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Pairings

Let A,B,C be three modules over some commutative ring R with a unit.

A pairing is a non-degenerate bilinear map f : A× B → C .

Non-degeneracy means that γf : a ∈ A 7→ f (a,L) and
δf : b ∈ B 7→ f (L, b) are both one-to-one.
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Examples

• Let 1→ A→ G → B → 1 be a short exact sequence of groups, where
A,B are Abelian, and A lies in Z (G ). The commutator [·, ·] of G factors to
a bilinear map [·, ·] : B × B → A which is non-degenerate if, and only if,
A = Z (G ) (R. Baer, 1938).

• Let 〈· | ·〉 : A× Â→ R/Z defined by 〈a | χ〉 = χ(a).

• Weil, Tate pairings and their recent generalizations to Abelian varieties.

• Let R be any field, and X be any set. Let us denote by K(X ) the vector
space of finitely supported maps (i.e., the vector space with basis X ). Let
〈· | ·〉 : KX ×K(X ) → K be given by 〈f | g〉 =

∑
x∈X f (x)g(x) is a pairing.
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Cryptographic applications

• MOV attack to solve discrete logarithm problem by transport from an
elliptic curve to a finite field.

• A. Joux’s one-round key exchange tri-partite Diffie-Hellman protocol.

• Identity-based cryptography.
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Objective of this talk

• Provide a classification of pairings – under a suitable equivalence relation
– from finite Abelian groups to the complex unit circle.

• Show that the set of equivalence classes of pairings is almost a moduli
space: it is actually a subset of rational points of some (pro-)affine
algebraic variety.

Warning: The classification from this talk is of course different from C.T.C
Wall’s classification of skew or symmetric non-singular bilinear forms on
finite Abelian groups (1964) because the equivalence relations under
consideration are not the same. My equivalence relation is of categorical
origin since it is the relation of isomorphism in a suitable category.
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Notations

Let C be a category.

The class of objects of C is denoted by Ob(C).

Let A,B be objects of C . The class of arrows from A to B is denoted by
C(A,B). Of course, f ∈ C(A,B) is also denoted by f : A→ B .
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Names of categories
• Let C be a category.
- Cmono is the subcategory of C consisting of the objects of C and with
arrows the monomorphisms (left cancellable arrows).
- Ciso is the core of C , i.e., the groupoid with objects those of C , and arrows
the isomorphisms in C .
- More generally, if S is a class of arrows containing for each object its
identity morphism, and closed under composition, then CS is the
subcategory of C defined in the obvious way.

• Usual categories of sets Set , Ab and Abfin of Abelian and finite Abelian
groups.

• Let R be a commutative ring with a unit (R 6= 0). Let R-Mod be the
category of R-modules, and let R-Freefin be its full subcategory of free
R-modules of finite rank.

• Finally, R-CAlg denotes the category of commutative R-algebras with a
unit.
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Monoidal category

A monoidal category is a category C with a bifunctor ⊗ : C × C → C , an
object I , and three natural isomorphisms

- α : L⊗ (L⊗L) ∼= (L⊗L)⊗L (associativity constraint or associator),
- λ : I ⊗L ∼= idC (left unit),
- ρ : L⊗ I ∼= idC (right unit).

that satisfy some coherence axioms.
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Coherence for associativity
Mac Lane - Stasheff’s Pentagon

For all A,B,C ,D ∈ Ob(C), the following diagram commutes.

A⊗ (B ⊗ (C ⊗ D))
idA⊗αB,C ,D

tt

αA,B,(C⊗D)

**
A⊗ ((B ⊗ C )⊗ D)

αA,(B⊗C),D

��

(A⊗ B)⊗ (C ⊗ D)

α(A⊗B),C ,D

��
(A⊗ (B ⊗ C ))⊗ D

αA,B,C⊗idD

// ((A⊗ B)⊗ C )⊗ D
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Coherence for units

For all A,B ∈ Ob(C), the following diagram commutes.

