
Moduli space of pairings on complex roots of unity

Laurent Poinsot

LIPN - UMR CNRS 7030
Université Paris XIII, Sorbonne Paris Cité - Institut Galilée

Joint-work with Nadia El Mrabet - Université Paris 8

Séminaire Protection de l’information
Vendredi 29 novembre 2013

1 / 38

Table of contents

1 Introduction

2 Category of pairings

3 A symmetric monoidal structure on BilAbfin(c)

4 Moduli space of pairings

5 Geometric interpretation of the moduli space of pairings

6 Classification of pairings on Q/Z

2 / 38

Pairings

Let A,B,C be three modules over some commutative ring R with a unit.

A pairing is a non-degenerate bilinear map f : A× B → C .

Non-degeneracy means that

γf : a ∈ A 7→ f (a, ·)

and
δf : b ∈ B 7→ f (·, b)

are both one-to-one.

3 / 38

Examples

• Let 1→ A→ G → B → 1 be a short exact sequence of groups, where
A,B are abelian, and A lies in Z (G). The commutator [·, ·] of G factors to
a bilinear map [·, ·] : B × B → A which is non-degenerate if, and only if,
A = Z (G) (R. Baer, 1938).

• Let 〈· | ·〉 : A× Â→ R/Z defined by 〈a | χ〉 = χ(a).

• Weil, Tate pairings and their recent generalizations to Abelian varieties.

• Let K be any field, and X be any set. Let us denote by K(X) the vector
space of finitely supported maps (i.e., the vector space with basis X). The
map 〈· | ·〉 : KX ×K(X) → K given by 〈f | g〉 =

∑
x∈X f (x)g(x) is a

pairing.

4 / 38

Cryptographic applications

• MOV attack to solve the discrete logarithm problem by transport from an
elliptic curve to a finite field.

• A. Joux’s one-round key exchange tri-partite Diffie-Hellman protocol.

• Identity-based cryptography.

5 / 38

Objective of this talk
• Provide a categorical setting to study pairings in a unified way in several
categories (e.g., abelian groups, modules or commutative monoids).

• Provide a classification of pairings – under a suitable equivalence relation
– from finite abelian groups to the complex unit circle (this classification is
rather disappointing).

• Show that the set of equivalence classes of pairings is almost a moduli
space: it is actually a subset of rational points of some (pro-)affine
algebraic variety.

Warning: The classification from this talk is of course different from C.T.C
Wall’s classification of skew or symmetric non-singular bilinear forms on
finite abelian groups (1964) because the equivalence relations under
consideration are not the same. My equivalence relation is of a categorical
nature, since it is the relation of isomorphism in a suitable category, and it
is strictly coarser than C.T.C Wall’s relation (more pairings are identified).

6 / 38

Table of contents

1 Introduction

2 Category of pairings

3 A symmetric monoidal structure on BilAbfin(c)

4 Moduli space of pairings

5 Geometric interpretation of the moduli space of pairings

6 Classification of pairings on Q/Z

7 / 38

Table of contents

1 Introduction

2 Category of pairings

3 A symmetric monoidal structure on BilAbfin(c)

4 Moduli space of pairings

5 Geometric interpretation of the moduli space of pairings

6 Classification of pairings on Q/Z

8 / 38

Bilinear maps
Let c be an abelian group (e.g., c = Q/Z).

• A bilinear map on c is a pair (f , (a, b)) where a, b are both finite abelian
groups and f is a group homomorphism f : a ⊗ b → c (⊗ being the usual
tensor product of abelian groups that classifies bi-additive maps).

• A pair (α, β) of group homomorphisms between finite abelian groups,
α : a→ d , β : b → e, is said to be an arrow or a morphism
(α, β) : (f , (a, b))→ (g , (d , e)) if the following triangle commutes

a ⊗ b

f ""

α⊗β // d ⊗ e

g
||

c

(1)

In other terms, g0(α(x), β(y)) = f0(x , y) for every x ∈ a, y ∈ b (where
f0 : a × b → c and g0 : d × e → c are the bi-additive maps associated to f
and g respectively).

9 / 38

Bilinear maps
Let c be an abelian group (e.g., c = Q/Z).

• A bilinear map on c is a pair (f , (a, b)) where a, b are both finite abelian
groups and f is a group homomorphism f : a ⊗ b → c (⊗ being the usual
tensor product of abelian groups that classifies bi-additive maps).

• A pair (α, β) of group homomorphisms between finite abelian groups,
α : a→ d , β : b → e, is said to be an arrow or a morphism
(α, β) : (f , (a, b))→ (g , (d , e)) if the following triangle commutes

a ⊗ b

f ""

α⊗β // d ⊗ e

g
||

c

(1)

In other terms, g0(α(x), β(y)) = f0(x , y) for every x ∈ a, y ∈ b (where
f0 : a × b → c and g0 : d × e → c are the bi-additive maps associated to f
and g respectively).

9 / 38

Bilinear maps
Let c be an abelian group (e.g., c = Q/Z).

• A bilinear map on c is a pair (f , (a, b)) where a, b are both finite abelian
groups and f is a group homomorphism f : a ⊗ b → c (⊗ being the usual
tensor product of abelian groups that classifies bi-additive maps).

• A pair (α, β) of group homomorphisms between finite abelian groups,
α : a→ d , β : b → e, is said to be an arrow or a morphism
(α, β) : (f , (a, b))→ (g , (d , e)) if the following triangle commutes

a ⊗ b

f ""

α⊗β // d ⊗ e

g
||

c

(1)

In other terms, g0(α(x), β(y)) = f0(x , y) for every x ∈ a, y ∈ b (where
f0 : a × b → c and g0 : d × e → c are the bi-additive maps associated to f
and g respectively).

9 / 38

Bilinear maps (cont’d)

• Bilinear maps on c with these morphisms form a category denoted by
BilAbfin(c), the composition of morphisms being defined component-wise
(α1, β1) ◦ (α2, β2) = (α1 ◦ α2, β1 ◦ β2), and the identity morphism
id(f ,(a,b)) on (f , (a, b)) being just (ida, idb).

• An isomorphism (α, β) from (f , (a, b)) to (g , (d , e)) is just an arrow
(α, β) : (f , (a, b))→ (g , (c , d)) such that α : a→ d and β : b → e are
both group isomorphisms (thus (f , (a, b)) ∼= (g , (d , e)) implies a ∼= d and
b ∼= e as finite abelian groups).

10 / 38

Bilinear maps (cont’d)

• Bilinear maps on c with these morphisms form a category denoted by
BilAbfin(c), the composition of morphisms being defined component-wise
(α1, β1) ◦ (α2, β2) = (α1 ◦ α2, β1 ◦ β2), and the identity morphism
id(f ,(a,b)) on (f , (a, b)) being just (ida, idb).

• An isomorphism (α, β) from (f , (a, b)) to (g , (d , e)) is just an arrow
(α, β) : (f , (a, b))→ (g , (c , d)) such that α : a→ d and β : b → e are
both group isomorphisms

(thus (f , (a, b)) ∼= (g , (d , e)) implies a ∼= d and
b ∼= e as finite abelian groups).

10 / 38

Bilinear maps (cont’d)

• Bilinear maps on c with these morphisms form a category denoted by
BilAbfin(c), the composition of morphisms being defined component-wise
(α1, β1) ◦ (α2, β2) = (α1 ◦ α2, β1 ◦ β2), and the identity morphism
id(f ,(a,b)) on (f , (a, b)) being just (ida, idb).

• An isomorphism (α, β) from (f , (a, b)) to (g , (d , e)) is just an arrow
(α, β) : (f , (a, b))→ (g , (c , d)) such that α : a→ d and β : b → e are
both group isomorphisms (thus (f , (a, b)) ∼= (g , (d , e)) implies a ∼= d and
b ∼= e as finite abelian groups).

10 / 38

(Perfect) Pairings

• A (perfect) pairing (on c) is a bilinear map (f , (a, b)) on c such that γf
and δf are both monomorphisms (respectively, isomorphisms) (recall from
the introduction that γf (x) = f0(x , ·) and δf (y) = f0(·, y)).

Remark
In category-theoretical terms, a monomorphism f is a left-cancellable
morphism. For the categories of sets, abelian groups, commutative
monoids, modules over some commutative unital ring, and many other
categories but not all, monomorphisms coincide with one-to-one maps.

• Let us denote by PairAbfin(c) (resp. PerfAbfin(c)) the full sub-category
of BilAbfin(c) with objects the (perfect) pairings on c .

• PerfAbfin(c) is of course a full sub-category of PairAbfin(c).

11 / 38

(Perfect) Pairings

• A (perfect) pairing (on c) is a bilinear map (f , (a, b)) on c such that γf
and δf are both monomorphisms (respectively, isomorphisms) (recall from
the introduction that γf (x) = f0(x , ·) and δf (y) = f0(·, y)).

Remark
In category-theoretical terms, a monomorphism f is a left-cancellable
morphism. For the categories of sets, abelian groups, commutative
monoids, modules over some commutative unital ring, and many other
categories but not all, monomorphisms coincide with one-to-one maps.

