Topological Duality and Row-finite Matrices

Laurent Poinsot
LIPN - UMR CNRS 7030
Université Paris-Nord XIII - Institut Galilée

Structured Matrix Days - XLIM
May 10-11, 2012 à l'Université de Limoges

Goal of this talk

Let R be any commutative ring with a unit.

Goal of this talk

Let R be any commutative ring with a unit.
Let X, Y be any sets.
To each R-linear map $\phi: R^{X} \rightarrow R^{Y}$ is associated a « matrix » \mathcal{M}_{ϕ} with entries in $Y \times X$ and coefficients in R whose (y, x)-entry is given by

$$
\mathcal{M}_{\phi}(y, x)=\left(\phi\left(\delta_{x}\right)\right)(y)
$$

where $\delta_{x} \in R^{X}$ the Dirac mass at x.

Goal of this talk

Let R be any commutative ring with a unit.
Let X, Y be any sets.
To each R-linear map $\phi: R^{X} \rightarrow R^{Y}$ is associated a « matrix » \mathcal{M}_{ϕ} with entries in $Y \times X$ and coefficients in R whose (y, x)-entry is given by

$$
\mathcal{M}_{\phi}(y, x)=\left(\phi\left(\delta_{x}\right)\right)(y)
$$

where $\delta_{x} \in R^{X}$ the Dirac mass at x.
It is similar to the decomposition of a linear map in some bases. Note however that when X is infinite, then $\left(\delta_{x}\right)_{x \in X}$ is not an algebraic basis for R^{X}.

Goal of this talk

A matrix M with $Y \times X$ entries is said to be row-finite when for every $y \in Y$, there are only finitely many non-zero entries $M(y, x)$.

Goal of this talk

A matrix M with $Y \times X$ entries is said to be row-finite when for every $y \in Y$, there are only finitely many non-zero entries $M(y, x)$.

When $X=Y=\mathbb{N}$, a $\mathbb{N} \times \mathbb{N}$-matrix M is row-finite if for every $i \in \mathbb{N}$, the ith row $(M(i, j))_{j \in \mathbb{N}}$ is finite.

Goal of this talk

Now, let us assume that R is a Hausdorff topological field, and that R^{Z} has the product topology for every set Z.

Goal of this talk

Now, let us assume that R is a Hausdorff topological field, and that R^{Z} has the product topology for every set Z.

The main goal of this talk is to prove the following result:

Theorem

If a linear map $\phi: R^{X} \rightarrow R^{Y}$ is continuous, then its matrix \mathcal{M}_{ϕ} is row-finite.

Goal of this talk

- We note that the previous theorem holds for every Hausdorff field topology on R.

Goal of this talk

- We note that the previous theorem holds for every Hausdorff field topology on R.
- The definition of \mathcal{M}_{ϕ} does not depend on the topology of R.

Goal of this talk

- We note that the previous theorem holds for every Hausdorff field topology on R.
- The definition of \mathscr{M}_{ϕ} does not depend on the topology of R.

Therefore, if \mathcal{M}_{ϕ} is row-finite, then ϕ is continuous (with respect to the product topologies) for all Hausdorff field topologies on R.

Goal of this talk

- We note that the previous theorem holds for every Hausdorff field topology on R.
- The definition of \mathcal{M}_{ϕ} does not depend on the topology of R.

Therefore, if \mathcal{M}_{ϕ} is row-finite, then ϕ is continuous (with respect to the product topologies) for all Hausdorff field topologies on R.

In other terms, if ϕ is continuous for the product topologies relative to one given Hausdorff field topology on R, then ϕ is continuous for all Hausdorff field topologies on R.

Goal of this talk

- We note that the previous theorem holds for every Hausdorff field topology on R.
- The definition of \mathcal{M}_{ϕ} does not depend on the topology of R.

Therefore, if \mathcal{M}_{ϕ} is row-finite, then ϕ is continuous (with respect to the product topologies) for all Hausdorff field topologies on R.

In other terms, if ϕ is continuous for the product topologies relative to one given Hausdorff field topology on R, then ϕ is continuous for all Hausdorff field topologies on R.