A⊗ (I ⊗ B)
αA,I ,B //

idA⊗λB &&

(A⊗ I )⊗ B

ρA⊗idBxx
A⊗ B
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Symmetric monoidal category

Let (C ,⊗, I , α, λ, ρ) be a monoidal category. A braiding is a natural
isomorphism σ : L⊗L ∼= (L⊗L) ◦ τ where τ : C × C → C × C is the
usual flip τ(A,B) = (B,A) such that σB,A ◦ σA,B = idA⊗B and
ρA = λA ◦ γA,I for every objects A,B .

A symmetric monoidal category is a monoidal category with a coherent
braiding, i.e., for all A,B,C ∈ Ob(C ) the following diagram commutes.

A⊗ (B ⊗ C )
αA,B,C //

idA⊗σB,C
��

(A⊗ B)⊗ C
σ(A⊗B),C// C ⊗ (A⊗ B)

αC ,A,B

��
A⊗ (C ⊗ B) αA,C ,B

// (A⊗ C )⊗ B
σA,C⊗idB

// (C ⊗ A)⊗ B
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Monoidal closed category

A closed category is a symmetric monoidal category C in which for each
object B the functor L⊗ B : C → C has a specified right adjoint
(L)B : C → C (which is referred to as the internal hom functor or
exponential), i.e., for every objects A,C , there is a natural isomorphism (in
the category of sets)

CurryA,B,C : C(A⊗ B,C ) ∼= C(A,CB) .

Examples: every Cartesian closed category (Set , Kelley spaces, category of
all small categories, ...), Ab, Abfin , R-Mod , R-Freefin , commutative Hopf
algebras, ...
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Notations concerning coproducts

Let C be a category with a binary coproduct ⊕. In what follows, for every
objects A,B of C , qA : A→ A⊕ B , qB : B → A⊕ B denote the natural
injections (while they are not required to be injective!).

Let α ∈ C(A,A′) and β ∈ C(B,B ′). Then, [α, β] ∈ C(A⊕ B,A′ ⊕ B ′)
denotes the unique arrow γ such that γ ◦ qA = qA′ ◦α and γ ◦ qB = qB′ ◦β.
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Slice category

Let B, C be categories, let F : B → C be a functor, and let C be a fixed
object of C . The slice category F/C over C has

- objects all pairs (f ,A) where A ∈ Ob(B) and f ∈ C(F (A),C ),

- for each f ∈ C(F (A),C ) and g ∈ C(F (B),C ), an arrow α : f → g is a
member of B(A,B) such that the following diagram commutes.

F (A)

f !!

F (α) // F (B)

g
}}

C
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The category of bilinear maps
Let us assume that C is a closed category, and let D be a full subcategory
of C (it may be C itself). (These data will be implicitly assumed.)

Let C be a given objects of C . The category of bilinear maps on C is the
full subcategory Bil D(C ) of the slice category ⊗/C . Objects: (f , (A,B)),
A,B objects of D and f ∈ C(A⊗ B,C ). (It is equivalently defined as the slice

category ⊗ ◦ (jD × jD), where jD : D ↪→ C is the full inclusion functor.)

In what follows if (f , (A,B)) is such an object, then it is identified with f
itself and I use the following notations: Lf = A and Rf = B .

Thus an arrow α in Bil D(C ) from f ∈ C(Lf ⊗ Rf ,C ) to
g ∈ C(Lg ⊗ Rg ,C ), Lf ,Rf , Lg ,Rg objects of D, i.e., α ∈ Bil D(C )(f , g), is
a pair (αl , αr ) with αl ∈ D(Lf , Lg ), and αr ∈ D(Rf ,Rg ) such that the
following diagram commutes.

Lf ⊗ Rf

f
##

αl⊗αr // Lg ⊗ Rg

g
{{
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Currying

Since C is assumed closed, for each f ∈ C(Lf ⊗ Rf ,C ), we may define its
adjoint γf ∈ C(Lf ,CRf ) as CurryLf ,Rf ,C

(f ).