• Let us denote by PairAbfin(c) (resp. PerfAbfin(c)) the full sub-category
of BilAbfin(c) with objects the (perfect) pairings on c .

• PerfAbfin(c) is of course a full sub-category of PairAbfin(c).

11 / 38

(Perfect) Pairings

• A (perfect) pairing (on c) is a bilinear map (f , (a, b)) on c such that γf
and δf are both monomorphisms (respectively, isomorphisms) (recall from
the introduction that γf (x) = f0(x , ·) and δf (y) = f0(·, y)).

Remark
In category-theoretical terms, a monomorphism f is a left-cancellable
morphism. For the categories of sets, abelian groups, commutative
monoids, modules over some commutative unital ring, and many other
categories but not all, monomorphisms coincide with one-to-one maps.

• Let us denote by PairAbfin(c) (resp. PerfAbfin(c)) the full sub-category
of BilAbfin(c) with objects the (perfect) pairings on c .

• PerfAbfin(c) is of course a full sub-category of PairAbfin(c).

11 / 38

Some easy functorial properties

• Functorially, if c1 ↪→ c2, then PairAbfin(c1) ↪→ PairAbfin(c2) (full
embedding of categories).

• Functorially, if c1 ∼= c2, then PerfAbfin(c1) ∼= PerfAbfin(c2) (isomorphic
categories).

• Of course, if c1 ∼= c2, then also PairAbfin(c1) ∼= PairAbfin(c2) (isomorphic
categories), but the converse is false. For instance,
PairAbfin(0) ∼= PairAbfin(Z).

12 / 38

Some easy functorial properties

• Functorially, if c1 ↪→ c2, then PairAbfin(c1) ↪→ PairAbfin(c2) (full
embedding of categories).

• Functorially, if c1 ∼= c2, then PerfAbfin(c1) ∼= PerfAbfin(c2) (isomorphic
categories).

• Of course, if c1 ∼= c2, then also PairAbfin(c1) ∼= PairAbfin(c2) (isomorphic
categories), but the converse is false. For instance,
PairAbfin(0) ∼= PairAbfin(Z).

12 / 38

Some easy functorial properties

• Functorially, if c1 ↪→ c2, then PairAbfin(c1) ↪→ PairAbfin(c2) (full
embedding of categories).

• Functorially, if c1 ∼= c2, then PerfAbfin(c1) ∼= PerfAbfin(c2) (isomorphic
categories).

• Of course, if c1 ∼= c2, then also PairAbfin(c1) ∼= PairAbfin(c2) (isomorphic
categories), but the converse is false.

For instance,
PairAbfin(0) ∼= PairAbfin(Z).

12 / 38

Some easy functorial properties

• Functorially, if c1 ↪→ c2, then PairAbfin(c1) ↪→ PairAbfin(c2) (full
embedding of categories).

• Functorially, if c1 ∼= c2, then PerfAbfin(c1) ∼= PerfAbfin(c2) (isomorphic
categories).

• Of course, if c1 ∼= c2, then also PairAbfin(c1) ∼= PairAbfin(c2) (isomorphic
categories), but the converse is false. For instance,
PairAbfin(0) ∼= PairAbfin(Z).

12 / 38

Isomorphisms preserve non-degeneracy
• An isomorphism class of bilinear maps on c either contains no pairings or
all its members are pairings (in other terms, a bilinear map is isomorphic to
a pairing if, and only if, it is itself a pairing).

• The same holds replacing bilinear maps by pairings, and pairings by
perfect pairings in the above sentence.

• It follows that

BilAbfin(c) = PairAbfin(c) ∪DegenAbfin(c)

of course with
PairAbfin(c) ∩DegenAbfin(c) = ∅

and
PairAbfin(c) = PerfAbfin(c) ∪ ImpAbfin(c)

with
PerfAbfin(c) ∩ ImpAbfin(c) = ∅

13 / 38

Isomorphisms preserve non-degeneracy
• An isomorphism class of bilinear maps on c either contains no pairings or
all its members are pairings (in other terms, a bilinear map is isomorphic to
a pairing if, and only if, it is itself a pairing).

• The same holds replacing bilinear maps by pairings, and pairings by
perfect pairings in the above sentence.

• It follows that

BilAbfin(c) = PairAbfin(c) ∪DegenAbfin(c)

of course with
PairAbfin(c) ∩DegenAbfin(c) = ∅

and
PairAbfin(c) = PerfAbfin(c) ∪ ImpAbfin(c)

with
PerfAbfin(c) ∩ ImpAbfin(c) = ∅

13 / 38

Isomorphisms preserve non-degeneracy
• An isomorphism class of bilinear maps on c either contains no pairings or
all its members are pairings (in other terms, a bilinear map is isomorphic to
a pairing if, and only if, it is itself a pairing).

• The same holds replacing bilinear maps by pairings, and pairings by
perfect pairings in the above sentence.

• It follows that

BilAbfin(c) = PairAbfin(c) ∪DegenAbfin(c)

of course with
PairAbfin(c) ∩DegenAbfin(c) = ∅

and
PairAbfin(c) = PerfAbfin(c) ∪ ImpAbfin(c)

with
PerfAbfin(c) ∩ ImpAbfin(c) = ∅

13 / 38

Isomorphisms preserve non-degeneracy
• An isomorphism class of bilinear maps on c either contains no pairings or
all its members are pairings (in other terms, a bilinear map is isomorphic to
a pairing if, and only if, it is itself a pairing).

• The same holds replacing bilinear maps by pairings, and pairings by
perfect pairings in the above sentence.

• It follows that

BilAbfin(c) = PairAbfin(c) ∪DegenAbfin(c)

of course with
PairAbfin(c) ∩DegenAbfin(c) = ∅

and
PairAbfin(c) = PerfAbfin(c) ∪ ImpAbfin(c)

with
PerfAbfin(c) ∩ ImpAbfin(c) = ∅

13 / 38

Remark
Everything remains valid if one replaces

- the category of abelian groups by any closed symmetric monoidal
category C (i.e., with a tensor bifunctor, an internal hom functor, and some
properties...),

- the category of finite abelian groups by any full sub-category D of C.

For instance, C may be

- the category of sets (⊗ = ×) with D the category of finite sets,

- the category of commutative monoids (⊗ = ⊗N similar to ⊗Z), with D
that of finite commutative monoids,

- the category RMod of modules on a commutative ring R (6= 0) with a
unity (⊗ = ⊗R), and D = RModfreefin, the category of free R-modules of
finite rank.

14 / 38

Remark
Everything remains valid if one replaces

- the category of abelian groups by any closed symmetric monoidal
category C (i.e., with a tensor bifunctor, an internal hom functor, and some
properties...),

- the category of finite abelian groups by any full sub-category D of C.

For instance, C may be

- the category of sets (⊗ = ×) with D the category of finite sets,

- the category of commutative monoids (⊗ = ⊗N similar to ⊗Z), with D
that of finite commutative monoids,

- the category RMod of modules on a commutative ring R (6= 0) with a
unity (⊗ = ⊗R), and D = RModfreefin, the category of free R-modules of
finite rank.

14 / 38

Table of contents

1 Introduction

2 Category of pairings

3 A symmetric monoidal structure on BilAbfin(c)

4 Moduli space of pairings

5 Geometric interpretation of the moduli space of pairings

6 Classification of pairings on Q/Z

15 / 38

Direct sum of abelian groups

Let a, b be two abelian groups, and let a ⊕ b denote their direct sum with
canonical injections qa : a ↪→ a ⊕ b, x 7→ (x , 0) and
qb : b ↪→ a ⊕ b, y 7→ (0, y).

Categorically, the direct sum ⊕ is characterized by a universal property: for
every abelian group d , and every group homomorphisms α : a→ d and
β : b → d , there is a unique group homomorphism γ : a ⊕ b → d that
makes commute the following diagram.

a
qa //

α
!!

a ⊕ b

γ

��

b
qboo

β}}
d

(2)

In concrete terms, γ(x , y) = α(x) + β(y).

16 / 38

Direct sum of abelian groups

Let a, b be two abelian groups, and let a ⊕ b denote their direct sum with
canonical injections qa : a ↪→ a ⊕ b, x 7→ (x , 0) and
qb : b ↪→ a ⊕ b, y 7→ (0, y).

Categorically, the direct sum ⊕ is characterized by a universal property:

for
every abelian group d , and every group homomorphisms α : a→ d and
β : b → d , there is a unique group homomorphism γ : a ⊕ b → d that
makes commute the following diagram.

a
qa //

α
!!

a ⊕ b

γ

��

b
qboo

β}}
d

(2)

In concrete terms, γ(x , y) = α(x) + β(y).

16 / 38

Direct sum of abelian groups

Let a, b be two abelian groups, and let a ⊕ b denote their direct sum with
canonical injections qa : a ↪→ a ⊕ b, x 7→ (x , 0) and
qb : b ↪→ a ⊕ b, y 7→ (0, y).

Categorically, the direct sum ⊕ is characterized by a universal property: for
every abelian group d , and every group homomorphisms α : a→ d and
β : b → d , there is a unique group homomorphism γ : a ⊕ b → d that
makes commute the following diagram.

a
qa //

α
!!

a ⊕ b

γ

��

b
qboo

β}}
d

(2)

In concrete terms, γ(x , y) = α(x) + β(y).

