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Goal of this talk

Let R be any commutative ring with a unit.

Let X, Y be any sets.
To each R-linear map ¢: RX — RY is associated a « matrix » My with
entries in Y x X and coefficients in R whose (y, x)-entry is given by

My (y, x) = (¢(6x))(¥)
where 6, € RX the Dirac mass at x.

It is similar to the decomposition of a linear map in some bases. Note
however that when X is infinite, then (0x)xex is not an algebraic basis for
RX.
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Goal of this talk

A matrix M with Y x X entries is said to be row-finite when for every
y €Y, there are only finitely many non-zero entries M(y, x).

When X = Y =N, a N x N-matrix M is row-finite if for every i € N, the
ith row (M(i, j))jen is finite.
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Goal of this talk

Now, let us assume that R is a Hausdorff topological field, and that RZ
has the product topology for every set Z.

The main goal of this talk is to prove the following result:

Theorem
If a linear map ¢: RX — RY is continuous, then its matrix My is row—ﬁnite.J
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Goal of this talk

- We note that the previous theorem holds for every Hausdorff field
topology on R.

- The definition of 24, does not depend on the topology of R.

Therefore, if a1, is row-finite, then ¢ is continuous (with respect to the
product topologies) for all Hausdorff field topologies on R.

In other terms, if ¢ is continuous for the product topologies relative to one
given Hausdorff field topology on R, then ¢ is continuous for all Hausdorff
field topologies on R.

Actually, this follows from a deeper result: for all Hausdorff field topologies

on R, the topological duals of RX (RX has the product topology) are the
same.
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Convention

By convention, in this talk the rings are assumed to be unitary and
commutative.
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Convention

By convention, in this talk the rings are assumed to be unitary and
commutative.

The modules are also assumed to be unitary.
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Product topology

Let (E;, 7i)ics be any family of topological spaces.

The product topology on the set-theoretic product H E; is the coarset
iel
topology that makes continuous all canonical projections ;: H Ei — E;.
iel

It is characterized by the following property:

Let (X, 7) be a topological space, and f: X — H E;. Then, fis
i€l
continuous if, and only if, mj o f: X — E; is continuous for each j € /.

This topology is Hausdorff if, and only if, each space (E, 7;) is separated.
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Example

Let (E, 7) be a topological space, and X be a set.

Then EX = H E. where E, = E for every x € X.
xeX

The product topology on EX is the coarset topology that makes
continuous the projections f — f(x), x € X.

We recover the topology of simple convergence on EX.
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Topological rings, fields

Let R be a ring, and 7 be a topology on R.

We say that (R, 7) is a topological ring if the ring operations (addition,
opposite, multiplication) of R are continuous. (In particular, (R,+,0) is a
topological Abelian group.)

If K is a field, and 7 is a ring topology on K, we say that (K, 7) is a
topological field when (K*, x, 1) is a topological group for the subspace
topology.

For instance any ring (or field) is a topological ring (or field) with either
the trivial or the discrete topologies.
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Topological modules and vector spaces

Let R be a topological ring, M be an R-module, and 7 be a topology on M.

We say that (M, 1) is a topological R-module if (M, +,0) is a topological
Abelian group and multiplication by scalars is continuous.

When R is a topological field, then (M, 1) is said to be a topological
R-vector space.
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Example

Let R be a topological ring, and X be a set.
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Example

Let R be a topological ring, and X be a set.

The R-module RX of all maps from X to R with the product topology is a
topological R-module.
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Let R be a ring and X be a set.

The support of a map f € RX is defined to be the set

Supp(f) ={xe X: f(x)#0}.

The R-module of all maps with finite support is denoted by R(X).

Let K be a Hausdorff topological field and let us assume that KX has the
product topology.

In this part we prove that the topological dual of KX is isomorphic (as a
K-vector space) to K(X).
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Let R be a ring and M, N be R-modules.
The R-module of all R-linear maps from M to N is denoted by

Homp-ags (M, N) .

In particular, M* = Homg(M, R) is the algebraic dual of M.

When M, N are topological R-modules, then the R-module of all
continuous R-linear maps from M to N is denoted by
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Algebraic and topological duals

Let R be a ring and M, N be R-modules.
The R-module of all R-linear maps from M to N is denoted by

Homp-ags (M, N) .

In particular, M* = Homg(M, R) is the algebraic dual of M.

When M, N are topological R-modules, then the R-module of all
continuous R-linear maps from M to N is denoted by

ﬂomR-TopMm{(Ma N) :

In particular, M’ = Homp_qypas(M, R) is the topological dual of M.
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Let R be a ring and X be a set.
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Duality bracket

Let R be a ring and X be a set.