Because C is assumed to be symmetric with braiding say σ, we may define
another adjoint δf ∈ C(Rf ,CLf ) as CurryRf ,Lf ,C

(σLf ,Rf (f )).
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Category of pairings on C

A pairing on C is a bilinear map f ∈ C(A⊗ B,C ) such that both arrows γf
and βf are monomorphisms in C .

This is the translation of non-degeneracy in this setting.

The category of pairings on C is the full subcategory Pair D(C) of Bil D(C )
with objects all the pairings on C .
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Perfect pairing

A pairing f on C is said to be perfect whenever γf and δf are actually
isomorphisms in C .

The category of perfect pairings on C is the full subcategory Perf D(C) of
Pair D(C) (and obviously also of Bil D(C )) with objects all the perfect
pairings on C .

In brief: Perf D(C ) ↪→ Pair D(C ) ↪→ Bil D(C ) ↪→ ⊗/C (where the arrows
denote the full inclusion functors).
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Isomorphisms in these categories
Let f , g be two objects of Bil D(C ), and let α = (αl , αr ) : f → g be an
arrow.

The arrow α ∈ Bil D(C )iso(f , g) (respectively, Bil D(C )mono(f , g)) if, and
only if, αl ∈ Diso(Lf , Lg ) (resp., Dmono(Lf , Lg )) and αr ∈ Diso(Rf ,Rg )
(resp., Dmono(Rf ,Rg )).

Because Perf D(C ) and Pair D(C ) are full subcategories of Bil D(C ), their
isomorphisms are the same as those of Bil D(C ).

Remark
Let f , g ∈ Ob(Bil D(C )) such that f ∼= g (as bilinear maps). We observe
that f is a pairing (respectively, a perfect pairing) if, and only if, g also is.
Similarly, let us assume that f , g ∈ Ob(Pair D(C )). Then, f is a perfect
pairing if, and only if, g is so.
Therefore, an equivalence class (under isomorphism) of bilinear maps
(respectively, pairings) either contains no pairings (respectively, perfect
pairings) or all its members are pairings (respectively, perfect pairings).
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Remarks
Let us denote by Cat the category of all (large) categories.

We may define a functor Bil D(L) : C → Cat as follows.

Let C ,C ′ be two objects of C and let φ ∈ C(C ,C ′). Then,
Bil D(φ) : Bil D(C )→ Bil D(C ′) is the functor defined for an object
f ∈ C(Lf ⊗ Rf ,C ) by Bil D(φ)(f ) = φ ◦ f ∈ C(A⊗ B,C ′) and which acts
as the identity on arrows.

By restriction, we may define two other functors:
• Pair D(L) : Cmono → Cat full emb (where “full emb” stands for “full
embedding”, i.e., a particular class of functorial monomorphisms: full
functors, injective on arrows). So for every monomorphism φ ∈ C(C ,C ′),
Pair D(C ) may be seen as a full subcategory of Pair D(C ′).
• Perf D(L) : Ciso → Cat iso.

By definition of functors, if C ∼= C ′ (isomorphic objects in C), then
Bil D(C ) ∼= Bil D(C ′) and Pair D(C ) ∼= Pair D(C ′) (isomorphic categories).
The converse may be false (C = Ab, Pair Abfin (0) ∼= Pair Abfin (Z)). 24 / 50



Remark

Let us assume that E ↪→ D ↪→ C = R-Mod are full embeddings of
categories (i.e., E is a full subcategory of D which a full subcategory of C).

We have the following commutative diagram of full inclusions for every
C ∈ Ob(C).

Perf D(C ) �
� // Pair D(C ) �

� // Bil D(C )

Perf E(C )
?�

OO

� � // Pair E(C )
?�

OO

� � // Bil E(C )
?�

OO
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Adjoints related to perfect pairings for C = R-Mod

Let D be a full subcategory of R-Mod , let C be a given R-module, and let
f ∈ Ob(Perf D(C )).