16 / 38

Direct sum of abelian groups

Let a, b be two abelian groups, and let a ⊕ b denote their direct sum with
canonical injections qa : a ↪→ a ⊕ b, x 7→ (x , 0) and
qb : b ↪→ a ⊕ b, y 7→ (0, y).

Categorically, the direct sum ⊕ is characterized by a universal property: for
every abelian group d , and every group homomorphisms α : a→ d and
β : b → d , there is a unique group homomorphism γ : a ⊕ b → d that
makes commute the following diagram.

a
qa //

α
!!

a ⊕ b

γ

��

b
qboo

β}}
d

(2)

In concrete terms, γ(x , y) = α(x) + β(y).

16 / 38

⊗ distributes over ⊕
It is a well-known fact that for every abelian groups a1, a2, b1, b2,

(a1 ⊕ a2)⊗ (b1 ⊕ b2) ∼= (a1 ⊗ b1)⊕ (a1 ⊗ b2)⊕ (a2 ⊗ b1)⊕ (a2 ⊗ b2).

More precisely, (a1 ⊕ a2)⊗ (b1 ⊕ b2) admits a direct sum presentation as

a1 ⊗ b1
qa1⊗qb1

((

a1 ⊗ b2
qa1⊗qb2

vv
(a1 ⊕ a2)⊗ (b1 ⊕ b2)

a2 ⊗ b1

qa2⊗qb1

66

a2 ⊗ b2

qa2⊗qb2

hh

(This comes from the fact that for every abelian group a, both functors
a ⊗− and −⊗ a admit a right adjoint, and this is true in any symmetric
monoidal closed category with binary coproducts.)

17 / 38

⊗ distributes over ⊕
It is a well-known fact that for every abelian groups a1, a2, b1, b2,

(a1 ⊕ a2)⊗ (b1 ⊕ b2) ∼= (a1 ⊗ b1)⊕ (a1 ⊗ b2)⊕ (a2 ⊗ b1)⊕ (a2 ⊗ b2).

More precisely, (a1 ⊕ a2)⊗ (b1 ⊕ b2) admits a direct sum presentation as

a1 ⊗ b1
qa1⊗qb1

((

a1 ⊗ b2
qa1⊗qb2

vv
(a1 ⊕ a2)⊗ (b1 ⊕ b2)

a2 ⊗ b1

qa2⊗qb1

66

a2 ⊗ b2

qa2⊗qb2

hh

(This comes from the fact that for every abelian group a, both functors
a ⊗− and −⊗ a admit a right adjoint, and this is true in any symmetric
monoidal closed category with binary coproducts.)

17 / 38

A tensor bifunctor ⊥
It is thus possible to define for every abelian group d , and any group
homomorphisms α1 : a1 ⊗ b1 → d , β1 : a1 ⊗ b2 → d , α2 : a2 ⊗ b1 → d , and
β2 : a2 ⊗ b2 → d , a unique group homomorphism
γ : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ d (using the universal property of the direct
sum).

In more concrete terms,
γ((x1, x2)⊗(y1, y2)) = α1(x1⊗y1)+α2(x2⊗y1)+β1(x1⊗y2)+β2(x2⊗y2).

This makes feasible to define the following (functorial) operation on the
bilinear maps (f1, (a1, b1)) and (f2, (a2, b2)) on c by
(f1, (a1, b1))⊥(f2, (a2, b2)) = (f1⊥f2, (a1 ⊕ a2, b1 ⊕ b2)), where
f1⊥f2 : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ c is defined as γ above using
- α1 = f1 : a1 ⊗ b1 → c ,
- α2 = 0 : a2 ⊗ b1 → c ,
- β1 = 0 : a1 ⊗ b2 → c ,
- β2 = f2 : a2 ⊗ b2 → c .
In concrete terms, (f1⊥f2)((x1, x2)⊗ (y1, y2)) = f1(x1 ⊗ y1) + f2(x2 ⊗ y2)
(informally speaking, one imposes to a2, b1, and also to a1, b2, to be
“orthogonal” one to the other with respect to f1⊥f2).

18 / 38

A tensor bifunctor ⊥
It is thus possible to define for every abelian group d , and any group
homomorphisms α1 : a1 ⊗ b1 → d , β1 : a1 ⊗ b2 → d , α2 : a2 ⊗ b1 → d , and
β2 : a2 ⊗ b2 → d , a unique group homomorphism
γ : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ d (using the universal property of the direct
sum). In more concrete terms,
γ((x1, x2)⊗(y1, y2)) = α1(x1⊗y1)+α2(x2⊗y1)+β1(x1⊗y2)+β2(x2⊗y2).

This makes feasible to define the following (functorial) operation on the
bilinear maps (f1, (a1, b1)) and (f2, (a2, b2)) on c by
(f1, (a1, b1))⊥(f2, (a2, b2)) = (f1⊥f2, (a1 ⊕ a2, b1 ⊕ b2)), where
f1⊥f2 : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ c is defined as γ above using
- α1 = f1 : a1 ⊗ b1 → c ,
- α2 = 0 : a2 ⊗ b1 → c ,
- β1 = 0 : a1 ⊗ b2 → c ,
- β2 = f2 : a2 ⊗ b2 → c .
In concrete terms, (f1⊥f2)((x1, x2)⊗ (y1, y2)) = f1(x1 ⊗ y1) + f2(x2 ⊗ y2)
(informally speaking, one imposes to a2, b1, and also to a1, b2, to be
“orthogonal” one to the other with respect to f1⊥f2).

18 / 38

A tensor bifunctor ⊥
It is thus possible to define for every abelian group d , and any group
homomorphisms α1 : a1 ⊗ b1 → d , β1 : a1 ⊗ b2 → d , α2 : a2 ⊗ b1 → d , and
β2 : a2 ⊗ b2 → d , a unique group homomorphism
γ : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ d (using the universal property of the direct
sum). In more concrete terms,
γ((x1, x2)⊗(y1, y2)) = α1(x1⊗y1)+α2(x2⊗y1)+β1(x1⊗y2)+β2(x2⊗y2).

This makes feasible to define the following (functorial) operation on the
bilinear maps (f1, (a1, b1)) and (f2, (a2, b2)) on c

by
(f1, (a1, b1))⊥(f2, (a2, b2)) = (f1⊥f2, (a1 ⊕ a2, b1 ⊕ b2)), where
f1⊥f2 : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ c is defined as γ above using
- α1 = f1 : a1 ⊗ b1 → c ,
- α2 = 0 : a2 ⊗ b1 → c ,
- β1 = 0 : a1 ⊗ b2 → c ,
- β2 = f2 : a2 ⊗ b2 → c .
In concrete terms, (f1⊥f2)((x1, x2)⊗ (y1, y2)) = f1(x1 ⊗ y1) + f2(x2 ⊗ y2)
(informally speaking, one imposes to a2, b1, and also to a1, b2, to be
“orthogonal” one to the other with respect to f1⊥f2).

18 / 38

A tensor bifunctor ⊥
It is thus possible to define for every abelian group d , and any group
homomorphisms α1 : a1 ⊗ b1 → d , β1 : a1 ⊗ b2 → d , α2 : a2 ⊗ b1 → d , and
β2 : a2 ⊗ b2 → d , a unique group homomorphism
γ : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ d (using the universal property of the direct
sum). In more concrete terms,
γ((x1, x2)⊗(y1, y2)) = α1(x1⊗y1)+α2(x2⊗y1)+β1(x1⊗y2)+β2(x2⊗y2).

This makes feasible to define the following (functorial) operation on the
bilinear maps (f1, (a1, b1)) and (f2, (a2, b2)) on c by
(f1, (a1, b1))⊥(f2, (a2, b2)) = (f1⊥f2, (a1 ⊕ a2, b1 ⊕ b2)), where
f1⊥f2 : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ c is defined as γ above using
- α1 = f1 : a1 ⊗ b1 → c ,
- α2 = 0 : a2 ⊗ b1 → c ,
- β1 = 0 : a1 ⊗ b2 → c ,
- β2 = f2 : a2 ⊗ b2 → c .

In concrete terms, (f1⊥f2)((x1, x2)⊗ (y1, y2)) = f1(x1 ⊗ y1) + f2(x2 ⊗ y2)
(informally speaking, one imposes to a2, b1, and also to a1, b2, to be
“orthogonal” one to the other with respect to f1⊥f2).

18 / 38

A tensor bifunctor ⊥
It is thus possible to define for every abelian group d , and any group
homomorphisms α1 : a1 ⊗ b1 → d , β1 : a1 ⊗ b2 → d , α2 : a2 ⊗ b1 → d , and
β2 : a2 ⊗ b2 → d , a unique group homomorphism
γ : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ d (using the universal property of the direct
sum). In more concrete terms,
γ((x1, x2)⊗(y1, y2)) = α1(x1⊗y1)+α2(x2⊗y1)+β1(x1⊗y2)+β2(x2⊗y2).

