$, then also $\operatorname{Pair}_{\text {Abfin }}\left(c_{1}\right) \cong \operatorname{Pair}_{\text {Abfin }}\left(c_{2}\right)$ (isomorphic categories), but the converse is false.

Some easy functorial properties

- Functorially, if $c_{1} \hookrightarrow c_{2}$, then $\operatorname{Pair}_{\text {Abfin }}\left(c_{1}\right) \hookrightarrow \operatorname{Pair}_{\text {abfin }}\left(c_{2}\right)$ (full embedding of categories).
- Functorially, if $c_{1} \cong c_{2}$, then $\operatorname{Perf}_{\text {Abfin }}\left(c_{1}\right) \cong \operatorname{Perf}_{\text {Abfin }}\left(c_{2}\right)$ (isomorphic categories).
- Of course, if $c_{1} \cong c_{2}$, then also $\operatorname{Pair}_{\text {Abfin }}\left(c_{1}\right) \cong \operatorname{Pair}_{\text {Abfin }}\left(c_{2}\right)$ (isomorphic categories), but the converse is false. For instance, $\operatorname{Pair}_{\text {Abfin }}(0) \cong \operatorname{Pair}_{\text {Abfin }}(\mathbb{Z})$.

Isomorphisms preserve non-degeneracy

- An isomorphism class of bilinear maps on c either contains no pairings or all its members are pairings (in other terms, a bilinear map is isomorphic to a pairing if, and only if, it is itself a pairing).

Isomorphisms preserve non-degeneracy

- An isomorphism class of bilinear maps on c either contains no pairings or all its members are pairings (in other terms, a bilinear map is isomorphic to a pairing if, and only if, it is itself a pairing).
- The same holds replacing bilinear maps by pairings, and pairings by perfect pairings in the above sentence.

Isomorphisms preserve non-degeneracy

- An isomorphism class of bilinear maps on c either contains no pairings or all its members are pairings (in other terms, a bilinear map is isomorphic to a pairing if, and only if, it is itself a pairing).
- The same holds replacing bilinear maps by pairings, and pairings by perfect pairings in the above sentence.
- It follows that
of course with

$$
\underline{\text { Pair }}_{\text {Abfin }}(c) \cap \underline{\text { Degen }}_{\text {Abfin }}(c)=\emptyset
$$

Isomorphisms preserve non-degeneracy

- An isomorphism class of bilinear maps on c either contains no pairings or all its members are pairings (in other terms, a bilinear map is isomorphic to a pairing if, and only if, it is itself a pairing).
- The same holds replacing bilinear maps by pairings, and pairings by perfect pairings in the above sentence.
- It follows that

$$
\underline{\operatorname{Bil}}_{\text {Abfin }}(c)=\underline{\text { Pair }}_{\text {Abfin }}(c) \cup \underline{\text { Degen }}_{\text {Abfin }}(c)
$$

of course with

$$
\underline{\operatorname{Pair}}_{\text {Abfin }}(c) \cap \underline{\text { Degen }}_{\text {Abfin }}(c)=\emptyset
$$

and

$$
\underline{\operatorname{Pair}}_{\text {Abfin }}(c)=\underline{\operatorname{Perf}}_{\text {Abfin }}(c) \cup \underline{\operatorname{Imp}}_{\text {Abfin }}(c)
$$

with

$$
\underline{\operatorname{Perf}}_{\text {Abfin }}(c) \cap \underline{\operatorname{Imp}}_{\text {Abfin }}(c)=\emptyset
$$

Remark

Everything remains valid if one replaces

- the category of abelian groups by any closed symmetric monoidal category C (i.e., with a tensor bifunctor, an internal hom functor, and some properties...),
- the category of finite abelian groups by any full sub-category \mathbf{D} of \mathbf{C}.

Remark

Everything remains valid if one replaces

- the category of abelian groups by any closed symmetric monoidal category C (i.e., with a tensor bifunctor, an internal hom functor, and some properties...),
- the category of finite abelian groups by any full sub-category \mathbf{D} of \mathbf{C}.

For instance, C may be

- the category of sets $(\otimes=\times)$ with D the category of finite sets,
- the category of commutative monoids $\left(\otimes=\otimes_{\mathbb{N}}\right.$ similar to $\left.\otimes_{\mathbb{Z}}\right)$, with \mathbf{D} that of finite commutative monoids,
- the category ${ }_{R}$ Mod of modules on a commutative ring $R(\neq 0)$ with a unity $\left(\otimes=\otimes_{R}\right)$, and $\mathbf{D}={ }_{R}$ Modfreefin, the category of free R-modules of finite rank.

Table of contents

(1) Introduction

(2) Category of pairings
(3) A symmetric monoidal structure on $\mathrm{Bil}_{\mathrm{Abfin}}(c)$
4) Moduli space of pairings
(5) Geometric interpretation of the moduli space of pairings
(6) Classification of pairings on \mathbb{Q} / \mathbb{Z}

Direct sum of abelian groups

Let a, b be two abelian groups, and let $a \oplus b$ denote their direct sum with canonical injections $q_{a}: a \hookrightarrow a \oplus b, x \mapsto(x, 0)$ and $q_{b}: b \hookrightarrow a \oplus b, y \mapsto(0, y)$.

Direct sum of abelian groups

Let a, b be two abelian groups, and let $a \oplus b$ denote their direct sum with canonical injections $q_{a}: a \hookrightarrow a \oplus b, x \mapsto(x, 0)$ and $q_{b}: b \hookrightarrow a \oplus b, y \mapsto(0, y)$.

Categorically, the direct sum \oplus is characterized by a universal property:

Direct sum of abelian groups

Let a, b be two abelian groups, and let $a \oplus b$ denote their direct sum with canonical injections $q_{a}: a \hookrightarrow a \oplus b, x \mapsto(x, 0)$ and $q_{b}: b \hookrightarrow a \oplus b, y \mapsto(0, y)$.

Categorically, the direct sum \oplus is characterized by a universal property: for every abelian group d, and every group homomorphisms $\alpha: a \rightarrow d$ and $\beta: b \rightarrow d$, there is a unique group homomorphism $\gamma: a \oplus b \rightarrow d$ that makes commute the following diagram.

Direct sum of abelian groups

Let a, b be two abelian groups, and let $a \oplus b$ denote their direct sum with canonical injections $q_{a}: a \hookrightarrow a \oplus b, x \mapsto(x, 0)$ and $q_{b}: b \hookrightarrow a \oplus b, y \mapsto(0, y)$.

Categorically, the direct sum \oplus is characterized by a universal property: for every abelian group d, and every group homomorphisms $\alpha: a \rightarrow d$ and $\beta: b \rightarrow d$, there is a unique group homomorphism $\gamma: a \oplus b \rightarrow d$ that makes commute the following diagram.

In concrete terms, $\gamma(x, y)=\alpha(x)+\beta(y)$.

\otimes distributes over \oplus

It is a well-known fact that for every abelian groups $a_{1}, a_{2}, b_{1}, b_{2}$,
$\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \cong\left(a_{1} \otimes b_{1}\right) \oplus\left(a_{1} \otimes b_{2}\right) \oplus\left(a_{2} \otimes b_{1}\right) \oplus\left(a_{2} \otimes b_{2}\right)$.

\otimes distributes over \oplus

It is a well-known fact that for every abelian groups $a_{1}, a_{2}, b_{1}, b_{2}$,

$$
\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \cong\left(a_{1} \otimes b_{1}\right) \oplus\left(a_{1} \otimes b_{2}\right) \oplus\left(a_{2} \otimes b_{1}\right) \oplus\left(a_{2} \otimes b_{2}\right)
$$

More precisely, $\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right)$ admits a direct sum presentation as

(This comes from the fact that for every abelian group a, both functors $a \otimes-$ and $-\otimes a$ admit a right adjoint, and this is true in any symmetric monoidal closed category with binary coproducts.)

A tensor bifunctor \perp

It is thus possible to define for every abelian group d, and any group homomorphisms $\alpha_{1}: a_{1} \otimes b_{1} \rightarrow d, \beta_{1}: a_{1} \otimes b_{2} \rightarrow d, \alpha_{2}: a_{2} \otimes b_{1} \rightarrow d$, and $\beta_{2}: a_{2} \otimes b_{2} \rightarrow d$, a unique group homomorphism $\gamma:\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \rightarrow d$ (using the universal property of the direct sum).