The map
(1) RXxRX) 5 R
(f.p) = (Flp) =Y f(x)p

xeX

is a duality bracket (it means that (- | -) is R-bilinear and (f | -) and (- | p)
have a null kernel for every f, p that is (- | -) is said to be non-degenerated).
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Theorem [Poinsot '10]

Let K be a separated topological field, and X be a set.
Let us assume that KX has the product topology.

Then the topological dual (KX) of KX is isomorphic to K(X).
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Lemma 1

Let R be a ring, and X be a set.
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Lemma 1

Let R be a ring, and X be a set.

The map

is R-linear and one-to-one.
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Proof of Lemma 1 (Injectivity of ®)
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Proof of Lemma 1 (Injectivity of ®)

Let p € ker® (®(p)(f) =0 for all f € RX).

So p(x) = ®(p)(dx) = 0 for every x € X.
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Lemma 2

Let R be a topological ring, and X be a set. We assume that RX has the
product topology.
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Lemma 2

Let R be a topological ring, and X be a set. We assume that RX has the
product topology.

For all p € RX), &(p) is continuous, i.e., d(p) € (RX)'.

(Proof: Obvious.)
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Lemma 3

Recall: summability
Let (G, 7) be a separated topological Abelian group. A family (gi)ics of
members of G is summable with sum g € G, which is denoted by
Zg,- = g, if for every open neighbourhood U of zero, there exists a finite
icl
subset J C [/ such that Zgj —geu.

JjeJ
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Lemma 3

Recall: summability
Let (G, 7) be a separated topological Abelian group. A family (gi)ics of
members of G is summable with sum g € G, which is denoted by
Zg,- = g, if for every open neighbourhood U of zero, there exists a finite
icl
subset J C [/ such that Zgj —geu.

JjeJ

Let R be a separated topological ring, and let us assume that RX has the
product topology.

For each f € RX, the family (f(x)dx)xex = ((f | 6x)0x)xex is summable

with sum f, that is
F=> f(x)dx .

xeX
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Proof of Lemma 3

It is sufficient to prove that for each y € X, the family (7, (f(x)dx))xex is
summable in R, with sum 7, (f), where 7,: RX — R is the canonical
projection onto R.
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Proof of Lemma 3

It is sufficient to prove that for each y € X, the family (7, (f(x)dx))xex is
summable in R, with sum 7, (f), where 7,: RX — R is the canonical
projection onto R.

But this projection is given by f — (f | J,).

Therefore we need to prove that for each y € X, the family
((F(x)0x | 9y))xex = (f(x)0y(x))xex is summable with sum f(y), which is
obvious.
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Lemma 4

Under the same assumptions as Lemma 3:
If ¢ € (RXY,
Then the set Y, = { x € X | £(dx) is invertible in R } is finite.

We have a direct consequence:

Lemma 5
Let K be a Hausdorff topological field.

If £ € (KXY, then £(0,) = 0 for all x € X, except a finite number.

24 /40



Proof of Lemma 4
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Proof of Lemma 4

Because £ is a continuous linear form, and since for every f € RX, the
family (f(x)dx)xex is summable with sum f (according to lemma 3), then
the family ((x)¢(0x))xex is summable in R, with sum £(f).

Let us define f,: X — R by fy(x) = £(0x)~! if x € Y, and f,(x) =0
otherwise.

In particular, the family (f;(x)¢(0x))xex is summable with sum ¢(f;).

From general properties of summability we know that for every open
neighbourhood U of 0 in R, f;(x){(dx) € U for all, except finitely many,
x € X.

Since R is assumed Hausdorff, there is an open neighbourhood U of zero
such that 1 ¢ U.

Because 1 = fy(x)¢(0x) & U for all x € Yy, if Yy is not finite, this leads to a

contradiction.
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Lemma 6

Under the same assumptions as Lemma 5,
& KX) — (KXY

is onto.
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Proof of Lemma 6

Let ¢ € (KX) be fixed, and let us define py: X — K by py(x) = £(dx).
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Proof of Lemma 6

Let ¢ € (KX) be fixed, and let us define py: X — K by py(x) = £(dx).

According to Lemma 5, p; € K(X).

Let £ € KX. We have

O(pr)(F) = (F | p) = 3 FOplx) = 3 F()U6.) = U(F) .

xeX xeX
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Proof of the Theorem

Lemma 1 (& is one-to-one),
Lemma 2 (Im(®) C (KX)'),

Lemma 6 (& is onto).
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Let ¢ € Homp_qpe (KX, KY).
We define the matrix a4, € KY*X of ¢ by

My (v, x) = (d(0x) | 3y) -

Remark
For infinite-dimensional spaces, the K-linear map ¢ — 94 is not
one-to-one.
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Let us assume that X = Y is infinite.