This makes feasible to define the following (functorial) operation on the
bilinear maps (f1, (a1, b1)) and (f2, (a2, b2)) on c by
(f1, (a1, b1))⊥(f2, (a2, b2)) = (f1⊥f2, (a1 ⊕ a2, b1 ⊕ b2)), where
f1⊥f2 : (a1 ⊕ a2)⊗ (b1 ⊕ b2)→ c is defined as γ above using
- α1 = f1 : a1 ⊗ b1 → c ,
- α2 = 0 : a2 ⊗ b1 → c ,
- β1 = 0 : a1 ⊗ b2 → c ,
- β2 = f2 : a2 ⊗ b2 → c .
In concrete terms, (f1⊥f2)((x1, x2)⊗ (y1, y2)) = f1(x1 ⊗ y1) + f2(x2 ⊗ y2)
(informally speaking, one imposes to a2, b1, and also to a1, b2, to be
“orthogonal” one to the other with respect to f1⊥f2).

18 / 38

⊥ and non-degeneracy

Proposition
Let (f1, (a1, b2)) and (f2, (a2, b2)) be two bilinear maps on c .

The bilinear map (f1⊥f2, (a1 ⊕ a2, b1 ⊕ b2)) is a pairing (respectively, a
perfect pairing) if, and only if, (fi , (ai , bi)), i = 1, 2, are both pairings
(respectively, perfect pairings).

19 / 38

⊥ and non-degeneracy

Proposition
Let (f1, (a1, b2)) and (f2, (a2, b2)) be two bilinear maps on c .

The bilinear map (f1⊥f2, (a1 ⊕ a2, b1 ⊕ b2)) is a pairing (respectively, a
perfect pairing) if, and only if, (fi , (ai , bi)), i = 1, 2, are both pairings
(respectively, perfect pairings).

19 / 38

Table of contents

1 Introduction

2 Category of pairings

3 A symmetric monoidal structure on BilAbfin(c)

4 Moduli space of pairings

5 Geometric interpretation of the moduli space of pairings

6 Classification of pairings on Q/Z

20 / 38

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial ⊥ factors through the set of isomorphism
classes of bilinear maps, more precisely it gives rise to a structure of
monoid on BilAbfin(c).

The unit of this monoid being the isomorphism
class of the zero bilinear map 0⊗ 0→ c .

From the previous proposition, we see that

PerfAbfin(c) ⊆ PairAbfin(c) ⊆ BilAbfin(c) are inclusions of sub-monoids.

Definition
We refer to the monoid PairAbfin(c) to as the moduli space of pairings on
c .

21 / 38

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial ⊥ factors through the set of isomorphism
classes of bilinear maps, more precisely it gives rise to a structure of
monoid on BilAbfin(c). The unit of this monoid being the isomorphism
class of the zero bilinear map 0⊗ 0→ c .

From the previous proposition, we see that

PerfAbfin(c) ⊆ PairAbfin(c) ⊆ BilAbfin(c) are inclusions of sub-monoids.

Definition
We refer to the monoid PairAbfin(c) to as the moduli space of pairings on
c .

21 / 38

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial ⊥ factors through the set of isomorphism
classes of bilinear maps, more precisely it gives rise to a structure of
monoid on BilAbfin(c). The unit of this monoid being the isomorphism
class of the zero bilinear map 0⊗ 0→ c .

From the previous proposition, we see that

PerfAbfin(c) ⊆ PairAbfin(c) ⊆ BilAbfin(c) are inclusions of sub-monoids.

Definition
We refer to the monoid PairAbfin(c) to as the moduli space of pairings on
c .

21 / 38

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial ⊥ factors through the set of isomorphism
classes of bilinear maps, more precisely it gives rise to a structure of
monoid on BilAbfin(c). The unit of this monoid being the isomorphism
class of the zero bilinear map 0⊗ 0→ c .

From the previous proposition, we see that

PerfAbfin(c) ⊆ PairAbfin(c) ⊆ BilAbfin(c) are inclusions of sub-monoids.

Definition
We refer to the monoid PairAbfin(c) to as the moduli space of pairings on
c .

21 / 38

Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial ⊥ factors through the set of isomorphism
classes of bilinear maps, more precisely it gives rise to a structure of
monoid on BilAbfin(c). The unit of this monoid being the isomorphism
class of the zero bilinear map 0⊗ 0→ c .

From the previous proposition, we see that

PerfAbfin(c) ⊆ PairAbfin(c) ⊆ BilAbfin(c) are inclusions of sub-monoids.

Definition
We refer to the monoid PairAbfin(c) to as the moduli space of pairings on
c .

21 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e).

An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x).

An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .

An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I ,

and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },

and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I).

In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Some notions about monoids
Let (M, ?, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e). An homomorphism of monoids is a
unit-preserving map that “commutes” with the binary operations.

• A monoid with a zero is a monoid together with a distinguished two-sided
absorbing element (i.e., x ? 0 = 0 = 0 ? x). An homomorphism of monoids
with zero is a zero-preserving homomorphism of monoids.

• A subset I ⊆ M of a monoid M is said to be an ideal if IM ⊆ I ⊇ MI .
An ideal I is a prime ideal if I 6= M and x ? y ∈ I implies that either x ∈ I
or y ∈ I .

• Any ideal I of a monoid M gives rise to a monoid with a zero M/I , called
the Rees quotient monoid of M by I , and defined by M/I = (M \ I)t { 0 },
and for every x , y ∈ M \ I , x · y = x ? y whenever x ? y 6∈ I , and 0
otherwise (and of course x · 0 = 0 = 0 · x , x ∈ M/I). In case I is a prime
ideal, then M \ I is already a submonoid of M, and M/I is just the monoid
(M \ I)0, i.e., M \ I with a zero 0 freely added.

22 / 38

Back to the monoid of bilinear maps
The previous proposition about preservation of non-degeneracy by ⊥ also
implies that

DegenAbfin(c) is a prime ideal of BilAbfin(c),

and

BilAbfin(c)/DegenAbfin(c) ∼= (PairAbfin(c))∞.

Also ImpAbfin(c) is a prime ideal of PairAbfin(c)

and

PairAbfin(c)/ImpAbfin(c) ∼= (PerfAbfin(c))∞.

Remark
Everything remains valid if we replace abelian groups for instance by
R-modules or by commutative monoids, and Abfin by any full sub-category
of these.

23 / 38

Back to the monoid of bilinear maps
The previous proposition about preservation of non-degeneracy by ⊥ also
implies that

DegenAbfin(c) is a prime ideal of BilAbfin(c),

and

BilAbfin(c)/DegenAbfin(c) ∼= (PairAbfin(c))∞.

Also ImpAbfin(c) is a prime ideal of PairAbfin(c)

and

PairAbfin(c)/ImpAbfin(c) ∼= (PerfAbfin(c))∞.

Remark
Everything remains valid if we replace abelian groups for instance by
R-modules or by commutative monoids, and Abfin by any full sub-category
of these.

23 / 38

Back to the monoid of bilinear maps
The previous proposition about preservation of non-degeneracy by ⊥ also
implies that

DegenAbfin(c) is a prime ideal of BilAbfin(c),

and

BilAbfin(c)/DegenAbfin(c) ∼= (PairAbfin(c))∞.

Also ImpAbfin(c) is a prime ideal of PairAbfin(c)

and

PairAbfin(c)/ImpAbfin(c) ∼= (PerfAbfin(c))∞.

Remark
Everything remains valid if we replace abelian groups for instance by
R-modules or by commutative monoids, and Abfin by any full sub-category
of these.

23 / 38

Back to the monoid of bilinear maps
The previous proposition about preservation of non-degeneracy by ⊥ also
implies that

DegenAbfin(c) is a prime ideal of BilAbfin(c),

and

BilAbfin(c)/DegenAbfin(c) ∼= (PairAbfin(c))∞.

Also ImpAbfin(c) is a prime ideal of PairAbfin(c)

and

PairAbfin(c)/ImpAbfin(c) ∼= (PerfAbfin(c))∞.

Remark
Everything remains valid if we replace abelian groups for instance by
R-modules or by commutative monoids, and Abfin by any full sub-category
of these.

23 / 38

Back to the monoid of bilinear maps
The previous proposition about preservation of non-degeneracy by ⊥ also
implies that

DegenAbfin(c) is a prime ideal of BilAbfin(c),

and

BilAbfin(c)/DegenAbfin(c) ∼= (PairAbfin(c))∞.

Also ImpAbfin(c) is a prime ideal of PairAbfin(c)

and

PairAbfin(c)/ImpAbfin(c) ∼= (PerfAbfin(c))∞.

Remark
Everything remains valid if we replace abelian groups for instance by
R-modules or by commutative monoids, and Abfin by any full sub-category
of these.

23 / 38

Table of contents

1 Introduction

2 Category of pairings

3 A symmetric monoidal structure on BilAbfin(c)

4 Moduli space of pairings

5 Geometric interpretation of the moduli space of pairings

6 Classification of pairings on Q/Z

24 / 38

Bialgebras

Let R be a commutative ring with a unity.

An R-algebra A is said to be a coassociative and counital R-bialgebra if it
is equipped with two algebra maps ∆: A→ A⊗R A, and ε : A→ R ,
respectively called coproduct and counit which are coassociative and
counital.