A tensor bifunctor \perp

It is thus possible to define for every abelian group d, and any group homomorphisms $\alpha_{1}: a_{1} \otimes b_{1} \rightarrow d, \beta_{1}: a_{1} \otimes b_{2} \rightarrow d, \alpha_{2}: a_{2} \otimes b_{1} \rightarrow d$, and $\beta_{2}: a_{2} \otimes b_{2} \rightarrow d$, a unique group homomorphism $\gamma:\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \rightarrow d$ (using the universal property of the direct sum). In more concrete terms, $\gamma\left(\left(x_{1}, x_{2}\right) \otimes\left(y_{1}, y_{2}\right)\right)=\alpha_{1}\left(x_{1} \otimes y_{1}\right)+\alpha_{2}\left(x_{2} \otimes y_{1}\right)+\beta_{1}\left(x_{1} \otimes y_{2}\right)+\beta_{2}\left(x_{2} \otimes y_{2}\right)$.

A tensor bifunctor \perp

It is thus possible to define for every abelian group d, and any group homomorphisms $\alpha_{1}: a_{1} \otimes b_{1} \rightarrow d, \beta_{1}: a_{1} \otimes b_{2} \rightarrow d, \alpha_{2}: a_{2} \otimes b_{1} \rightarrow d$, and $\beta_{2}: a_{2} \otimes b_{2} \rightarrow d$, a unique group homomorphism $\gamma:\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \rightarrow d$ (using the universal property of the direct sum). In more concrete terms, $\gamma\left(\left(x_{1}, x_{2}\right) \otimes\left(y_{1}, y_{2}\right)\right)=\alpha_{1}\left(x_{1} \otimes y_{1}\right)+\alpha_{2}\left(x_{2} \otimes y_{1}\right)+\beta_{1}\left(x_{1} \otimes y_{2}\right)+\beta_{2}\left(x_{2} \otimes y_{2}\right)$.

This makes feasible to define the following (functorial) operation on the bilinear maps $\left(f_{1},\left(a_{1}, b_{1}\right)\right)$ and $\left(f_{2},\left(a_{2}, b_{2}\right)\right)$ on c

A tensor bifunctor \perp

It is thus possible to define for every abelian group d, and any group homomorphisms $\alpha_{1}: a_{1} \otimes b_{1} \rightarrow d, \beta_{1}: a_{1} \otimes b_{2} \rightarrow d, \alpha_{2}: a_{2} \otimes b_{1} \rightarrow d$, and $\beta_{2}: a_{2} \otimes b_{2} \rightarrow d$, a unique group homomorphism
$\gamma:\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \rightarrow d$ (using the universal property of the direct sum). In more concrete terms,
$\gamma\left(\left(x_{1}, x_{2}\right) \otimes\left(y_{1}, y_{2}\right)\right)=\alpha_{1}\left(x_{1} \otimes y_{1}\right)+\alpha_{2}\left(x_{2} \otimes y_{1}\right)+\beta_{1}\left(x_{1} \otimes y_{2}\right)+\beta_{2}\left(x_{2} \otimes y_{2}\right)$.
This makes feasible to define the following (functorial) operation on the bilinear maps $\left(f_{1},\left(a_{1}, b_{1}\right)\right)$ and $\left(f_{2},\left(a_{2}, b_{2}\right)\right)$ on c by $\left(f_{1},\left(a_{1}, b_{1}\right)\right) \perp\left(f_{2},\left(a_{2}, b_{2}\right)\right)=\left(f_{1} \perp f_{2},\left(a_{1} \oplus a_{2}, b_{1} \oplus b_{2}\right)\right)$, where $f_{1} \perp f_{2}:\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \rightarrow c$ is defined as γ above using
$-\alpha_{1}=f_{1}: a_{1} \otimes b_{1} \rightarrow c$,
$-\alpha_{2}=0: a_{2} \otimes b_{1} \rightarrow c$,
$-\beta_{1}=0: a_{1} \otimes b_{2} \rightarrow c$,
$-\beta_{2}=f_{2}: a_{2} \otimes b_{2} \rightarrow c$.

A tensor bifunctor \perp

It is thus possible to define for every abelian group d, and any group homomorphisms $\alpha_{1}: a_{1} \otimes b_{1} \rightarrow d, \beta_{1}: a_{1} \otimes b_{2} \rightarrow d, \alpha_{2}: a_{2} \otimes b_{1} \rightarrow d$, and $\beta_{2}: a_{2} \otimes b_{2} \rightarrow d$, a unique group homomorphism
$\gamma:\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \rightarrow d$ (using the universal property of the direct sum). In more concrete terms,
$\gamma\left(\left(x_{1}, x_{2}\right) \otimes\left(y_{1}, y_{2}\right)\right)=\alpha_{1}\left(x_{1} \otimes y_{1}\right)+\alpha_{2}\left(x_{2} \otimes y_{1}\right)+\beta_{1}\left(x_{1} \otimes y_{2}\right)+\beta_{2}\left(x_{2} \otimes y_{2}\right)$.
This makes feasible to define the following (functorial) operation on the bilinear maps $\left(f_{1},\left(a_{1}, b_{1}\right)\right)$ and $\left(f_{2},\left(a_{2}, b_{2}\right)\right)$ on c by $\left(f_{1},\left(a_{1}, b_{1}\right)\right) \perp\left(f_{2},\left(a_{2}, b_{2}\right)\right)=\left(f_{1} \perp f_{2},\left(a_{1} \oplus a_{2}, b_{1} \oplus b_{2}\right)\right)$, where $f_{1} \perp f_{2}:\left(a_{1} \oplus a_{2}\right) \otimes\left(b_{1} \oplus b_{2}\right) \rightarrow c$ is defined as γ above using
$-\alpha_{1}=f_{1}: a_{1} \otimes b_{1} \rightarrow c$,
$-\alpha_{2}=0: a_{2} \otimes b_{1} \rightarrow c$,
$-\beta_{1}=0: a_{1} \otimes b_{2} \rightarrow c$,
$-\beta_{2}=f_{2}: a_{2} \otimes b_{2} \rightarrow c$.
In concrete terms, $\left(f_{1} \perp f_{2}\right)\left(\left(x_{1}, x_{2}\right) \otimes\left(y_{1}, y_{2}\right)\right)=f_{1}\left(x_{1} \otimes y_{1}\right)+f_{2}\left(x_{2} \otimes y_{2}\right)$ (informally speaking, one imposes to a_{2}, b_{1}, and also to a_{1}, b_{2}, to be "orthogonal" one to the other with respect to $f_{1} \perp f_{2}$).
\perp and non-degeneracy

Proposition

Let $\left(f_{1},\left(a_{1}, b_{2}\right)\right)$ and $\left(f_{2},\left(a_{2}, b_{2}\right)\right)$ be two bilinear maps on c.

Proposition

Let $\left(f_{1},\left(a_{1}, b_{2}\right)\right)$ and $\left(f_{2},\left(a_{2}, b_{2}\right)\right)$ be two bilinear maps on c.
The bilinear map $\left(f_{1} \perp f_{2},\left(a_{1} \oplus a_{2}, b_{1} \oplus b_{2}\right)\right)$ is a pairing (respectively, a perfect pairing) if, and only if, $\left(f_{i},\left(a_{i}, b_{i}\right)\right), i=1,2$, are both pairings (respectively, perfect pairings).

Table of contents

(1) Introduction

2 Category of pairings
(3) A symmetric monoidal structure on $\mathrm{Bil}_{\mathrm{Abfin}}(\mathrm{c})$
(4) Moduli space of pairings
(5) Geometric interpretation of the moduli space of pairings
(6) Classification of pairings on \mathbb{Q} / \mathbb{Z}

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial \perp factors through the set of isomorphism classes of bilinear maps, more precisely it gives rise to a structure of monoid on Bil $_{\text {Abfin }}(c)$.

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial \perp factors through the set of isomorphism classes of bilinear maps, more precisely it gives rise to a structure of monoid on Bil $_{\text {Abfin }}(c)$. The unit of this monoid being the isomorphism class of the zero bilinear map $0 \otimes 0 \rightarrow c$.

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial \perp factors through the set of isomorphism classes of bilinear maps, more precisely it gives rise to a structure of monoid on $\underline{B i l}_{\text {Abfin }}(c)$. The unit of this monoid being the isomorphism class of the zero bilinear map $0 \otimes 0 \rightarrow c$.