For every φ ∈ R-Mod (Df ,Df ), there is a unique †φ ∈ R-Mod (Rf ,Rf ) such
that f ◦ (φ⊗ idRf ) = f ◦ (idLf ⊗ †φ). (Define
†φ(y) = δ−1f (f (φ(·)⊗ y)) ∈ Rf for each y ∈ Rf .)

For every ψ ∈ R-Mod (Rf ,Rf ), there is a unique ψ† ∈ R-Mod (Lf , Lf ) such
that f ◦ (idLf ⊗ ψ) = f ◦ (ψ† ⊗ idRf ) (Define ψ

†(x) = γ−1f (f (x ⊗ ψ(·))).)

Actually, †(L) : R-Mod (Lf , Lf )→ R-Mod (Rf ,Rf )
op and

(L)† : R-Mod (Rf ,Rf )
op → R-Mod (Lf , Lf ) are isomorphisms of R-algebras,

inverse one from the other.

In particular when D = R-Freefin , if f : Lf ⊗ Rf → C is a perfect pairing,
then Lf

∼= Rf .
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Example

• Let R = Z so that C = Ab and let D = Abfin . Let A be a finite Abelian
group, and let us consider the natural pairing 〈· | ·〉A : A× Â→ R/Q
defined by the evaluation 〈a | χ〉A = χ(a), where Â = Ab(A,R/Q).
Let φ ∈ Abfin(A,A), then †φ ∈ Abfin(Â, Â) is given by †φ(χ) = χ ◦ φ.

• Similarly, let D = R-Freefin . We also consider the natural pairing
〈· | ·〉n : Rn × (Rn)∗ → R given by the evaluation 〈v | `〉n = `(v).

Let φ ∈ R-Freefin(Rn,Rn), then †φ ∈ R-Freefin((Rn)∗, (Rn)∗) is given by
φ(`) = ` ◦ φ.
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Rees quotient

Let S be a semigroup, and I ⊆ S .

The set I is a (two-sided) ideal of S if

SI ⊆ S ⊇ IS .

An ideal I is said to be prime when xy ∈ I implies that either x ∈ I or
y ∈ I .

Given an ideal I , we may form the Rees quotient S/I of S by I : it is the set
(S \ I ) t {∞} with the following operation: let x , y ∈ S , then x × y = xy
if xy 6∈ I , x × y =∞ otherwise, and z ×∞ =∞ =∞× z for every
z ∈ (S \ I ) t {∞}.

It is equivalently defined as the quotient semigroup S/ ∼=I by the
congruence x ∼=I y if, and only if, x , y ∈ I or x = y .
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Remark

If I is a prime ideal of S , then S/I is zero-divisor free, therefore it is a usual
semigroup, say T , with a two-sided absorbing element ∞ freely adjoined
T∞ = T t {∞}.
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A symmetric monoidal structure on Bil D(C )

From now on, C = R-Mod , and D is cocartesian for ⊕.

Let A,B,C ,D ∈ Ob(D). Since
(A⊕ B)⊗ (C ⊗ D) ∼= (A⊗ C )⊕ (A⊗ D)⊕ (B ⊗ C )⊕ (B ⊗ D),
(A⊕ B)⊗ (C ⊗ D) has a coproduct presentation:

A⊗ C
qA⊗qC

((

A⊗ D
qA⊗qD

vv
(A⊕ B)⊗ (C ⊕ D)

B ⊗ C
qB⊗qC

66

B ⊗ D
qB⊗qD

hh
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A symmetric monoidal structure on Bil D(C )

Let f , g ∈ Ob(Bil D(C )).

We define f⊥g : (Lf ⊕ Lg )⊗ (Rf ⊕ Rg )→ C by

(f⊥g) ◦ qLf ⊗ qRf = f ,
(f⊥g) ◦ qLg ⊗ qRg = g ,
(f⊥g) ◦ qLf ⊗ qRg = 0Lf⊗Rg ,C ,
(f⊥g) ◦ qLg ⊗ qRf = 0Lg⊗Rf ,C

where 0A,B is the zero arrow from A to B .