This means that the two following diagrams commute.

A

∆
��

∆ // A⊗R A

idA⊗∆
��

R ⊗R A A⊗R A
ε⊗idAoo idA⊗ε // A⊗R R

A⊗R A
∆⊗idA

// A⊗R A⊗R A A
∼=

ee

∆

OO

∼=

99

(3)

25 / 38

Bialgebras

Let R be a commutative ring with a unity.

An R-algebra A is said to be a coassociative and counital R-bialgebra if it
is equipped with two algebra maps ∆: A→ A⊗R A, and ε : A→ R ,
respectively called coproduct and counit which are coassociative and
counital.

This means that the two following diagrams commute.

A

∆
��

∆ // A⊗R A

idA⊗∆
��

R ⊗R A A⊗R A
ε⊗idAoo idA⊗ε // A⊗R R

A⊗R A
∆⊗idA

// A⊗R A⊗R A A
∼=

ee

∆

OO

∼=

99

(3)

25 / 38

Bialgebras

Let R be a commutative ring with a unity.

An R-algebra A is said to be a coassociative and counital R-bialgebra if it
is equipped with two algebra maps ∆: A→ A⊗R A, and ε : A→ R ,
respectively called coproduct and counit which are coassociative and
counital.

This means that the two following diagrams commute.

A

∆
��

∆ // A⊗R A

idA⊗∆
��

R ⊗R A A⊗R A
ε⊗idAoo idA⊗ε // A⊗R R

A⊗R A
∆⊗idA

// A⊗R A⊗R A A
∼=

ee

∆

OO

∼=

99

(3)

25 / 38

About representable functors

Let C be any category, and c be an object of C.

We define the covariant
hom-functor hc = C(c ,−) from the category C to the category of sets,
that maps an object d to the set of morphisms hc(d) = C(c , d), and that
sends any morphism f : d → d ′ to the map hc(f) : C(c , d)→ C(c , d ′)
defined by g 7→ f ◦ g .

• A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
hc for some object c . This object c is then shown to be unique up to
isomorphism, and is called the representing object of F .

• A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category Cop of C (any
representable functor corresponding to its representing object). Recall that
Cop has the same objects and morphisms as C but the composition therein
is the opposite of that of C.

26 / 38

About representable functors

Let C be any category, and c be an object of C. We define the covariant
hom-functor hc = C(c ,−) from the category C to the category of sets,

that maps an object d to the set of morphisms hc(d) = C(c , d), and that
sends any morphism f : d → d ′ to the map hc(f) : C(c , d)→ C(c , d ′)
defined by g 7→ f ◦ g .

• A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
hc for some object c . This object c is then shown to be unique up to
isomorphism, and is called the representing object of F .

• A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category Cop of C (any
representable functor corresponding to its representing object). Recall that
Cop has the same objects and morphisms as C but the composition therein
is the opposite of that of C.

26 / 38

About representable functors

Let C be any category, and c be an object of C. We define the covariant
hom-functor hc = C(c ,−) from the category C to the category of sets,
that maps an object d to the set of morphisms hc(d) = C(c , d),

and that
sends any morphism f : d → d ′ to the map hc(f) : C(c , d)→ C(c , d ′)
defined by g 7→ f ◦ g .

• A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
hc for some object c . This object c is then shown to be unique up to
isomorphism, and is called the representing object of F .

• A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category Cop of C (any
representable functor corresponding to its representing object). Recall that
Cop has the same objects and morphisms as C but the composition therein
is the opposite of that of C.

26 / 38

About representable functors

Let C be any category, and c be an object of C. We define the covariant
hom-functor hc = C(c ,−) from the category C to the category of sets,
that maps an object d to the set of morphisms hc(d) = C(c , d), and that
sends any morphism f : d → d ′ to the map hc(f) : C(c , d)→ C(c , d ′)
defined by g 7→ f ◦ g .

• A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
hc for some object c . This object c is then shown to be unique up to
isomorphism, and is called the representing object of F .

• A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category Cop of C (any
representable functor corresponding to its representing object). Recall that
Cop has the same objects and morphisms as C but the composition therein
is the opposite of that of C.

26 / 38

About representable functors

Let C be any category, and c be an object of C. We define the covariant
hom-functor hc = C(c ,−) from the category C to the category of sets,
that maps an object d to the set of morphisms hc(d) = C(c , d), and that
sends any morphism f : d → d ′ to the map hc(f) : C(c , d)→ C(c , d ′)
defined by g 7→ f ◦ g .

• A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
hc for some object c .

This object c is then shown to be unique up to
isomorphism, and is called the representing object of F .

• A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category Cop of C (any
representable functor corresponding to its representing object). Recall that
Cop has the same objects and morphisms as C but the composition therein
is the opposite of that of C.

26 / 38

About representable functors

Let C be any category, and c be an object of C. We define the covariant
hom-functor hc = C(c ,−) from the category C to the category of sets,
that maps an object d to the set of morphisms hc(d) = C(c , d), and that
sends any morphism f : d → d ′ to the map hc(f) : C(c , d)→ C(c , d ′)
defined by g 7→ f ◦ g .

• A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
hc for some object c . This object c is then shown to be unique up to
isomorphism, and is called the representing object of F .

• A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category Cop of C (any
representable functor corresponding to its representing object). Recall that
Cop has the same objects and morphisms as C but the composition therein
is the opposite of that of C.

26 / 38

About representable functors

Let C be any category, and c be an object of C. We define the covariant
hom-functor hc = C(c ,−) from the category C to the category of sets,
that maps an object d to the set of morphisms hc(d) = C(c , d), and that
sends any morphism f : d → d ′ to the map hc(f) : C(c , d)→ C(c , d ′)
defined by g 7→ f ◦ g .

• A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
hc for some object c . This object c is then shown to be unique up to
isomorphism, and is called the representing object of F .

• A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category Cop of C (any
representable functor corresponding to its representing object).

Recall that
Cop has the same objects and morphisms as C but the composition therein
is the opposite of that of C.

26 / 38

About representable functors

Let C be any category, and c be an object of C. We define the covariant
hom-functor hc = C(c ,−) from the category C to the category of sets,
that maps an object d to the set of morphisms hc(d) = C(c , d), and that
sends any morphism f : d → d ′ to the map hc(f) : C(c , d)→ C(c , d ′)
defined by g 7→ f ◦ g .

• A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
hc for some object c . This object c is then shown to be unique up to
isomorphism, and is called the representing object of F .

• A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category Cop of C (any
representable functor corresponding to its representing object). Recall that
Cop has the same objects and morphisms as C but the composition therein
is the opposite of that of C.

26 / 38

Affine schemes in brief
Let R be any commutative ring with a unity.

Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R). It is thus equivalent to CAlgopR .
When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi . Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Affine schemes in brief
Let R be any commutative ring with a unity. Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R). It is thus equivalent to CAlgopR .
When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi . Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Affine schemes in brief
Let R be any commutative ring with a unity. Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R).

It is thus equivalent to CAlgopR .
When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi . Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Affine schemes in brief
Let R be any commutative ring with a unity. Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R). It is thus equivalent to CAlgopR .

When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi . Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Affine schemes in brief
Let R be any commutative ring with a unity. Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R). It is thus equivalent to CAlgopR .
When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi . Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Affine schemes in brief
Let R be any commutative ring with a unity. Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R). It is thus equivalent to CAlgopR .
When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi .

Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Affine schemes in brief
Let R be any commutative ring with a unity. Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R). It is thus equivalent to CAlgopR .
When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi . Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Affine schemes in brief
Let R be any commutative ring with a unity. Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R). It is thus equivalent to CAlgopR .
When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi . Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F).

The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Affine schemes in brief
Let R be any commutative ring with a unity. Let CAlgR be the category of
commutative R-algebras with a unity.

• The category of representable functors of CAlgR is called the category of
affine schemes (on R). It is thus equivalent to CAlgopR .
When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

• For instance let I be any set, and let us consider the polynomial algebra
R[Xi : i ∈ I] in the indeterminates Xi . Then, the algebra R[Xi : i ∈ I] is the
representing object of the affine scheme A 7→ CAlgR(R[Xi : i ∈ I],A) ∼= AI

(thus, when I is finite this gives an affine space).

• Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F (R) ∼= CAlgR(O(F),R).

27 / 38

Monoid schemes

• A monoid scheme M is an affine scheme such that for every algebra A,
the set M(A) is a usual monoid, and this naturally in A.

• By Yoneda’s lemma, this is equivalent to the fact that the representing
algebra O(M) of M is actually a (commutative, unital) coassociative and
counital R-bialgebra.

28 / 38

Monoid schemes

• A monoid scheme M is an affine scheme such that for every algebra A,
the set M(A) is a usual monoid, and this naturally in A.

• By Yoneda’s lemma, this is equivalent to the fact that the representing
algebra O(M) of M is actually a (commutative, unital) coassociative and
counital R-bialgebra.

28 / 38

Finite decomposition monoids

Let (M, ?, e) be a monoid.

It is said to be a finite decomposition monoid if
its multiplication ? has finite fibers, i.e., for every x ∈ M, there is only
finitely many y , z ∈ M such that x = y ? z .