From the previous proposition, we see that

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial \perp factors through the set of isomorphism classes of bilinear maps, more precisely it gives rise to a structure of monoid on $\underline{B i l}_{\text {Abfin }}(c)$. The unit of this monoid being the isomorphism class of the zero bilinear map $0 \otimes 0 \rightarrow c$.

From the previous proposition, we see that

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial \perp factors through the set of isomorphism classes of bilinear maps, more precisely it gives rise to a structure of monoid on $\mathrm{Bil}_{\text {Abfin }}(c)$. The unit of this monoid being the isomorphism class of the zero bilinear map $0 \otimes 0 \rightarrow c$.

From the previous proposition, we see that
$\underline{\operatorname{Perf}}_{\mathrm{Abfin}}(c) \subseteq \underline{\operatorname{Pair}}_{\text {Abfin }}(c) \subseteq \underline{\text { Bil }}_{\text {Abfin }}(c)$ are inclusions of sub-monoids.

Definition

We refer to the monoid $\underline{\text { Pair }}_{\mathbf{A b f i n}}(c)$ to as the moduli space of pairings on c.

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e).

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

- A monoid with a zero is a monoid together with a distinguished two-sided absorbing element (i.e., $x \star 0=0=0 \star x$).

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

- A monoid with a zero is a monoid together with a distinguished two-sided absorbing element (i.e., $x \star 0=0=0 \star x$). An homomorphism of monoids with zero is a zero-preserving homomorphism of monoids.

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

- A monoid with a zero is a monoid together with a distinguished two-sided absorbing element (i.e., $x \star 0=0=0 \star x$). An homomorphism of monoids with zero is a zero-preserving homomorphism of monoids.
- A subset $I \subseteq M$ of a monoid M is said to be an ideal if $I M \subseteq I \supseteq M I$.

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

- A monoid with a zero is a monoid together with a distinguished two-sided absorbing element (i.e., $x \star 0=0=0 \star x$). An homomorphism of monoids with zero is a zero-preserving homomorphism of monoids.
- A subset $I \subseteq M$ of a monoid M is said to be an ideal if $I M \subseteq I \supseteq M I$. An ideal I is a prime ideal if $I \neq M$ and $x \star y \in I$ implies that either $x \in I$ or $y \in I$.

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

- A monoid with a zero is a monoid together with a distinguished two-sided absorbing element (i.e., $x \star 0=0=0 \star x$). An homomorphism of monoids with zero is a zero-preserving homomorphism of monoids.
- A subset $I \subseteq M$ of a monoid M is said to be an ideal if $I M \subseteq I \supseteq M I$. An ideal I is a prime ideal if $I \neq M$ and $x \star y \in I$ implies that either $x \in I$ or $y \in I$.
- Any ideal I of a monoid M gives rise to a monoid with a zero M / I, called the Rees quotient monoid of M by I,

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

- A monoid with a zero is a monoid together with a distinguished two-sided absorbing element (i.e., $x \star 0=0=0 \star x$). An homomorphism of monoids with zero is a zero-preserving homomorphism of monoids.
- A subset $I \subseteq M$ of a monoid M is said to be an ideal if $I M \subseteq I \supseteq M I$. An ideal I is a prime ideal if $I \neq M$ and $x \star y \in I$ implies that either $x \in I$ or $y \in I$.
- Any ideal I of a monoid M gives rise to a monoid with a zero M / I, called the Rees quotient monoid of M by I, and defined by $M / I=(M \backslash I) \sqcup\{0\}$,

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

- A monoid with a zero is a monoid together with a distinguished two-sided absorbing element (i.e., $x \star 0=0=0 \star x$). An homomorphism of monoids with zero is a zero-preserving homomorphism of monoids.
- A subset $I \subseteq M$ of a monoid M is said to be an ideal if $I M \subseteq I \supseteq M I$. An ideal I is a prime ideal if $I \neq M$ and $x \star y \in I$ implies that either $x \in I$ or $y \in I$.
- Any ideal I of a monoid M gives rise to a monoid with a zero M / I, called the Rees quotient monoid of M by I, and defined by $M / I=(M \backslash I) \sqcup\{0\}$, and for every $x, y \in M \backslash I, x \cdot y=x \star y$ whenever $x \star y \notin I$, and 0 otherwise (and of course $x \cdot 0=0=0 \cdot x, x \in M / I$).

Some notions about monoids

Let (M, \star, e) be a monoid (i.e., m is an associative binary operation on M with a two-sided unit e). An homomorphism of monoids is a unit-preserving map that "commutes" with the binary operations.

- A monoid with a zero is a monoid together with a distinguished two-sided absorbing element (i.e., $x \star 0=0=0 \star x$). An homomorphism of monoids with zero is a zero-preserving homomorphism of monoids.
- A subset $I \subseteq M$ of a monoid M is said to be an ideal if $I M \subseteq I \supseteq M I$. An ideal I is a prime ideal if $I \neq M$ and $x \star y \in I$ implies that either $x \in I$ or $y \in I$.
- Any ideal / of a monoid M gives rise to a monoid with a zero M / I, called the Rees quotient monoid of M by I, and defined by $M / I=(M \backslash I) \sqcup\{0\}$, and for every $x, y \in M \backslash I, x \cdot y=x \star y$ whenever $x \star y \notin I$, and 0 otherwise (and of course $x \cdot 0=0=0 \cdot x, x \in M / I$). In case I is a prime ideal, then $M \backslash I$ is already a submonoid of M, and M / I is just the monoid $(M \backslash I)^{0}$, i.e., $M \backslash /$ with a zero 0 freely added.

Back to the monoid of bilinear maps

The previous proposition about preservation of non-degeneracy by \perp also implies that
$\underline{\text { Degen }}_{\text {Abfin }}(c)$ is a prime ideal of $\underline{B i l}_{\text {Abfin }}(c)$,

Back to the monoid of bilinear maps

The previous proposition about preservation of non-degeneracy by \perp also implies that
$\underline{\text { Degen }}_{\text {Abfin }}(c)$ is a prime ideal of $\underline{B i l}_{\text {Abfin }}(c)$,
and
$\underline{\operatorname{Bil}}_{\text {Abfin }}(c) / \underline{\text { Degen }}_{\text {Abfin }}(c) \cong\left(\underline{\text { Pair }}_{\text {Abfin }}(c)\right)^{\infty}$.

Back to the monoid of bilinear maps

The previous proposition about preservation of non-degeneracy by \perp also implies that
$\underline{\text { Degen }}_{\text {Abfin }}(c)$ is a prime ideal of $\underline{B i l}_{\text {Abfin }}(c)$,
and
$\underline{\operatorname{Bil}}_{\text {Abfin }}(c) / \underline{\text { Degen }}_{\text {Abfin }}(c) \cong\left({\underline{\text { Pair }_{A b f i n}}}(c)\right)^{\infty}$.
Also $\underline{\operatorname{Imp}}_{\mathbf{A b f i n}}(c)$ is a prime ideal of $\underline{\text { Pair }}_{\text {Abfin }}(c)$

Back to the monoid of bilinear maps

The previous proposition about preservation of non-degeneracy by \perp also implies that
$\underline{\text { Degen }}_{\text {Abfin }}(c)$ is a prime ideal of $\underline{B i l}_{\text {Abfin }}(c)$,
and
$\underline{\operatorname{Bil}}_{\text {Abfin }}(c) / \underline{\text { Degen }}_{\text {Abfin }}(c) \cong\left(\underline{\operatorname{Pair}}_{\text {Abfin }}(c)\right)^{\infty}$.
Also $\underline{\operatorname{Imp}}_{\text {Abfin }}(c)$ is a prime ideal of $\underline{\text { Pair }}_{\text {Abfin }}(c)$
and
$\underline{\operatorname{Pair}}_{\text {Abfin }}(c) / \underline{\operatorname{Imp}}_{\text {Abfin }}(c) \cong\left(\operatorname{Perf}_{\text {Abfin }}(c)\right)^{\infty}$.