The family (0x)xex is K-linearly independent (since it is an algebraic basis
of K(X)).

According to the axiom of choice, (dx)xex may be extended to an algebraic
basis B of KX.

Let V be the K-subvector space of KX generated by B\ { 6x: x € X} # 0.

It is clear that KX = K(X) @& V, and let us consider my : KX — KX the
projection along K(X) onto V.

Since KX) = ker 7y, for every x,y € X, (ny(,) | dx) = 0 so that 9, is
the null matrix, while my, # 0.
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Some definitions

A matrix M € RY>*X is said to be row-finite if for every y € Y, the map
M(y,-): x € X = M(y,x) € R is finitely supported, that is
M(yv ) S R(X)
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Some definitions

A matrix M € RY*X is said to be row-finite if for every y € Y, the map
M(y,-): x € X = M(y,x) € R is finitely supported, that is
M(yv ) S R(X)

The sub-R-module of RY*X of all row-finite matrices is denoted by

RYX(X) .

Convention

In what follows, K denotes a Hausdorff topological field and K has the
product topology for every set Z.
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A first result

Lemma 7
For every ¢ € HomK_%p%ct(KX,KY), My is row-finite, that is
Im(a) € KY*(X),
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Proof of Lemma 7

Let ¢ € HomK_%pq/m(KX, KY) be given.
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For every y € Y, the map f € KX (¢(f) | §,) € K belongs to (KX)' by
composition of continuous maps.

According to the previous theorem, there exists a unique py , € KX) such
that (f | pg.y) = (&(f) | dy).

In particular, for every x € X,

Poy(X) =D Py (2)0x(2) = (3x | Poy) = (8(6x) | 6y) = My(y, x).
zeX
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Proof of Lemma 7

Let ¢ € HomK_%pq/m(KX, KY) be given.

For every y € Y, the map f € KX (¢(f) | §,) € K belongs to (KX)' by
composition of continuous maps.

According to the previous theorem, there exists a unique py , € KX) such
that (f | pg.y) = (&(f) | dy).

In particular, for every x € X,
Poy(X) =D Psy(2)8:(2) = (0x | Poy) = ($(6x) | 6y) = My(y, x).

zeX

Therefore Supp(ps.,) = { x € X: My(y, x) # 0} so that a4, € KY*X),
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Lemma 8
The map M : ¢ € }[omK_%P%u(KX,KY) — My € KY*(X) is one-to-one. J
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Proof of Lemma 8

Let ¢ € ﬂ{omK_%Pq;m(KX,KY) such that a7, = 0.
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Proof of Lemma 8

Let ¢ € HomK_%Wm(KX,KY) such that a7, = 0.
Therefore for every (y,x) € Y x X, (¢(dx) | 6,) = 0.

The previous equality holds for every y € Y so that ¢(dx) = 0 for every
x € X (since (- | -) is non-degenerated).

Therefore ¢ is the null linear map on KX,

Since ¢ is assumed to be continuous, and KX) is dense in KX, ¢ =0.
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Lemma 9
The map M : ¢ € ﬂ{omK_%P%Ct(KX,KY) = My € KY*(X) is onto. J
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Lemma 9
The map M : ¢ € }[omK_%P,Vm(KX,KY) = My € KY*(X) is onto. J

(Proof: It is an easy exercice.)
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From lemmas 7, 8 and 9, we easily obtain the following result:
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From lemmas 7, 8 and 9, we easily obtain the following result:

Proposition

}[omK_%pq/m(KX,KY) and KY*(X) are isomorphic K-vector spaces,

and for every ¢ € }[omK_%pr,/m(KX ,KY), and v € }[omK_%pr,/m(Ky, K?),
we have

Moy = MyMy .

In particular, M is an isomorphism of algebras from EndK_Top%a(KX) into
KX*(X)

39/40



Conclusion

If one proves that ¢ is continuous for a fixed separated topology on K (for
instance the discrete topology or the usual topologies for K € { R, C }),
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Conclusion

If one proves that ¢ is continuous for a fixed separated topology on K (for
instance the discrete topology or the usual topologies for K € { R, C }),
then 24, is row-finite, and ¢ is continuous with respect to all Hausdorff
field topologies on K.

In other terms if ¢ is continuous for one Hausdorff topology on K, then it
is continuous for all of them.

Conversely, if a matrix M € KYXX is row-finite, then the linear map

Y KX — KY given by 9 (f Z M(y, x is continuous.
xeX

Note however that it is not true that 94, is row-finite implies that the linear
map ¢ is continuous. Because it is not always the case that ¢ = 1),,. For
instance M, = 0 is row-finite but 7y is not continuous (if it was the case,
by injectivity of M, my = 0).
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