If M is a finite decomposition monoid, and A is a commutative R-algebra
with a unit, then AM is provided with a structure of a R-algebra (and even
of A-algebra), which is commutative if, and only if, M is, and with
multiplication given by

(fg)(x) =
∑
yz=x

f (y)g(z)

for f , g ∈ AM , x ∈ M. This algebra is denoted by A[[M]] and is called the
large algebra of M.

29 / 38

Finite decomposition monoids

Let (M, ?, e) be a monoid. It is said to be a finite decomposition monoid if
its multiplication ? has finite fibers, i.e., for every x ∈ M, there is only
finitely many y , z ∈ M such that x = y ? z .

If M is a finite decomposition monoid, and A is a commutative R-algebra
with a unit, then AM is provided with a structure of a R-algebra (and even
of A-algebra), which is commutative if, and only if, M is, and with
multiplication given by

(fg)(x) =
∑
yz=x

f (y)g(z)

for f , g ∈ AM , x ∈ M. This algebra is denoted by A[[M]] and is called the
large algebra of M.

29 / 38

Finite decomposition monoids

Let (M, ?, e) be a monoid. It is said to be a finite decomposition monoid if
its multiplication ? has finite fibers, i.e., for every x ∈ M, there is only
finitely many y , z ∈ M such that x = y ? z .

If M is a finite decomposition monoid, and A is a commutative R-algebra
with a unit, then AM is provided with a structure of a R-algebra (and even
of A-algebra),

which is commutative if, and only if, M is, and with
multiplication given by

(fg)(x) =
∑
yz=x

f (y)g(z)

for f , g ∈ AM , x ∈ M. This algebra is denoted by A[[M]] and is called the
large algebra of M.

29 / 38

Finite decomposition monoids

Let (M, ?, e) be a monoid. It is said to be a finite decomposition monoid if
its multiplication ? has finite fibers, i.e., for every x ∈ M, there is only
finitely many y , z ∈ M such that x = y ? z .

If M is a finite decomposition monoid, and A is a commutative R-algebra
with a unit, then AM is provided with a structure of a R-algebra (and even
of A-algebra), which is commutative if, and only if, M is,

and with
multiplication given by

(fg)(x) =
∑
yz=x

f (y)g(z)

for f , g ∈ AM , x ∈ M. This algebra is denoted by A[[M]] and is called the
large algebra of M.

29 / 38

Finite decomposition monoids

Let (M, ?, e) be a monoid. It is said to be a finite decomposition monoid if
its multiplication ? has finite fibers, i.e., for every x ∈ M, there is only
finitely many y , z ∈ M such that x = y ? z .

If M is a finite decomposition monoid, and A is a commutative R-algebra
with a unit, then AM is provided with a structure of a R-algebra (and even
of A-algebra), which is commutative if, and only if, M is, and with
multiplication given by

(fg)(x) =
∑
yz=x

f (y)g(z)

for f , g ∈ AM , x ∈ M.

This algebra is denoted by A[[M]] and is called the
large algebra of M.

29 / 38

Finite decomposition monoids

Let (M, ?, e) be a monoid. It is said to be a finite decomposition monoid if
its multiplication ? has finite fibers, i.e., for every x ∈ M, there is only
finitely many y , z ∈ M such that x = y ? z .

If M is a finite decomposition monoid, and A is a commutative R-algebra
with a unit, then AM is provided with a structure of a R-algebra (and even
of A-algebra), which is commutative if, and only if, M is, and with
multiplication given by

(fg)(x) =
∑
yz=x

f (y)g(z)

for f , g ∈ AM , x ∈ M. This algebra is denoted by A[[M]] and is called the
large algebra of M.

29 / 38

Finite decomposition monoids (cont’d)

Theorem
For every finite decomposition monoid M,

(−)[[M]] : A 7→ A[[M]] defines a functor from CAlgR to the category
of sets;

It is representable with representing algebra R[Xx : x ∈ M];
R[Xx : x ∈ M] is a coassociative and counital bialgebra, so that
(−)[[M]] is a monoid scheme;
M embeds as a sub-monoid into the underlying multiplicative monoid
of R[[M]].

Proof: The map Xx → ∆(Xx) =
∑

yz=x Xy ⊗ Xz extends uniquely to an
algebra map from R[Xx : x ∈ M]→ R[Xx : x ∈ M]⊗R R[Xx : x : x ∈ M],
and turns to be a coassociative coproduct. The map Xx 7→ ε(Xx) = 1
provides the counit.

30 / 38

Finite decomposition monoids (cont’d)

Theorem
For every finite decomposition monoid M,

(−)[[M]] : A 7→ A[[M]] defines a functor from CAlgR to the category
of sets;
It is representable with representing algebra R[Xx : x ∈ M];

R[Xx : x ∈ M] is a coassociative and counital bialgebra, so that
(−)[[M]] is a monoid scheme;
M embeds as a sub-monoid into the underlying multiplicative monoid
of R[[M]].

Proof: The map Xx → ∆(Xx) =
∑

yz=x Xy ⊗ Xz extends uniquely to an
algebra map from R[Xx : x ∈ M]→ R[Xx : x ∈ M]⊗R R[Xx : x : x ∈ M],
and turns to be a coassociative coproduct. The map Xx 7→ ε(Xx) = 1
provides the counit.

30 / 38

Finite decomposition monoids (cont’d)

Theorem
For every finite decomposition monoid M,

(−)[[M]] : A 7→ A[[M]] defines a functor from CAlgR to the category
of sets;
It is representable with representing algebra R[Xx : x ∈ M];
R[Xx : x ∈ M] is a coassociative and counital bialgebra, so that
(−)[[M]] is a monoid scheme;

M embeds as a sub-monoid into the underlying multiplicative monoid
of R[[M]].

Proof: The map Xx → ∆(Xx) =
∑

yz=x Xy ⊗ Xz extends uniquely to an
algebra map from R[Xx : x ∈ M]→ R[Xx : x ∈ M]⊗R R[Xx : x : x ∈ M],
and turns to be a coassociative coproduct. The map Xx 7→ ε(Xx) = 1
provides the counit.

30 / 38

Finite decomposition monoids (cont’d)

Theorem
For every finite decomposition monoid M,

(−)[[M]] : A 7→ A[[M]] defines a functor from CAlgR to the category
of sets;
It is representable with representing algebra R[Xx : x ∈ M];
R[Xx : x ∈ M] is a coassociative and counital bialgebra, so that
(−)[[M]] is a monoid scheme;
M embeds as a sub-monoid into the underlying multiplicative monoid
of R[[M]].

Proof: The map Xx → ∆(Xx) =
∑

yz=x Xy ⊗ Xz extends uniquely to an
algebra map from R[Xx : x ∈ M]→ R[Xx : x ∈ M]⊗R R[Xx : x : x ∈ M],
and turns to be a coassociative coproduct. The map Xx 7→ ε(Xx) = 1
provides the counit.

30 / 38

Finite decomposition monoids (cont’d)

Theorem
For every finite decomposition monoid M,

(−)[[M]] : A 7→ A[[M]] defines a functor from CAlgR to the category
of sets;
It is representable with representing algebra R[Xx : x ∈ M];
R[Xx : x ∈ M] is a coassociative and counital bialgebra, so that
(−)[[M]] is a monoid scheme;
M embeds as a sub-monoid into the underlying multiplicative monoid
of R[[M]].

Proof: The map Xx → ∆(Xx) =
∑

yz=x Xy ⊗ Xz extends uniquely to an
algebra map from R[Xx : x ∈ M]→ R[Xx : x ∈ M]⊗R R[Xx : x : x ∈ M],

and turns to be a coassociative coproduct. The map Xx 7→ ε(Xx) = 1
provides the counit.

30 / 38

Finite decomposition monoids (cont’d)

Theorem
For every finite decomposition monoid M,

(−)[[M]] : A 7→ A[[M]] defines a functor from CAlgR to the category
of sets;
It is representable with representing algebra R[Xx : x ∈ M];
R[Xx : x ∈ M] is a coassociative and counital bialgebra, so that
(−)[[M]] is a monoid scheme;
M embeds as a sub-monoid into the underlying multiplicative monoid
of R[[M]].

Proof: The map Xx → ∆(Xx) =
∑

yz=x Xy ⊗ Xz extends uniquely to an
algebra map from R[Xx : x ∈ M]→ R[Xx : x ∈ M]⊗R R[Xx : x : x ∈ M],
and turns to be a coassociative coproduct.

The map Xx 7→ ε(Xx) = 1
provides the counit.

30 / 38

Finite decomposition monoids (cont’d)

Theorem
For every finite decomposition monoid M,

(−)[[M]] : A 7→ A[[M]] defines a functor from CAlgR to the category
of sets;
It is representable with representing algebra R[Xx : x ∈ M];
R[Xx : x ∈ M] is a coassociative and counital bialgebra, so that
(−)[[M]] is a monoid scheme;
M embeds as a sub-monoid into the underlying multiplicative monoid
of R[[M]].

Proof: The map Xx → ∆(Xx) =
∑

yz=x Xy ⊗ Xz extends uniquely to an
algebra map from R[Xx : x ∈ M]→ R[Xx : x ∈ M]⊗R R[Xx : x : x ∈ M],
and turns to be a coassociative coproduct. The map Xx 7→ ε(Xx) = 1
provides the counit.