Back to the monoid of bilinear maps

The previous proposition about preservation of non-degeneracy by \perp also implies that
$\underline{\text { Degen }}_{\text {Abfin }}(c)$ is a prime ideal of $\underline{B i l}_{\text {Abfin }}(c)$,
and
$\underline{\operatorname{Bil}}_{\text {Abfin }}(c) / \underline{\text { Degen }}_{\text {Abfin }}(c) \cong\left(\underline{\operatorname{Pair}}_{\text {Abfin }}(c)\right)^{\infty}$.
Also $\underline{\operatorname{Imp}}_{\text {Abfin }}(c)$ is a prime ideal of $\underline{\text { Pair }}_{\text {Abfin }}(c)$
and
$\underline{\operatorname{Pair}}_{\text {Abfin }}(c) / \underline{\operatorname{Imp}}_{\text {Abfin }}(c) \cong\left(\operatorname{Perf}_{\text {Abfin }}(c)\right)^{\infty}$.

Remark

Everything remains valid if we replace abelian groups for instance by
R-modules or by commutative monoids, and Abfin by any full sub-category of these.

Table of contents

(1) Introduction

(2) Category of pairings
(3) A symmetric monoidal structure on $\mathrm{Bil}_{\mathrm{Abfin}}(c)$
(4) Moduli space of pairings
(5) Geometric interpretation of the moduli space of pairings
(6) Classification of pairings on \mathbb{Q} / \mathbb{Z}

Bialgebras

Let R be a commutative ring with a unity.

Bialgebras

Let R be a commutative ring with a unity.
An R-algebra A is said to be a coassociative and counital R-bialgebra if it is equipped with two algebra maps $\Delta: A \rightarrow A \otimes_{R} A$, and $\epsilon: A \rightarrow R$, respectively called coproduct and counit which are coassociative and counital.

Bialgebras

Let R be a commutative ring with a unity.
An R-algebra A is said to be a coassociative and counital R-bialgebra if it is equipped with two algebra maps $\Delta: A \rightarrow A \otimes_{R} A$, and $\epsilon: A \rightarrow R$, respectively called coproduct and counit which are coassociative and counital.

This means that the two following diagrams commute.

About representable functors

Let C be any category, and c be an object of C.

About representable functors

Let C be any category, and c be an object of C. We define the covariant hom-functor $h^{c}=\mathbf{C}(c,-)$ from the category C to the category of sets,

About representable functors

Let C be any category, and c be an object of C. We define the covariant hom-functor $h^{c}=\mathbf{C}(c,-)$ from the category C to the category of sets, that maps an object d to the set of morphisms $h^{c}(d)=\mathbf{C}(c, d)$,

About representable functors

Let C be any category, and c be an object of C. We define the covariant hom-functor $h^{c}=\mathbf{C}(c,-)$ from the category \mathbf{C} to the category of sets, that maps an object d to the set of morphisms $h^{c}(d)=\mathbf{C}(c, d)$, and that sends any morphism $f: d \rightarrow d^{\prime}$ to the map $h^{c}(f): \mathbf{C}(c, d) \rightarrow \mathbf{C}\left(c, d^{\prime}\right)$ defined by $g \mapsto f \circ g$.

About representable functors

Let C be any category, and c be an object of C. We define the covariant hom-functor $h^{c}=\mathbf{C}(c,-)$ from the category C to the category of sets, that maps an object d to the set of morphisms $h^{c}(d)=\mathbf{C}(c, d)$, and that sends any morphism $f: d \rightarrow d^{\prime}$ to the map $h^{c}(f): \mathbf{C}(c, d) \rightarrow \mathbf{C}\left(c, d^{\prime}\right)$ defined by $g \mapsto f \circ g$.

- A functor F from C to the category of sets is said to be a representable functor if it is isomorphic (in the functor category) to a functor of the form h^{c} for some object c.

About representable functors

Let C be any category, and c be an object of C. We define the covariant hom-functor $h^{c}=\mathbf{C}(c,-)$ from the category C to the category of sets, that maps an object d to the set of morphisms $h^{c}(d)=\mathbf{C}(c, d)$, and that sends any morphism $f: d \rightarrow d^{\prime}$ to the map $h^{c}(f): \mathbf{C}(c, d) \rightarrow \mathbf{C}\left(c, d^{\prime}\right)$ defined by $g \mapsto f \circ g$.

- A functor F from C to the category of sets is said to be a representable functor if it is isomorphic (in the functor category) to a functor of the form h^{c} for some object c. This object c is then shown to be unique up to isomorphism, and is called the representing object of F.

About representable functors

Let C be any category, and c be an object of C. We define the covariant hom-functor $h^{c}=\mathbf{C}(c,-)$ from the category C to the category of sets, that maps an object d to the set of morphisms $h^{c}(d)=\mathbf{C}(c, d)$, and that sends any morphism $f: d \rightarrow d^{\prime}$ to the map $h^{c}(f): \mathbf{C}(c, d) \rightarrow \mathbf{C}\left(c, d^{\prime}\right)$ defined by $g \mapsto f \circ g$.

- A functor F from C to the category of sets is said to be a representable functor if it is isomorphic (in the functor category) to a functor of the form h^{c} for some object c. This object c is then shown to be unique up to isomorphism, and is called the representing object of F.
- A consequence of the Yoneda lemma is that the category of representable functors of C is equivalent to the opposite category $\mathrm{C}^{\mathbf{o p}}$ of C (any representable functor corresponding to its representing object).

About representable functors

Let C be any category, and c be an object of C. We define the covariant hom-functor $h^{c}=\mathbf{C}(c,-)$ from the category \mathbf{C} to the category of sets, that maps an object d to the set of morphisms $h^{c}(d)=\mathbf{C}(c, d)$, and that sends any morphism $f: d \rightarrow d^{\prime}$ to the map $h^{c}(f): \mathbf{C}(c, d) \rightarrow \mathbf{C}\left(c, d^{\prime}\right)$ defined by $g \mapsto f \circ g$.

- A functor F from C to the category of sets is said to be a representable functor if it is isomorphic (in the functor category) to a functor of the form h^{c} for some object c. This object c is then shown to be unique up to isomorphism, and is called the representing object of F.
- A consequence of the Yoneda lemma is that the category of representable functors of \mathbf{C} is equivalent to the opposite category $C^{\text {op }}$ of \mathbf{C} (any representable functor corresponding to its representing object). Recall that $\mathbf{C l}^{\mathbf{o p}}$ has the same objects and morphisms as C but the composition therein is the opposite of that of \mathbf{C}.

Affine schemes in brief

Let R be any commutative ring with a unity.

Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlg_{R} be the category of commutative R-algebras with a unity.

Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlg_{R} be the category of commutative R-algebras with a unity.

- The category of representable functors of CAlg_{R} is called the category of affine schemes (on R).

Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlg_{R} be the category of commutative R-algebras with a unity.

- The category of representable functors of CAlg_{R} is called the category of affine schemes (on R). It is thus equivalent to $\mathrm{CAlg}_{R}^{\mathbf{o p}}$.

Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlg_{R} be the category of commutative R-algebras with a unity.

- The category of representable functors of CAlg_{R} is called the category of affine schemes (on R). It is thus equivalent to $\mathrm{CAlg}_{R}^{\mathbf{o p}}$.
When R is an algebraically closed field, and the representing objects are restricted to finitely-generated R-algebras, then representable functors are often called affine algebraic varieties, and if we drop the finiteness assumption, then we obtain pro-affine algebraic varieties.

Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlg_{R} be the category of commutative R-algebras with a unity.

- The category of representable functors of CAlg_{R} is called the category of affine schemes (on R). It is thus equivalent to $\mathrm{CAlg}_{R}^{\mathbf{o p}}$.
When R is an algebraically closed field, and the representing objects are restricted to finitely-generated R-algebras, then representable functors are often called affine algebraic varieties, and if we drop the finiteness assumption, then we obtain pro-affine algebraic varieties.
- For instance let I be any set, and let us consider the polynomial algebra $R\left[X_{i}: i \in I\right]$ in the indeterminates X_{i}.

Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlg_{R} be the category of commutative R-algebras with a unity.

- The category of representable functors of $\mathrm{CAlg} \mathrm{I}_{R}$ is called the category of affine schemes (on R). It is thus equivalent to $\mathrm{CAlg}_{R}^{\mathbf{o p}}$.
When R is an algebraically closed field, and the representing objects are restricted to finitely-generated R-algebras, then representable functors are often called affine algebraic varieties, and if we drop the finiteness assumption, then we obtain pro-affine algebraic varieties.
- For instance let I be any set, and let us consider the polynomial algebra $R\left[X_{i}: i \in I\right]$ in the indeterminates X_{i}. Then, the algebra $R\left[X_{i}: i \in I\right]$ is the representing object of the affine scheme $A \mapsto \operatorname{CAlg}_{R}\left(R\left[X_{i}: i \in I\right], A\right) \cong A^{\prime}$ (thus, when I is finite this gives an affine space).

Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlg_{R} be the category of commutative R-algebras with a unity.

- The category of representable functors of $\mathrm{CAlg} \mathrm{I}_{R}$ is called the category of affine schemes (on R). It is thus equivalent to $\mathrm{CAlg}_{R}^{\mathbf{o p}}$.
When R is an algebraically closed field, and the representing objects are restricted to finitely-generated R-algebras, then representable functors are often called affine algebraic varieties, and if we drop the finiteness assumption, then we obtain pro-affine algebraic varieties.
- For instance let I be any set, and let us consider the polynomial algebra $R\left[X_{i}: i \in I\right]$ in the indeterminates X_{i}. Then, the algebra $R\left[X_{i}: i \in I\right]$ is the representing object of the affine scheme $A \mapsto \operatorname{CAlg}_{R}\left(R\left[X_{i}: i \in I\right], A\right) \cong A^{\prime}$ (thus, when I is finite this gives an affine space).
- Let R be any algebraically closed field. Let F be an affine scheme with representing object the algebra $\mathcal{O}(F)$.

Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlg_{R} be the category of commutative R-algebras with a unity.

- The category of representable functors of $\mathrm{CAlg} \mathrm{I}_{R}$ is called the category of affine schemes (on R). It is thus equivalent to $\mathrm{CAlg}_{R}^{\mathbf{o p}}$.
When R is an algebraically closed field, and the representing objects are restricted to finitely-generated R-algebras, then representable functors are often called affine algebraic varieties, and if we drop the finiteness assumption, then we obtain pro-affine algebraic varieties.
- For instance let I be any set, and let us consider the polynomial algebra $R\left[X_{i}: i \in I\right]$ in the indeterminates X_{i}. Then, the algebra $R\left[X_{i}: i \in I\right]$ is the representing object of the affine scheme $A \mapsto \operatorname{CAlg}_{R}\left(R\left[X_{i}: i \in I\right], A\right) \cong A^{\prime}$ (thus, when I is finite this gives an affine space).
- Let R be any algebraically closed field. Let F be an affine scheme with representing object the algebra $\mathcal{O}(F)$. The R-rational points of F are given by $F(R) \cong \mathrm{CAlg}_{R}(\mathcal{O}(F), R)$.

Monoid schemes

- A monoid scheme M is an affine scheme such that for every algebra A, the set $M(A)$ is a usual monoid, and this naturally in A.

Monoid schemes

- A monoid scheme M is an affine scheme such that for every algebra A, the set $M(A)$ is a usual monoid, and this naturally in A.
- By Yoneda's lemma, this is equivalent to the fact that the representing algebra $\mathcal{O}(M)$ of M is actually a (commutative, unital) coassociative and counital R-bialgebra.

Finite decomposition monoids

Let (M, \star, e) be a monoid.

Finite decomposition monoids

Let (M, \star, e) be a monoid. It is said to be a finite decomposition monoid if its multiplication \star has finite fibers, i.e., for every $x \in M$, there is only finitely many $y, z \in M$ such that $x=y \star z$.

Finite decomposition monoids

Let (M, \star, e) be a monoid. It is said to be a finite decomposition monoid if its multiplication \star has finite fibers, i.e., for every $x \in M$, there is only finitely many $y, z \in M$ such that $x=y \star z$.

If M is a finite decomposition monoid, and A is a commutative R-algebra with a unit, then A^{M} is provided with a structure of a R-algebra (and even of A-algebra),

Finite decomposition monoids

Let (M, \star, e) be a monoid. It is said to be a finite decomposition monoid if its multiplication \star has finite fibers, i.e., for every $x \in M$, there is only finitely many $y, z \in M$ such that $x=y \star z$.

If M is a finite decomposition monoid, and A is a commutative R-algebra with a unit, then A^{M} is provided with a structure of a R-algebra (and even of A-algebra), which is commutative if, and only if, M is,

Finite decomposition monoids

Let (M, \star, e) be a monoid. It is said to be a finite decomposition monoid if its multiplication \star has finite fibers, i.e., for every $x \in M$, there is only finitely many $y, z \in M$ such that $x=y \star z$.

If M is a finite decomposition monoid, and A is a commutative R-algebra with a unit, then A^{M} is provided with a structure of a R-algebra (and even of A-algebra), which is commutative if, and only if, M is, and with multiplication given by

$$
(f g)(x)=\sum_{y z=x} f(y) g(z)
$$

for $f, g \in A^{M}, x \in M$.

Finite decomposition monoids

Let (M, \star, e) be a monoid. It is said to be a finite decomposition monoid if its multiplication \star has finite fibers, i.e., for every $x \in M$, there is only finitely many $y, z \in M$ such that $x=y \star z$.

If M is a finite decomposition monoid, and A is a commutative R-algebra with a unit, then A^{M} is provided with a structure of a R-algebra (and even of A-algebra), which is commutative if, and only if, M is, and with multiplication given by

$$
(f g)(x)=\sum_{y z=x} f(y) g(z)
$$

for $f, g \in A^{M}, x \in M$. This algebra is denoted by $A[[M]]$ and is called the large algebra of M.

Finite decomposition monoids (cont'd)

Theorem

For every finite decomposition monoid M,

- $(-)[[M]]: A \mapsto A[[M]]$ defines a functor from CAlg ${ }_{R}$ to the category of sets;

Finite decomposition monoids (cont'd)

Theorem

For every finite decomposition monoid M,

- $(-)[[M]]: A \mapsto A[[M]]$ defines a functor from CAlg $_{R}$ to the category of sets;
- It is representable with representing algebra $R\left[X_{x}: x \in M\right]$;

Finite decomposition monoids (cont'd)

Theorem

For every finite decomposition monoid M,

- $(-)[[M]]: A \mapsto A[[M]]$ defines a functor from CAlg ${ }_{R}$ to the category of sets;
- It is representable with representing algebra $R\left[X_{x}: x \in M\right]$;
- $R\left[X_{x}: x \in M\right]$ is a coassociative and counital bialgebra, so that $(-)[[M]]$ is a monoid scheme;

Finite decomposition monoids (cont'd)

Theorem

For every finite decomposition monoid M,

- $(-)[[M]]: A \mapsto A[[M]]$ defines a functor from CAlg_{R} to the category of sets;
- It is representable with representing algebra $R\left[X_{x}: x \in M\right]$;
- $R\left[X_{x}: x \in M\right]$ is a coassociative and counital bialgebra, so that $(-)[[M]]$ is a monoid scheme;
- M embeds as a sub-monoid into the underlying multiplicative monoid of $R[[M]]$.

Finite decomposition monoids (cont'd)

Theorem

For every finite decomposition monoid M,

- $(-)[[M]]: A \mapsto A[[M]]$ defines a functor from CAlg_{R} to the category of sets;
- It is representable with representing algebra $R\left[X_{x}: x \in M\right]$;
- $R\left[X_{x}: x \in M\right]$ is a coassociative and counital bialgebra, so that $(-)[[M]]$ is a monoid scheme;
- M embeds as a sub-monoid into the underlying multiplicative monoid of $R[[M]]$.

Proof: The map $X_{x} \rightarrow \Delta\left(X_{x}\right)=\sum_{y z=x} X_{y} \otimes X_{z}$ extends uniquely to an algebra map from $R\left[X_{x}: x \in M\right] \rightarrow R\left[X_{x}: x \in M\right] \otimes_{R} R\left[X_{x}: x: x \in M\right]$,

Finite decomposition monoids (cont'd)

Theorem

For every finite decomposition monoid M,

- $(-)[[M]]: A \mapsto A[[M]]$ defines a functor from CAlg $_{R}$ to the category of sets;
- It is representable with representing algebra $R\left[X_{x}: x \in M\right]$;
- $R\left[X_{x}: x \in M\right]$ is a coassociative and counital bialgebra, so that $(-)[[M]]$ is a monoid scheme;
- M embeds as a sub-monoid into the underlying multiplicative monoid of $R[[M]]$.

Proof: The map $X_{x} \rightarrow \Delta\left(X_{x}\right)=\sum_{y z=x} X_{y} \otimes X_{z}$ extends uniquely to an algebra map from $R\left[X_{x}: x \in M\right] \rightarrow R\left[X_{x}: x \in M\right] \otimes_{R} R\left[X_{x}: x: x \in M\right]$, and turns to be a coassociative coproduct.