Actually, this follows from a deeper result: for all Hausdorff field topologies on R, the topological duals of R^{X} (R^{X} has the product topology) are the same.

Table of contents

(1) Topological algebraic structures
(2) Topological dual of R^{X}
(3) Consequences on infinite matrices

Table of contents

(1) Topological algebraic structures
(2) Topological dual of R^{X}
(3) Consequences on infinite matrices

Convention

By convention, in this talk the rings are assumed to be unitary and commutative.

Convention

By convention, in this talk the rings are assumed to be unitary and commutative.

The modules are also assumed to be unitary.

Product topology

Let $\left(E_{i}, \tau_{i}\right)_{i \in I}$ be any family of topological spaces.

Product topology

Let $\left(E_{i}, \tau_{i}\right)_{i \in I}$ be any family of topological spaces.
The product topology on the set-theoretic product $\prod_{i \in I} E_{i}$ is the coarset topology that makes continuous all canonical projections $\pi_{j}: \prod_{i \in I} E_{i} \rightarrow E_{j}$.

Product topology

Let $\left(E_{i}, \tau_{i}\right)_{i \in I}$ be any family of topological spaces.
The product topology on the set-theoretic product $\prod_{i \in I} E_{i}$ is the coarset topology that makes continuous all canonical projections $\pi_{j}: \prod_{i \in I} E_{i} \rightarrow E_{j}$.

It is characterized by the following property:
Let (X, τ) be a topological space, and $f: X \rightarrow \prod E_{i}$. Then, f is continuous if, and only if, $\pi_{j} \circ f: X \rightarrow E_{j}$ is continuous for each $j \in I$.

Product topology

Let $\left(E_{i}, \tau_{i}\right)_{i \in I}$ be any family of topological spaces.
The product topology on the set-theoretic product $\prod_{i \in I} E_{i}$ is the coarset topology that makes continuous all canonical projections $\pi_{j}: \prod_{i \in I} E_{i} \rightarrow E_{j}$.

It is characterized by the following property:
Let (X, τ) be a topological space, and $f: X \rightarrow \prod E_{i}$. Then, f is continuous if, and only if, $\pi_{j} \circ f: X \rightarrow E_{j}$ is continuous for each $j \in I$.

This topology is Hausdorff if, and only if, each space $\left(E, \tau_{i}\right)$ is separated.

Example

Let (E, τ) be a topological space, and X be a set.
Then $E^{X} \cong \prod_{x \in X} E_{x}$ where $E_{x}=E$ for every $x \in X$.
The product topology on E^{X} is the coarset topology that makes continuous the projections $f \mapsto f(x), x \in X$.

We recover the topology of simple convergence on E^{X}.

Topological rings, fields

Let R be a ring, and τ be a topology on R.

Topological rings, fields

Let R be a ring, and τ be a topology on R.
We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous.

Topological rings, fields

Let R be a ring, and τ be a topology on R.
We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous. (In particular, $(R,+, 0)$ is a topological Abelian group.)

Topological rings, fields

Let R be a ring, and τ be a topology on R.
We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous. (In particular, $(R,+, 0)$ is a topological Abelian group.)

If \mathbb{K} is a field, and τ is a ring topology on \mathbb{K},

Topological rings, fields

Let R be a ring, and τ be a topology on R.
We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous. (In particular, $(R,+, 0)$ is a topological Abelian group.)

If \mathbb{K} is a field, and τ is a ring topology on \mathbb{K}, we say that (\mathbb{K}, τ) is a topological field when $\left(\mathbb{K}^{*}, \times, 1\right)$ is a topological group for the subspace topology.

Topological rings, fields

Let R be a ring, and τ be a topology on R.
We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous. (In particular, $(R,+, 0)$ is a topological Abelian group.)

If \mathbb{K} is a field, and τ is a ring topology on \mathbb{K}, we say that (\mathbb{K}, τ) is a topological field when $\left(\mathbb{K}^{*}, \times, 1\right)$ is a topological group for the subspace topology.

For instance any ring (or field) is a topological ring (or field) with either the trivial or the discrete topologies.