30 / 38

What about the moduli space of pairings ?

Let us denote by |a| the order of a finite abelian group a.

The isomorphism relation of bilinear maps (f , (a, b)) ∼= (g , (d , e)) on c
implies that a ∼= d and b ∼= e (isomorphic groups), and thus |a| = |d | and
|b| = |e|.

Since |a ⊕ b| = |a||b| and |0| = 1, we obtain a well-defined homomorphism
of monoids s : BilAbfin(c)→ N∗ × N∗ given by s([f , (a, b)]) = (|a|, |b|),
where [f , (a, b)] is the isomorphism class of (f , (a, b)).

It follows that BilAbfin(c) is a finite decomposition monoid, and thus also
are PairAbfin(c) and PerfAbfin(c).

According to the previous theorem, if R is an algebraically closed field, then
the moduli space of pairings is a sub-monoid of the R-rational points of an
affine monoid scheme.

31 / 38

What about the moduli space of pairings ?

Let us denote by |a| the order of a finite abelian group a.

The isomorphism relation of bilinear maps (f , (a, b)) ∼= (g , (d , e)) on c
implies that a ∼= d and b ∼= e (isomorphic groups), and thus |a| = |d | and
|b| = |e|.

Since |a ⊕ b| = |a||b| and |0| = 1, we obtain a well-defined homomorphism
of monoids s : BilAbfin(c)→ N∗ × N∗ given by s([f , (a, b)]) = (|a|, |b|),
where [f , (a, b)] is the isomorphism class of (f , (a, b)).

It follows that BilAbfin(c) is a finite decomposition monoid, and thus also
are PairAbfin(c) and PerfAbfin(c).

According to the previous theorem, if R is an algebraically closed field, then
the moduli space of pairings is a sub-monoid of the R-rational points of an
affine monoid scheme.

31 / 38

What about the moduli space of pairings ?

Let us denote by |a| the order of a finite abelian group a.

The isomorphism relation of bilinear maps (f , (a, b)) ∼= (g , (d , e)) on c
implies that a ∼= d and b ∼= e (isomorphic groups), and thus |a| = |d | and
|b| = |e|.

Since |a ⊕ b| = |a||b| and |0| = 1, we obtain a well-defined homomorphism
of monoids s : BilAbfin(c)→ N∗ × N∗ given by s([f , (a, b)]) = (|a|, |b|),
where [f , (a, b)] is the isomorphism class of (f , (a, b)).

It follows that BilAbfin(c) is a finite decomposition monoid, and thus also
are PairAbfin(c) and PerfAbfin(c).

According to the previous theorem, if R is an algebraically closed field, then
the moduli space of pairings is a sub-monoid of the R-rational points of an
affine monoid scheme.

31 / 38

What about the moduli space of pairings ?

Let us denote by |a| the order of a finite abelian group a.

The isomorphism relation of bilinear maps (f , (a, b)) ∼= (g , (d , e)) on c
implies that a ∼= d and b ∼= e (isomorphic groups), and thus |a| = |d | and
|b| = |e|.

Since |a ⊕ b| = |a||b| and |0| = 1, we obtain a well-defined homomorphism
of monoids s : BilAbfin(c)→ N∗ × N∗ given by s([f , (a, b)]) = (|a|, |b|),
where [f , (a, b)] is the isomorphism class of (f , (a, b)).

It follows that BilAbfin(c) is a finite decomposition monoid, and thus also
are PairAbfin(c) and PerfAbfin(c).

According to the previous theorem, if R is an algebraically closed field, then
the moduli space of pairings is a sub-monoid of the R-rational points of an
affine monoid scheme.

31 / 38

What about the moduli space of pairings ?

Let us denote by |a| the order of a finite abelian group a.

The isomorphism relation of bilinear maps (f , (a, b)) ∼= (g , (d , e)) on c
implies that a ∼= d and b ∼= e (isomorphic groups), and thus |a| = |d | and
|b| = |e|.

Since |a ⊕ b| = |a||b| and |0| = 1, we obtain a well-defined homomorphism
of monoids s : BilAbfin(c)→ N∗ × N∗ given by s([f , (a, b)]) = (|a|, |b|),
where [f , (a, b)] is the isomorphism class of (f , (a, b)).

It follows that BilAbfin(c) is a finite decomposition monoid, and thus also
are PairAbfin(c) and PerfAbfin(c).

According to the previous theorem, if R is an algebraically closed field, then
the moduli space of pairings is a sub-monoid of the R-rational points of an
affine monoid scheme.

31 / 38

Table of contents

1 Introduction

2 Category of pairings

3 A symmetric monoidal structure on BilAbfin(c)

4 Moduli space of pairings

5 Geometric interpretation of the moduli space of pairings

6 Classification of pairings on Q/Z

32 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂

∼= b ↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b

↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â

∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â ∼= a,

so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing.

We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z).

For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

Now, let us assume that c = Q/Z.

Let a be a finite abelian group, and let us denote by â = Ab(a,Q/Z) its
dual (or character) group.

It is well-known that a ∼= â.

Let (f , (a, b)) be an object of PairAbfin(Q/Z). Then, a ↪→ b̂ ∼= b ↪→ â ∼= a,
so that a ∼= b, and (f , (a, b)) is a perfect pairing. We thus obtain

Lemma
PairAbfin(Q/Z) = PerfAbfin(Q/Z).

Remark
This equality may be false when c 6= Q/Z (or more precisely when
c 6⊆ Q/Z). For instance, le p be a prime number, and m > 1, then
f : (Z/pZ)m × Z/pZ→ (Z/pZ)m given by
f ((xi mod p)m

i=1, y mod p) = (xiy mod p)m
i=1 is an imperfect pairing.

33 / 38

The duality pairing

Let a be a finite abelian group.

The duality pairing on a is (nata, (a, â))
given by nata(x ⊗ χ) = χ(x) for x ∈ a, χ ∈ â.

Theorem
Let (f , (a, b)) be a pairing on Q/Z. Then,

(f , (a, b)) ∼= (nata, (a, â)) .

34 / 38

The duality pairing

Let a be a finite abelian group. The duality pairing on a is (nata, (a, â))
given by nata(x ⊗ χ) = χ(x) for x ∈ a, χ ∈ â.

Theorem
Let (f , (a, b)) be a pairing on Q/Z. Then,

(f , (a, b)) ∼= (nata, (a, â)) .

34 / 38

The duality pairing

Let a be a finite abelian group. The duality pairing on a is (nata, (a, â))
given by nata(x ⊗ χ) = χ(x) for x ∈ a, χ ∈ â.

Theorem
Let (f , (a, b)) be a pairing on Q/Z. Then,

(f , (a, b)) ∼= (nata, (a, â)) .

34 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ)) = δg (δ−1
g (χ))(x) = χ(x) = nata(x ⊗ χ).

35 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ)) = δg (δ−1
g (χ))(x) = χ(x) = nata(x ⊗ χ).

35 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ)) = δg (δ−1
g (χ))(x) = χ(x) = nata(x ⊗ χ).

35 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ)) = δg (δ−1
g (χ))(x) = χ(x) = nata(x ⊗ χ).

35 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ)) = δg (δ−1
g (χ))(x) = χ(x) = nata(x ⊗ χ).

35 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ))

= δg (δ−1
g (χ))(x) = χ(x) = nata(x ⊗ χ).

35 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ)) = δg (δ−1
g (χ))(x)

= χ(x) = nata(x ⊗ χ).

35 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ)) = δg (δ−1
g (χ))(x) = χ(x)

= nata(x ⊗ χ).

35 / 38

Proof

Since a ∼= b, we may choose an isomorphism α : b → a.

Let us define a bi-additive map g0 : a × a→ Q/Z by
g0(x , y) = f (x ⊗ α−1(y)), x , y ∈ a, and let us denote by g : a ⊗ a→ Q/Z
the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, δg : a→ â, x 7→ g0(·, x), is an isomorphism from a to â.

Let us define a third perfect pairing h = g ◦ (ida ⊗ δ−1
g), isomorphic to g

(and of course to f).

We have for every x ∈ a, and χ ∈ â,
h(x ⊗ χ) = g(x ⊗ δ−1

g (χ)) = δg (δ−1
g (χ))(x) = χ(x) = nata(x ⊗ χ).

35 / 38

Consequences
We have ̂(a ⊕ b) ∼= â ⊕ b̂,

so it follows that
(nata⊕b, (a ⊕ b, ̂(a ⊕ b))) ∼= (nata, (a, â))⊥(natb, (b, b̂)).

Corollary
The moduli space of pairings PairAbfin(Q/Z) is the free commutative
monoid generated by all the (p, i)’s, where p is a prime number, and
i ∈ N∗.

Let p be a prime number, and let Z(p∞) be the Prüfer p-group, i.e., the
direct limit 0 ↪→ Z/pZ ↪→ Z/p2Z ↪→ · · · Let pAbfin be the category of
finite abelian p-groups. Then, PairpAbfin(Z(p∞) ↪→ PairAbfin(Q/Z) (full
embedding of categories).