Finite decomposition monoids (cont'd)

Theorem

For every finite decomposition monoid M,

- $(-)[[M]]: A \mapsto A[[M]]$ defines a functor from CAlg $_{R}$ to the category of sets;
- It is representable with representing algebra $R\left[X_{x}: x \in M\right]$;
- $R\left[X_{x}: x \in M\right]$ is a coassociative and counital bialgebra, so that $(-)[[M]]$ is a monoid scheme;
- M embeds as a sub-monoid into the underlying multiplicative monoid of $R[[M]]$.

Proof: The map $X_{x} \rightarrow \Delta\left(X_{x}\right)=\sum_{y z=x} X_{y} \otimes X_{z}$ extends uniquely to an algebra map from $R\left[X_{x}: x \in M\right] \rightarrow R\left[X_{x}: x \in M\right] \otimes_{R} R\left[X_{x}: x: x \in M\right]$, and turns to be a coassociative coproduct. The map $X_{x} \mapsto \epsilon\left(X_{x}\right)=1$ provides the counit.

What about the moduli space of pairings ?

Let us denote by $|a|$ the order of a finite abelian group a.

What about the moduli space of pairings ?

Let us denote by $|a|$ the order of a finite abelian group a.
The isomorphism relation of bilinear maps $(f,(a, b)) \cong(g,(d, e))$ on c implies that $a \cong d$ and $b \cong e$ (isomorphic groups), and thus $|a|=|d|$ and $|b|=|e|$.

What about the moduli space of pairings ?

Let us denote by $|a|$ the order of a finite abelian group a.
The isomorphism relation of bilinear maps $(f,(a, b)) \cong(g,(d, e))$ on c implies that $a \cong d$ and $b \cong e$ (isomorphic groups), and thus $|a|=|d|$ and $|b|=|e|$.

Since $|a \oplus b|=|a||b|$ and $|0|=1$, we obtain a well-defined homomorphism of monoids $s: \underline{B i l}_{\text {Abfin }}(c) \rightarrow \mathbb{N}^{*} \times \mathbb{N}^{*}$ given by $s([f,(a, b)])=(|a|,|b|)$, where $[f,(a, b)]$ is the isomorphism class of $(f,(a, b))$.

What about the moduli space of pairings ?

Let us denote by $|a|$ the order of a finite abelian group a.
The isomorphism relation of bilinear maps $(f,(a, b)) \cong(g,(d, e))$ on c implies that $a \cong d$ and $b \cong e$ (isomorphic groups), and thus $|a|=|d|$ and $|b|=|e|$.

Since $|a \oplus b|=|a||b|$ and $|0|=1$, we obtain a well-defined homomorphism of monoids $s: \underline{\operatorname{Bil}}_{\text {Abfin }}(c) \rightarrow \mathbb{N}^{*} \times \mathbb{N}^{*}$ given by $s([f,(a, b)])=(|a|,|b|)$, where $[f,(a, b)]$ is the isomorphism class of $(f,(a, b))$.

It follows that $\underline{\operatorname{Bil}}_{\mathrm{Abfin}}(c)$ is a finite decomposition monoid, and thus also are $\underline{\text { Pair }}_{\text {Abfin }}(c)$ and $\underline{\text { Perf }}_{\text {Abfin }}(c)$.

What about the moduli space of pairings ?

Let us denote by $|a|$ the order of a finite abelian group a.
The isomorphism relation of bilinear maps $(f,(a, b)) \cong(g,(d, e))$ on c implies that $a \cong d$ and $b \cong e$ (isomorphic groups), and thus $|a|=|d|$ and $|b|=|e|$.

Since $|a \oplus b|=|a||b|$ and $|0|=1$, we obtain a well-defined homomorphism of monoids $s: \underline{B i l}_{\text {Abfin }}(c) \rightarrow \mathbb{N}^{*} \times \mathbb{N}^{*}$ given by $s([f,(a, b)])=(|a|,|b|)$, where $[f,(a, b)]$ is the isomorphism class of $(f,(a, b))$.

It follows that $\underline{\operatorname{Bil}}_{\mathbf{A b f i n}}(c)$ is a finite decomposition monoid, and thus also are $\underline{\text { Pair }}_{\text {Abfin }}(c)$ and $\underline{\text { Perf }}_{\text {Abfin }}(c)$.

According to the previous theorem, if R is an algebraically closed field, then the moduli space of pairings is a sub-monoid of the R-rational points of an affine monoid scheme.

Table of contents

(1) Introduction

2 Category of pairings
(3) A symmetric monoidal structure on $\mathrm{Bil}_{\mathrm{Abfin}}(c)$
(4) Moduli space of pairings
(5) Geometric interpretation of the moduli space of pairings
(6) Classification of pairings on \mathbb{Q} / \mathbb{Z}

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.
Let $(f,(a, b))$ be an object of $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$. Then, $a \hookrightarrow \hat{b}$

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.
Let $(f,(a, b))$ be an object of $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$. Then, $a \hookrightarrow \hat{b} \cong b$

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.
Let $(f,(a, b))$ be an object of $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$. Then, $a \hookrightarrow \hat{b} \cong b \hookrightarrow \hat{a}$

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.
Let $(f,(a, b))$ be an object of $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$. Then, $a \hookrightarrow \hat{b} \cong b \hookrightarrow \hat{a} \cong a$,

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.
Let $(f,(a, b))$ be an object of $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$. Then, $a \hookrightarrow \hat{b} \cong b \hookrightarrow \hat{a} \cong a$, so that $a \cong b$, and $(f,(a, b))$ is a perfect pairing.

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\operatorname{Ab}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.
Let $(f,(a, b))$ be an object of $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$. Then, $a \hookrightarrow \hat{b} \cong b \hookrightarrow \hat{a} \cong a$, so that $a \cong b$, and $(f,(a, b))$ is a perfect pairing. We thus obtain

Lemma
$\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})=\operatorname{Perf}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$.

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.
Let $(f,(a, b))$ be an object of $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$. Then, $a \hookrightarrow \hat{b} \cong b \hookrightarrow \hat{a} \cong a$, so that $a \cong b$, and $(f,(a, b))$ is a perfect pairing. We thus obtain

Lemma

$\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})=\operatorname{Perf}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$.

Remark

This equality may be false when $c \neq \mathbb{Q} / \mathbb{Z}$ (or more precisely when $c \nsubseteq \mathbb{Q} / \mathbb{Z})$.

Now, let us assume that $c=\mathbb{Q} / \mathbb{Z}$.
Let a be a finite abelian group, and let us denote by $\hat{a}=\mathbf{A b}(a, \mathbb{Q} / \mathbb{Z})$ its dual (or character) group.

It is well-known that $a \cong \hat{a}$.
Let $(f,(a, b))$ be an object of $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$. Then, $a \hookrightarrow \hat{b} \cong b \hookrightarrow \hat{a} \cong a$, so that $a \cong b$, and $(f,(a, b))$ is a perfect pairing. We thus obtain

Lemma

$\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})=\operatorname{Perf}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$.

Remark

This equality may be false when $c \neq \mathbb{Q} / \mathbb{Z}$ (or more precisely when $c \nsubseteq \mathbb{Q} / \mathbb{Z})$. For instance, le p be a prime number, and $m>1$, then $f:(\mathbb{Z} / p \mathbb{Z})^{m} \times \mathbb{Z} / p \mathbb{Z} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{m}$ given by $f\left(\left(x_{i} \bmod p\right)_{i=1}^{m}, y \bmod p\right)=\left(x_{i} y \bmod p\right)_{i=1}^{m}$ is an imperfect pairing.

The duality pairing

Let a be a finite abelian group.

The duality pairing

Let a be a finite abelian group. The duality pairing on a is (nat ${ }_{a},(a, \hat{a})$) given by nat $_{a}(x \otimes \chi)=\chi(x)$ for $x \in a, \chi \in \hat{a}$.

The duality pairing

Let a be a finite abelian group. The duality pairing on a is (nat ${ }_{a},(a, \hat{a})$) given by nat $_{a}(x \otimes \chi)=\chi(x)$ for $x \in a, \chi \in \hat{a}$.