Topological modules and vector spaces

Let R be a topological ring, M be an R-module, and τ be a topology on M.

Topological modules and vector spaces

Let R be a topological ring, M be an R-module, and τ be a topology on M.
We say that (M, τ) is a topological R-module if $(M,+, 0)$ is a topological Abelian group and multiplication by scalars is continuous.

Topological modules and vector spaces

Let R be a topological ring, M be an R-module, and τ be a topology on M.
We say that (M, τ) is a topological R-module if $(M,+, 0)$ is a topological Abelian group and multiplication by scalars is continuous.

When R is a topological field, then (M, τ) is said to be a topological R-vector space.

Example

Let R be a topological ring, and X be a set.

Example

Let R be a topological ring, and X be a set.
The R-module R^{X} of all maps from X to R with the product topology is a topological R-module.

Table of contents

(1) Topological algebraic structures
(2) Topological dual of R^{X}
(3) Consequences on infinite matrices

Let R be a ring and X be a set.

Let R be a ring and X be a set.
The support of a map $f \in R^{X}$ is defined to be the set

$$
\operatorname{Supp}(f)=\{x \in X: f(x) \neq 0\} .
$$

Let R be a ring and X be a set.
The support of a map $f \in R^{X}$ is defined to be the set

$$
\operatorname{Supp}(f)=\{x \in X: f(x) \neq 0\} .
$$

The R-module of all maps with finite support is denoted by $R^{(X)}$.

Let R be a ring and X be a set.
The support of a map $f \in R^{X}$ is defined to be the set

$$
\operatorname{Supp}(f)=\{x \in X: f(x) \neq 0\} .
$$

The R-module of all maps with finite support is denoted by $R^{(X)}$.
Let \mathbb{K} be a Hausdorff topological field and let us assume that \mathbb{K}^{X} has the product topology.

Let R be a ring and X be a set.
The support of a map $f \in R^{X}$ is defined to be the set

$$
\operatorname{Supp}(f)=\{x \in X: f(x) \neq 0\} .
$$

The R-module of all maps with finite support is denoted by $R^{(X)}$.
Let \mathbb{K} be a Hausdorff topological field and let us assume that \mathbb{K}^{X} has the product topology.

In this part we prove that the topological dual of \mathbb{K}^{X} is isomorphic (as a \mathbb{K}-vector space) to $\mathbb{K}^{(X)}$.

Algebraic and topological duals

Let R be a ring and M, N be R-modules.

Algebraic and topological duals

Let R be a ring and M, N be R-modules.
The R-module of all R-linear maps from M to N is denoted by

$$
\operatorname{Hom}_{R-\operatorname{Mod}}(M, N) .
$$

Algebraic and topological duals

Let R be a ring and M, N be R-modules.
The R-module of all R-linear maps from M to N is denoted by

$$
\mathcal{H o m}_{R-\operatorname{Mod}}(M, N) .
$$

In particular, $M^{*}=\mathcal{H o m}_{R}(M, R)$ is the algebraic dual of M.

Algebraic and topological duals

Let R be a ring and M, N be R-modules.
The R-module of all R-linear maps from M to N is denoted by

$$
\mathcal{H o m}_{R-\operatorname{Mod}}(M, N) .
$$

In particular, $M^{*}=\operatorname{Hom}_{R}(M, R)$ is the algebraic dual of M.
When M, N are topological R-modules, then the R-module of all continuous R-linear maps from M to N is denoted by

Algebraic and topological duals

Let R be a ring and M, N be R-modules.
The R-module of all R-linear maps from M to N is denoted by

$$
\mathcal{H o m}_{R-\operatorname{Mod}}(M, N) .
$$

In particular, $M^{*}=\operatorname{Hom}_{R}(M, R)$ is the algebraic dual of M.
When M, N are topological R-modules, then the R-module of all continuous R-linear maps from M to N is denoted by

$$
\mathcal{H o m}_{R-\mathcal{T o p}_{\text {oMod }}}(M, N) .
$$

Algebraic and topological duals

Let R be a ring and M, N be R-modules.
The R-module of all R-linear maps from M to N is denoted by

$$
\mathcal{H o m}_{R-\operatorname{Mod}}(M, N) .
$$

In particular, $M^{*}=\mathcal{H o m}_{R}(M, R)$ is the algebraic dual of M.
When M, N are topological R-modules, then the R-module of all continuous R-linear maps from M to N is denoted by

$$
\mathcal{H o m}_{R-\mathcal{T o p}_{\text {Mod }}}(M, N) .
$$

Duality bracket

Let R be a ring and X be a set.