Corollary
The monoid PairpAbfin(Z(p∞)) is free (as a commutative monoid) with
basis N∗.

36 / 38

Consequences
We have ̂(a ⊕ b) ∼= â ⊕ b̂, so it follows that
(nata⊕b, (a ⊕ b, ̂(a ⊕ b))) ∼= (nata, (a, â))⊥(natb, (b, b̂)).

Corollary
The moduli space of pairings PairAbfin(Q/Z) is the free commutative
monoid generated by all the (p, i)’s, where p is a prime number, and
i ∈ N∗.

Let p be a prime number, and let Z(p∞) be the Prüfer p-group, i.e., the
direct limit 0 ↪→ Z/pZ ↪→ Z/p2Z ↪→ · · · Let pAbfin be the category of
finite abelian p-groups. Then, PairpAbfin(Z(p∞) ↪→ PairAbfin(Q/Z) (full
embedding of categories).

Corollary
The monoid PairpAbfin(Z(p∞)) is free (as a commutative monoid) with
basis N∗.

36 / 38

Consequences
We have ̂(a ⊕ b) ∼= â ⊕ b̂, so it follows that
(nata⊕b, (a ⊕ b, ̂(a ⊕ b))) ∼= (nata, (a, â))⊥(natb, (b, b̂)).

Corollary
The moduli space of pairings PairAbfin(Q/Z) is the free commutative
monoid generated by all the (p, i)’s, where p is a prime number, and
i ∈ N∗.

Let p be a prime number, and let Z(p∞) be the Prüfer p-group, i.e., the
direct limit 0 ↪→ Z/pZ ↪→ Z/p2Z ↪→ · · · Let pAbfin be the category of
finite abelian p-groups. Then, PairpAbfin(Z(p∞) ↪→ PairAbfin(Q/Z) (full
embedding of categories).

Corollary
The monoid PairpAbfin(Z(p∞)) is free (as a commutative monoid) with
basis N∗.

36 / 38

Consequences
We have ̂(a ⊕ b) ∼= â ⊕ b̂, so it follows that
(nata⊕b, (a ⊕ b, ̂(a ⊕ b))) ∼= (nata, (a, â))⊥(natb, (b, b̂)).

Corollary
The moduli space of pairings PairAbfin(Q/Z) is the free commutative
monoid generated by all the (p, i)’s, where p is a prime number, and
i ∈ N∗.

Let p be a prime number, and let Z(p∞) be the Prüfer p-group, i.e., the
direct limit 0 ↪→ Z/pZ ↪→ Z/p2Z ↪→ · · ·

Let pAbfin be the category of
finite abelian p-groups. Then, PairpAbfin(Z(p∞) ↪→ PairAbfin(Q/Z) (full
embedding of categories).

Corollary
The monoid PairpAbfin(Z(p∞)) is free (as a commutative monoid) with
basis N∗.

36 / 38

Consequences
We have ̂(a ⊕ b) ∼= â ⊕ b̂, so it follows that
(nata⊕b, (a ⊕ b, ̂(a ⊕ b))) ∼= (nata, (a, â))⊥(natb, (b, b̂)).

Corollary
The moduli space of pairings PairAbfin(Q/Z) is the free commutative
monoid generated by all the (p, i)’s, where p is a prime number, and
i ∈ N∗.

Let p be a prime number, and let Z(p∞) be the Prüfer p-group, i.e., the
direct limit 0 ↪→ Z/pZ ↪→ Z/p2Z ↪→ · · · Let pAbfin be the category of
finite abelian p-groups.

Then, PairpAbfin(Z(p∞) ↪→ PairAbfin(Q/Z) (full
embedding of categories).

Corollary
The monoid PairpAbfin(Z(p∞)) is free (as a commutative monoid) with
basis N∗.

36 / 38

Consequences
We have ̂(a ⊕ b) ∼= â ⊕ b̂, so it follows that
(nata⊕b, (a ⊕ b, ̂(a ⊕ b))) ∼= (nata, (a, â))⊥(natb, (b, b̂)).

Corollary
The moduli space of pairings PairAbfin(Q/Z) is the free commutative
monoid generated by all the (p, i)’s, where p is a prime number, and
i ∈ N∗.

Let p be a prime number, and let Z(p∞) be the Prüfer p-group, i.e., the
direct limit 0 ↪→ Z/pZ ↪→ Z/p2Z ↪→ · · · Let pAbfin be the category of
finite abelian p-groups. Then, PairpAbfin(Z(p∞) ↪→ PairAbfin(Q/Z) (full
embedding of categories).

Corollary
The monoid PairpAbfin(Z(p∞)) is free (as a commutative monoid) with
basis N∗.

36 / 38

Consequences
We have ̂(a ⊕ b) ∼= â ⊕ b̂, so it follows that
(nata⊕b, (a ⊕ b, ̂(a ⊕ b))) ∼= (nata, (a, â))⊥(natb, (b, b̂)).

Corollary
The moduli space of pairings PairAbfin(Q/Z) is the free commutative
monoid generated by all the (p, i)’s, where p is a prime number, and
i ∈ N∗.

Let p be a prime number, and let Z(p∞) be the Prüfer p-group, i.e., the
direct limit 0 ↪→ Z/pZ ↪→ Z/p2Z ↪→ · · · Let pAbfin be the category of
finite abelian p-groups. Then, PairpAbfin(Z(p∞) ↪→ PairAbfin(Q/Z) (full
embedding of categories).

Corollary
The monoid PairpAbfin(Z(p∞)) is free (as a commutative monoid) with
basis N∗.

36 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z

and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡.

Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a,

then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x)

= f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y)

= g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y))

= −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}.

We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric.

Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡,

while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

Why is the classification so simple ?
This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall’s equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f , (a, a)) ≡ (g , (b, b)) if, and only
if, there is an isomorphism α : a→ b such that f (x , y) = g(α(x), α(y)),
x , y ∈ a.

For any abelian group without 2-torsion c , no two non-trivial (i.e., 6= 0)
bilinear maps f , g : a × a→ c , f symmetric and g skew-symmetric, may be
equivalent modulo ≡. Indeed, if f (x , y) = g(α(x), α(y)) for an
automorphism α of a, then
g(α(y), α(x)) = f (y , x) = f (x , y) = g(α(x), α(y)) = −g(α(y), α(x)).

Let p > 2 be a prime number, and let f+, f− : (Z/pZ)2 × (Z/pZ)2 → Z/pZ
given by f?((x1, x2), (x3, x4)) = x1x4 ? x2x3, ? ∈ {±}. We observe that f+
is symmetric, while f− is skew-symmetric. Thus they cannot be equivalent
mod ≡, while they are isomorphic (take α = id , and β(x , y) = (−x , y) so
that f+((x1, x2), (x3, x4)) = f−(α(x1, x2), β(x3, x4))).

37 / 38

To conclude

When c = Q/Z, the classification of pairings is achieved (there is a
one-one correspondence between isomorphic classes of finite abelian groups
and isomorphic classes of pairings).

To obtain more isomorphic classes we must

- either consider other choices for c , for instance a finite non-cyclic abelian
group (in the case c is finite, it may be proved that f : a ⊗ b → c is a
pairing, then a and b share the same exponent).

- or consider the category of finite commutative monoids in which we
should have a richer structure for the moduli space of pairings since there is
no dualizable object such as Q/Z.

38 / 38

To conclude

When c = Q/Z, the classification of pairings is achieved (there is a
one-one correspondence between isomorphic classes of finite abelian groups
and isomorphic classes of pairings).

To obtain more isomorphic classes we must

- either consider other choices for c , for instance a finite non-cyclic abelian
group (in the case c is finite, it may be proved that f : a ⊗ b → c is a
pairing, then a and b share the same exponent).

- or consider the category of finite commutative monoids in which we
should have a richer structure for the moduli space of pairings since there is
no dualizable object such as Q/Z.

38 / 38

To conclude

When c = Q/Z, the classification of pairings is achieved (there is a
one-one correspondence between isomorphic classes of finite abelian groups
and isomorphic classes of pairings).

To obtain more isomorphic classes we must

- either consider other choices for c , for instance a finite non-cyclic abelian
group (in the case c is finite, it may be proved that f : a ⊗ b → c is a
pairing, then a and b share the same exponent).

- or consider the category of finite commutative monoids in which we
should have a richer structure for the moduli space of pairings since there is
no dualizable object such as Q/Z.

38 / 38

To conclude

When c = Q/Z, the classification of pairings is achieved (there is a
one-one correspondence between isomorphic classes of finite abelian groups
and isomorphic classes of pairings).

To obtain more isomorphic classes we must

- either consider other choices for c , for instance a finite non-cyclic abelian
group (in the case c is finite, it may be proved that f : a ⊗ b → c is a
pairing, then a and b share the same exponent).

- or consider the category of finite commutative monoids in which we
should have a richer structure for the moduli space of pairings since there is
no dualizable object such as Q/Z.

38 / 38

	Introduction
	Category of pairings
	A symmetric monoidal structure on BilAbfin(c)
	Moduli space of pairings
	Geometric interpretation of the moduli space of pairings
	Classification of pairings on Q/Z