Theorem
Let $(f,(a, b))$ be a pairing on \mathbb{Q} / \mathbb{Z}. Then,

$$
(f,(a, b)) \cong\left(\operatorname{nat}_{a},(a, \hat{a})\right) .
$$

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.
Let us define a bi-additive map $g_{0}: a \times a \rightarrow \mathbb{Q} / \mathbb{Z}$ by $g_{0}(x, y)=f\left(x \otimes \alpha^{-1}(y)\right), x, y \in a$, and let us denote by $g: a \otimes a \rightarrow \mathbb{Q} / \mathbb{Z}$ the corresponding group homomorphism.

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.
Let us define a bi-additive map $g_{0}: a \times a \rightarrow \mathbb{Q} / \mathbb{Z}$ by $g_{0}(x, y)=f\left(x \otimes \alpha^{-1}(y)\right), x, y \in a$, and let us denote by $g: a \otimes a \rightarrow \mathbb{Q} / \mathbb{Z}$ the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect pairing.

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.
Let us define a bi-additive map $g_{0}: a \times a \rightarrow \mathbb{Q} / \mathbb{Z}$ by $g_{0}(x, y)=f\left(x \otimes \alpha^{-1}(y)\right), x, y \in a$, and let us denote by $g: a \otimes a \rightarrow \mathbb{Q} / \mathbb{Z}$ the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect pairing.

In particular, $\delta_{g}: a \rightarrow \hat{a}, x \mapsto g_{0}(\cdot, x)$, is an isomorphism from a to \hat{a}.

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.
Let us define a bi-additive map $g_{0}: a \times a \rightarrow \mathbb{Q} / \mathbb{Z}$ by $g_{0}(x, y)=f\left(x \otimes \alpha^{-1}(y)\right), x, y \in a$, and let us denote by $g: a \otimes a \rightarrow \mathbb{Q} / \mathbb{Z}$ the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect pairing.

In particular, $\delta_{g}: a \rightarrow \hat{a}, x \mapsto g_{0}(\cdot, x)$, is an isomorphism from a to \hat{a}.
Let us define a third perfect pairing $h=g \circ\left(i d_{a} \otimes \delta_{g}^{-1}\right)$, isomorphic to g (and of course to f).

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.
Let us define a bi-additive map $g_{0}: a \times a \rightarrow \mathbb{Q} / \mathbb{Z}$ by $g_{0}(x, y)=f\left(x \otimes \alpha^{-1}(y)\right), x, y \in a$, and let us denote by $g: a \otimes a \rightarrow \mathbb{Q} / \mathbb{Z}$ the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect pairing.

In particular, $\delta_{g}: a \rightarrow \hat{a}, x \mapsto g_{0}(\cdot, x)$, is an isomorphism from a to \hat{a}.
Let us define a third perfect pairing $h=g \circ\left(i d_{a} \otimes \delta_{g}^{-1}\right)$, isomorphic to g (and of course to f).

We have for every $x \in a$, and $\chi \in \hat{a}$, $h(x \otimes \chi)=g\left(x \otimes \delta_{g}^{-1}(\chi)\right)$

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.
Let us define a bi-additive map $g_{0}: a \times a \rightarrow \mathbb{Q} / \mathbb{Z}$ by $g_{0}(x, y)=f\left(x \otimes \alpha^{-1}(y)\right), x, y \in a$, and let us denote by $g: a \otimes a \rightarrow \mathbb{Q} / \mathbb{Z}$ the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect pairing.

In particular, $\delta_{g}: a \rightarrow \hat{a}, x \mapsto g_{0}(\cdot, x)$, is an isomorphism from a to \hat{a}.
Let us define a third perfect pairing $h=g \circ\left(i d_{a} \otimes \delta_{g}^{-1}\right)$, isomorphic to g (and of course to f).

We have for every $x \in a$, and $\chi \in \hat{a}$, $h(x \otimes \chi)=g\left(x \otimes \delta_{g}^{-1}(\chi)\right)=\delta_{g}\left(\delta_{g}^{-1}(\chi)\right)(x)$

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.
Let us define a bi-additive map $g_{0}: a \times a \rightarrow \mathbb{Q} / \mathbb{Z}$ by $g_{0}(x, y)=f\left(x \otimes \alpha^{-1}(y)\right), x, y \in a$, and let us denote by $g: a \otimes a \rightarrow \mathbb{Q} / \mathbb{Z}$ the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect pairing.

In particular, $\delta_{g}: a \rightarrow \hat{a}, x \mapsto g_{0}(\cdot, x)$, is an isomorphism from a to \hat{a}.
Let us define a third perfect pairing $h=g \circ\left(i d_{a} \otimes \delta_{g}^{-1}\right)$, isomorphic to g (and of course to f).

We have for every $x \in a$, and $\chi \in \hat{a}$, $h(x \otimes \chi)=g\left(x \otimes \delta_{g}^{-1}(\chi)\right)=\delta_{g}\left(\delta_{g}^{-1}(\chi)\right)(x)=\chi(x)$

Proof

Since $a \cong b$, we may choose an isomorphism $\alpha: b \rightarrow a$.
Let us define a bi-additive map $g_{0}: a \times a \rightarrow \mathbb{Q} / \mathbb{Z}$ by $g_{0}(x, y)=f\left(x \otimes \alpha^{-1}(y)\right), x, y \in a$, and let us denote by $g: a \otimes a \rightarrow \mathbb{Q} / \mathbb{Z}$ the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect pairing.

In particular, $\delta_{g}: a \rightarrow \hat{a}, x \mapsto g_{0}(\cdot, x)$, is an isomorphism from a to \hat{a}.
Let us define a third perfect pairing $h=g \circ\left(i d_{a} \otimes \delta_{g}^{-1}\right)$, isomorphic to g (and of course to f).

We have for every $x \in a$, and $\chi \in \hat{a}$, $h(x \otimes \chi)=g\left(x \otimes \delta_{g}^{-1}(\chi)\right)=\delta_{g}\left(\delta_{g}^{-1}(\chi)\right)(x)=\chi(x)=$ nat $_{a}(x \otimes \chi)$.

Consequences

We have $(\widehat{a \oplus b}) \cong \hat{a} \oplus \hat{b}$,

Consequences

We have $(\widehat{a \oplus b}) \cong \hat{a} \oplus \hat{b}$, so it follows that $\left(\right.$ nat $\left._{a \oplus b},(a \oplus b,(\widehat{a \oplus b}))\right) \cong\left(\operatorname{nat}_{a},(a, \hat{a})\right) \perp\left(\right.$ nat $\left._{b},(b, \hat{b})\right)$.

Consequences

We have $(\widehat{a \oplus b}) \cong \hat{a} \oplus \hat{b}$, so it follows that $\left(\right.$ nat $\left._{a \oplus b},(a \oplus b,(\widehat{a \oplus b}))\right) \cong\left(\operatorname{nat}_{a},(a, \hat{a})\right) \perp\left(\right.$ nat $\left._{b},(b, \hat{b})\right)$.

Corollary

The moduli space of pairings $\operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$ is the free commutative monoid generated by all the (p, i)'s, where p is a prime number, and $i \in \mathbb{N}^{*}$.

Consequences

We have $(\widehat{a \oplus b}) \cong \hat{a} \oplus \hat{b}$, so it follows that $\left(\right.$ nat $_{a \oplus b},(a \oplus b,(\widehat{a \oplus b})) \cong\left(\operatorname{nat}_{a},(a, \hat{a})\right) \perp\left(\right.$ nat $\left._{b},(b, \hat{b})\right)$.

Corollary

The moduli space of pairings Pair $_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$ is the free commutative monoid generated by all the (p, i)'s, where p is a prime number, and $i \in \mathbb{N}^{*}$.

Let p be a prime number, and let $\mathbb{Z}\left(p^{\infty}\right)$ be the Prüfer p-group, i.e., the direct limit $0 \hookrightarrow \mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z} / p^{2} \mathbb{Z} \hookrightarrow \cdots$

Consequences

We have $(\widehat{a \oplus b}) \cong \hat{a} \oplus \hat{b}$, so it follows that $\left(\right.$ nat $\left._{a \oplus b},(a \oplus b,(\widehat{a \oplus b}))\right) \cong\left(\operatorname{nat}_{a},(a, \hat{a})\right) \perp\left(\right.$ nat $\left._{b},(b, \hat{b})\right)$.

Corollary

The moduli space of pairings Pair $_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$ is the free commutative monoid generated by all the (p, i)'s, where p is a prime number, and $i \in \mathbb{N}^{*}$.