Because D is assumed cocartesian for ⊕, f⊥g ∈ Ob(Bil D(C )).
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A remark

Let qf ∈ Bil D(C )(f , f⊥g) be defined by qf = (qLf , qRf ), and similarly, let
qg ∈ Bil D(C )(g , f⊥g) be given by qg = (qLg , qRg ).

It is not true that (f⊥g , qf , qg ) forms a coproduct for f , g .

Nevertheless it satisfies the following universal property: let h ∈ Bil D(C ),
α ∈ Bil D(C )(f , h) and β ∈ Bil D(C )(g , h) such that
h ◦ (αl ⊗ αr ) = 0Lf⊗Rf ,C and h ◦ (βl ⊗ βr ) = 0Lg⊗Rg ,C , then there is a
unique arrow γ ∈ Bil D(C ) such that γ ◦ qf = α and γ ◦ qg = β, namely
γ = ([αl , βl ], [αr , βr ]).
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Symmetric monoidal structure at the level of arrows

Let f , f ′, g , g ′ ∈ Bil D(C ), and α ∈ Bil D(C )(f , f ′), β ∈ Bil D(C )(g , g ′),
then α⊥β ∈ Bil D(C )(f⊥g , f ′⊥g ′) is defined by

α⊥β = (αl ⊕ βl , αr ⊕ βr ) .

The unit of ⊥ is 00⊗0,C and the coherent braiding is given by
σf ,g = (σLf ,Lg , σRf ,Rg ) : f⊥g → g⊥f where σA,B : A⊕ B ∼= B ⊕ A is the
natural twist of C .
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An essential property of ⊥

Theorem
Let f , g ∈ Bil D(C ).
The bilinear map f⊥g is a pairing (respectively, a perfect pairing) if, and
only if, f and g are pairings (respectively, perfect pairings) themselves.

As a corollary, the set of equivalent classes of pairings Pair D(C ) is a
sub-monoid of the (commutative) monoid Bil D(C ) (under ⊥) of equivalent
classes of bilinear maps, and the set of equivalent classes of perfect pairings
Perf

D
(C ) is a sub-monoid of Pair D(C ).
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Locally finite monoids
Let S be a semigroup, and x ∈ S . A decomposition of x of length n is a
n-tuple (x1, · · · , xn) ∈ Sn such that x = x1 · · · xn. A decomposition of x is
then a decomposition of x of length n for some n. A semigroup is said to
be locally finite if all its members admit only finitely many decompositions.

If M is a monoid (with identity 1), and x ∈ M, then a decomposition
(x1, · · · , xn) of x is said to be non-trivial if no xi ’s are equal to 1. A
monoid is said to be locally finite if all its members admit only finitely
many non-trivial decompositions.

Let S be any semigroup (or monoid), and x ∈ S . We denote by Dn(x) the
set of all (non trivial) decompositions of x of length n.

Remark
No elements of a locally finite monoid, except the identity, are invertible. In
particular, no group (except the trivial one) may be a locally finite monoid.
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Length

Any locally finite semigroup (respectively, monoid) S may be equipped with
a length function defined as follows: for x ∈ S ,

`(x) = max{ n ∈ N : Dn(x) 6= ∅ } .

In particular for a locally finite monoid M, `(x) = 0 if, and only if, x = 1.

A member x of M is said to be indecomposable if `(x) = 1. It is clear that
such indecomposable elements generate the monoid M.
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Finite decomposition monoids
A monoid M is said to be a finite decomposition monoid if for every x ∈ M,

{ (y , z) ∈ M2 : x = yz }
is finite. Clearly, any finite monoid is a finite decomposition monoid. So is
any locally finite monoid. A non trivial finite group is a finite
decomposition but not locally finite monoid.

Let R be a commutative ring with a unit, and let A be a commutative
R-algebra with a unit. Let M be a finite decomposition monoid. Then, AM

admits a structure of R-algebra with a unit given by
(fg)(x) =

∑
yz=x f (y)g(z) (convolution product). This algebra is denoted

by A[[M]] and called the large algebra of M (for instance, C[[N∗]] is the
algebra of Dirichlet’s series).

Remark: Möbius inversion
If M is a locally finite monoid, then the zêta function ζA ∈ AM , given by
ζA(x) = 1 for every x ∈ M, is invertible. (ζC is the usual Riemann zêta
function when M = N∗.)
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Finite decomposition and algebraic monoids
Let M be a finite decomposition monoid. Let R[xa : a ∈ M] be the
polynomial algebra in the indeterminate xa, for each a ∈ M (i.e., the
R-algebra of the free commutative monoid generated by the set M). Then,
the functor (L)M : R-CAlg → Set (defined at the object level by A 7→ AM)
is a representable functor with representing object R[xa : a ∈ M]
(coordinate ring) since R-CAlg(R[xa : a ∈ M],A) ∼= AM .

Moreover, the underlying multiplicative monoid structure of A[[M]] is
natural in the algebra A of coefficients. The multiplication
m : (L)[[M]]× (L)[[M]]→ (L)[[M]] and the unit e : ∗ → (L)[[M]] are
natural transformations between representable functors. According to
Yoneda’s lemma they give rise to a structure of bialgebra on R[xa : a ∈ M],
so that (L)[[M]] becomes a (pro-affine) algebraic monoid.

Finally, the monoid M is a sub-monoid of the R-rational points R[[M]] of
the pro-affine monoid scheme (L)[[M]]. The constant functor R-CAlg → Set with

value M is a sub-functor of (L)[[M]], and as such corresponds to a cosieve IM under the

representing object R[xa : a ∈ M], namely IM = { âA : a ∈ A, A ∈ R-CAlg } (where
âA ∈ R-CAlg(R[xa : a ∈ M],A) defined by âA(xb) = 0 for all b 6= a, and âA(xa) = 1A). 40 / 50



Remark: Zêta function

Let M be a locally finite monoid. For every algebra A, let MA be the
augmentation ideal of A[[M]], i.e., the set all functions f in AM vanishing
at the identity of M.

Then, 1+M(L) is a pro-affine algebraic group scheme (this is the reason
why in this case the zêta function ζA is invertible).
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Back to pairings

From now, one we assume that D = R-Freefin or D = Abfin if R = Z.

We denote by [f ] the class of equivalence under isomorphism of a bilinear
map f ∈ Bil D(C ).

• Let C = Ab, and D = Abfin . Then, there exists a homomorphism of
monoids c : Bil Abfin

(C )→ N∗ × N∗ given by c([f ]) = (|Lf |, |Rf |)
(well-defined on equivalence classes).

• Let C = R-Mod , and D = R-Freefin . Then, there exists a homomorphism
of monoids d : Bil R-Freefin

(C )→ N× N given by
d([f ]) = (rank (Lf ), rank (Rf )) (well-defined on equivalence classes).
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Back to pairings

From the existence of the morphisms c and d , it may be deduced that
Bil D(C ), Pair D(C ) and Perf

D
(C ) are all locally finite monoids.

So they are sub-monoids of rational points of some (pro-affine) algebraic
variety.
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Pairings are perfect

From now on, C = Z-Mod = Ab, D = Abfin and C = R/Z.

Let A be any finite Abelian group, and let us denote by Â = Ab(A,R/Z)
the group of characters (or dual) of A. It is well-known that A ∼= Â (non
natural isomorphism).

Let f ∈ Ob(Pair Abfin (R/Z)). Then, Lf ↪→ R̂f
∼= Rf ↪→ L̂f

∼= Lf , so that
Lf
∼= Rf , and γf , δf are isomorphisms. Thus, f is a perfect pairing, i.e.,

Pair Abfin (R/Z) = Perf Abfin
(R/Z).
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Natural pairing

Let A be a finite Abelian group. The natural pairing is defined by
〈· | ·〉A : A× Â→ R/Z by

〈a | χ〉A = χ(a) .