Let p be a prime number, and let $\mathbb{Z}\left(p^{\infty}\right)$ be the Prüfer p-group, i.e., the direct limit $0 \hookrightarrow \mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z} / p^{2} \mathbb{Z} \hookrightarrow \cdots$ Let ${ }_{p}$ Abfin be the category of finite abelian p-groups.

Consequences

We have $(\widehat{a \oplus b}) \cong \hat{a} \oplus \hat{b}$, so it follows that $\left(\right.$ nat $\left._{a \oplus b},(a \oplus b,(\widehat{a \oplus b}))\right) \cong\left(\operatorname{nat}_{a},(a, \hat{a})\right) \perp\left(\right.$ nat $\left._{b},(b, \hat{b})\right)$.

Corollary

The moduli space of pairings Pair $_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$ is the free commutative monoid generated by all the (p, i)'s, where p is a prime number, and $i \in \mathbb{N}^{*}$.

Let p be a prime number, and let $\mathbb{Z}\left(p^{\infty}\right)$ be the Prüfer p-group, i.e., the direct limit $0 \hookrightarrow \mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z} / p^{2} \mathbb{Z} \hookrightarrow \cdots$ Let ${ }_{p}$ Abfin be the category of finite abelian p-groups. Then, Pair $_{p \text { Abfin }}\left(\mathbb{Z}\left(p^{\infty}\right) \hookrightarrow \operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})\right.$ (full embedding of categories).

Consequences

We have $(\widehat{a \oplus b}) \cong \hat{a} \oplus \hat{b}$, so it follows that $\left(\operatorname{nat}_{a \oplus b},(a \oplus b,(\widehat{a \oplus b}))\right) \cong\left(\operatorname{nat}_{a},(a, \hat{a})\right) \perp\left(\right.$ nat $\left._{b},(b, \hat{b})\right)$.

Corollary

The moduli space of pairings Pair $_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})$ is the free commutative monoid generated by all the (p, i)'s, where p is a prime number, and $i \in \mathbb{N}^{*}$.

Let p be a prime number, and let $\mathbb{Z}\left(p^{\infty}\right)$ be the Prüfer p-group, i.e., the direct limit $0 \hookrightarrow \mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z} / p^{2} \mathbb{Z} \hookrightarrow \cdots$ Let ${ }_{p}$ Abfin be the category of finite abelian p-groups. Then, $\operatorname{Pair}_{p \text { Abfin }}\left(\mathbb{Z}\left(p^{\infty}\right) \hookrightarrow \operatorname{Pair}_{\text {Abfin }}(\mathbb{Q} / \mathbb{Z})\right.$ (full embedding of categories).

Corollary

The monoid $\underline{\text { Pair }}_{p} \mathbf{A b f i n}\left(\mathbb{Z}\left(p^{\infty}\right)\right)$ is free (as a commutative monoid) with basis \mathbb{N}^{*}.

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Why is the classification so simple?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z}

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv.

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a,

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a, then
$g(\alpha(y), \alpha(x))=f(y, x)$

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a, then
$g(\alpha(y), \alpha(x))=f(y, x)=f(x, y)$

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a, then
$g(\alpha(y), \alpha(x))=f(y, x)=f(x, y)=g(\alpha(x), \alpha(y))$

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a, then
$g(\alpha(y), \alpha(x))=f(y, x)=f(x, y)=g(\alpha(x), \alpha(y))=-g(\alpha(y), \alpha(x))$.

Why is the classification so simple?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a, then
$g(\alpha(y), \alpha(x))=f(y, x)=f(x, y)=g(\alpha(x), \alpha(y))=-g(\alpha(y), \alpha(x))$.
Let $p>2$ be a prime number, and let $f_{+}, f_{-}:(\mathbb{Z} / p \mathbb{Z})^{2} \times(\mathbb{Z} / p \mathbb{Z})^{2} \rightarrow \mathbb{Z} / p \mathbb{Z}$ given by $f_{\star}\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right)=x_{1} x_{4} \star x_{2} x_{3}, \star \in\{ \pm\}$.

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a, then $g(\alpha(y), \alpha(x))=f(y, x)=f(x, y)=g(\alpha(x), \alpha(y))=-g(\alpha(y), \alpha(x))$. Let $p>2$ be a prime number, and let $f_{+}, f_{-}:(\mathbb{Z} / p \mathbb{Z})^{2} \times(\mathbb{Z} / p \mathbb{Z})^{2} \rightarrow \mathbb{Z} / p \mathbb{Z}$ given by $f_{\star}\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right)=x_{1} x_{4} \star x_{2} x_{3}, \star \in\{ \pm\}$. We observe that f_{+} is symmetric, while f_{-}is skew-symmetric.

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a, then
$g(\alpha(y), \alpha(x))=f(y, x)=f(x, y)=g(\alpha(x), \alpha(y))=-g(\alpha(y), \alpha(x))$.
Let $p>2$ be a prime number, and let $f_{+}, f_{-}:(\mathbb{Z} / p \mathbb{Z})^{2} \times(\mathbb{Z} / p \mathbb{Z})^{2} \rightarrow \mathbb{Z} / p \mathbb{Z}$ given by $f_{\star}\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right)=x_{1} x_{4} \star x_{2} x_{3}, \star \in\{ \pm\}$. We observe that f_{+} is symmetric, while f_{-}is skew-symmetric. Thus they cannot be equivalent $\bmod \equiv$,

Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on \mathbb{Q} / \mathbb{Z} and his equivalence relation to classify them is the following $(f,(a, a)) \equiv(g,(b, b))$ if, and only if, there is an isomorphism $\alpha: a \rightarrow b$ such that $f(x, y)=g(\alpha(x), \alpha(y))$, $x, y \in a$.

For any abelian group without 2-torsion c, no two non-trivial (i.e., $\neq 0$) bilinear maps $f, g: a \times a \rightarrow c, f$ symmetric and g skew-symmetric, may be equivalent modulo \equiv. Indeed, if $f(x, y)=g(\alpha(x), \alpha(y))$ for an automorphism α of a, then
$g(\alpha(y), \alpha(x))=f(y, x)=f(x, y)=g(\alpha(x), \alpha(y))=-g(\alpha(y), \alpha(x))$.
Let $p>2$ be a prime number, and let $f_{+}, f_{-}:(\mathbb{Z} / p \mathbb{Z})^{2} \times(\mathbb{Z} / p \mathbb{Z})^{2} \rightarrow \mathbb{Z} / p \mathbb{Z}$ given by $f_{\star}\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right)=x_{1} x_{4} \star x_{2} x_{3}, \star \in\{ \pm\}$. We observe that f_{+} is symmetric, while f_{-}is skew-symmetric. Thus they cannot be equivalent $\bmod \equiv$, while they are isomorphic (take $\alpha=i d$, and $\beta(x, y)=(-x, y)$ so that $\left.f_{+}\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right)=f_{-}\left(\alpha\left(x_{1}, x_{2}\right), \beta\left(x_{3}, x_{4}\right)\right)\right)$.

To conclude

When $c=\mathbb{Q} / \mathbb{Z}$, the classification of pairings is achieved (there is a one-one correspondence between isomorphic classes of finite abelian groups and isomorphic classes of pairings).

To conclude

When $c=\mathbb{Q} / \mathbb{Z}$, the classification of pairings is achieved (there is a one-one correspondence between isomorphic classes of finite abelian groups and isomorphic classes of pairings).

To obtain more isomorphic classes we must

To conclude

When $c=\mathbb{Q} / \mathbb{Z}$, the classification of pairings is achieved (there is a one-one correspondence between isomorphic classes of finite abelian groups and isomorphic classes of pairings).

To obtain more isomorphic classes we must

- either consider other choices for c, for instance a finite non-cyclic abelian group (in the case c is finite, it may be proved that $f: a \otimes b \rightarrow c$ is a pairing, then a and b share the same exponent).

To conclude

When $c=\mathbb{Q} / \mathbb{Z}$, the classification of pairings is achieved (there is a one-one correspondence between isomorphic classes of finite abelian groups and isomorphic classes of pairings).

To obtain more isomorphic classes we must

- either consider other choices for c, for instance a finite non-cyclic abelian group (in the case c is finite, it may be proved that $f: a \otimes b \rightarrow c$ is a pairing, then a and b share the same exponent).
- or consider the category of finite commutative monoids in which we should have a richer structure for the moduli space of pairings since there is no dualizable object such as \mathbb{Q} / \mathbb{Z}.