Theorem
Let f ∈ Ob(Pair Abfin (R/Z)), then f ∼= 〈· | ·〉Lf .

Sketch of the proof: Let α : Rf
∼= Lf , and define g : Lf × Lf → R/Z by

g(a, b) = f (a, α−1(b)) so that g ∼= f . Since δg : Lf → L̂f is an
isomorphism, h = g ◦ (idLf ⊗ δ−1g ) ∼= g . Moreover,
h(a, χ) = g(a, δ−1g (χ)) = δg (δ

−1
g (χ))(a) = χ(a) = 〈a | χ〉Lf .
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Equivalence classes of pairings
As a corollary, equivalence classes of pairings and isomorphic classes of
finite Abelian groups are in one-one correspondence.

Since Ab(A⊕ B,R/Z) ∼= Ab(A,R/Z)× Ab(B,R/Z), it follows that
Â⊕ B ∼= Â⊕ B̂ (isomorphic as groups).

Moreover,
〈· | ·〉A⊕B ∼= 〈· | ·〉A⊥〈· | ·〉B .

In conclusion, Pair Abfin
(R/Z) = Perf

Abfin
(R/Z) ∼=

⊕
p∈P Mp, where P is the

set of all prime numbers, and Mp is the free commutative monoid
generated by prime powers pi ’s, i ∈ N∗. In particular, Pair Abfin

(R/Z) is a
free commutative monoid.

Remark
The case C = R-Mod , D = R-Freefin and C = R may be treated similarly,
and it is found that Pair R-Freefin

(R) = Perf
R-Freefin

(R) ∼= N.
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Remark

Let f : A× B → Zn be a pairing. Then, it may be seen as a R/Z-valued
pairing (since Pair Abfin (Zn) is a full subcategory of Pair Abfin (R/Z)) and as
such it is a perfect pairing (thus A ∼= B) and f is isomorphic to 〈· | ·〉A.

Remark
• Let f : Zm

n ⊗ Zn → Zm
n be given by

f ((xi mod n)mi=1, y) = (xiy mod n)ni=1. It is a pairing (obviously non
perfect whenever m > 1).

• Since C∗ ∼= R/Z are isomorphic groups, Pair Abfin (C
∗) ∼= Pair Abfin (R/Z).

Moreover, Pair Abfin (Q/Z) ∼= Pair Abfin (R/Z) because of the torsion in finite
Abelian groups.

48 / 50



Remark

Let p be a prime number, and let Z(p∞) be the Prüfer p-group, i.e., the
direct limit of 0 ↪→ Zp ↪→ Zp2 ↪→ · · · (certainly, Z(p∞) is a sub-group of
Q/Z).

Let p-Abfin be the full subcategory of Abfin of all finite Abelian p-groups.
The category Pair p-Abfin (Z(p

∞)) is a full subcategory of Pair Abfin (Q/Z),
therefore each f ∈ Ob(Pair p-Abfin (Z(p

∞)) may be seen as a perfect pairing
(so that Lf

∼= Rf ) with values in Q/Z, and as so it is isomorphic to 〈· | ·〉Lf .

It becomes easy to see that Pair p-Abfin
(Z(p∞)) is the free commutative

monoid Mp generated prime powers pi , i ≥ 1 in such a way that

Pair Abfin
(Q/Z) ∼=

⊕
p∈P

Pair p-Abfin
(Z(p∞))
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The zêta function of Pair Abfin(R/Q)

According to Pierre Cartier and Dominique Foata, for any algebra A, the
inverse µA of the zêta function ζA of the free monoid Pair Abfin (R/Q) is
given by

µA([〈· | ·〉Zpi ]) = −1A

for all prime numbers p and integers i > 0,

µA(0) = 1A ,

and for all [f ] ∈ Pair Abfin (R/Q) with `([f ]) ≥ 2,

µA([f ]) = 0 .

(Because Pair Abfin (R/Q) is a free commutative monoid, its length `
corresponds to the number of generators in a term.)
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