Duality bracket

Let R be a ring and X be a set.
The map

$$
\left.\begin{array}{rl}
\langle\cdot \mid \cdot\rangle \quad R^{X} \times R^{(X)} & \rightarrow R \\
& (f, p)
\end{array}\right) \mapsto\langle f \mid p\rangle=\sum_{x \in X} f(x) p(x)
$$

is a duality bracket (it means that $\langle\cdot \mid \cdot\rangle$ is R-bilinear and $\langle f \mid \cdot\rangle$ and $\langle\cdot \mid p\rangle$ have a null kernel for every f, p that is $\langle\cdot \mid \cdot\rangle$ is said to be non-degenerated).

Theorem [Poinsot '10]

Let \mathbb{K} be a separated topological field, and X be a set.

Theorem [Poinsot '10]

Let \mathbb{K} be a separated topological field, and X be a set.
Let us assume that \mathbb{K}^{X} has the product topology.

Theorem [Poinsot '10]

Let \mathbb{K} be a separated topological field, and X be a set.
Let us assume that \mathbb{K}^{X} has the product topology.
Then the topological dual $\left(\mathbb{K}^{X}\right)^{\prime}$ of \mathbb{K}^{X} is isomorphic to $\mathbb{K}^{(X)}$.

Lemma 1

Let R be a ring, and X be a set.

Lemma 1

Let R be a ring, and X be a set.
The map

$$
\begin{aligned}
\Phi: \quad R^{(X)} & \rightarrow\left(R^{X}\right)^{*} \\
p & \mapsto\left(\begin{array}{llll}
\Phi(p): & R^{X} & \rightarrow & R \\
& f & \mapsto & \langle f \mid p\rangle
\end{array}\right)
\end{aligned}
$$

is R-linear and one-to-one.

Proof of Lemma 1 (Injectivity of Φ)

Proof of Lemma 1 (Injectivity of Φ)

Let $p \in \operatorname{ker} \Phi\left(\Phi(p)(f)=0\right.$ for all $\left.f \in R^{X}\right)$.

Proof of Lemma 1 (Injectivity of Φ)

Let $p \in \operatorname{ker} \Phi\left(\Phi(p)(f)=0\right.$ for all $\left.f \in R^{X}\right)$.
So $p(x)=\Phi(p)\left(\delta_{x}\right)=0$ for every $x \in X$.

Lemma 2

Let R be a topological ring, and X be a set. We assume that R^{X} has the product topology.

Lemma 2

Let R be a topological ring, and X be a set. We assume that R^{X} has the product topology.

For all $p \in R^{(X)}, \Phi(p)$ is continuous, i.e., $\Phi(p) \in\left(R^{X}\right)^{\prime}$.

Lemma 2

Let R be a topological ring, and X be a set. We assume that R^{X} has the product topology.

For all $p \in R^{(X)}, \Phi(p)$ is continuous, i.e., $\Phi(p) \in\left(R^{X}\right)^{\prime}$.
(Proof: Obvious.)

Lemma 3

Recall: summability

Let (G, τ) be a separated topological Abelian group. A family $\left(g_{i}\right)_{i \in I}$ of members of G is summable with sum $g \in G$, which is denoted by $\sum g_{i}=g$, if for every open neighbourhood U of zero, there exists a finite subset $J \subseteq I$ such that $\sum_{j \in J} g_{j}-g \in U$.

Lemma 3

Recall: summability

Let (G, τ) be a separated topological Abelian group. A family $\left(g_{i}\right)_{i \in I}$ of members of G is summable with sum $g \in G$, which is denoted by $\sum g_{i}=g$, if for every open neighbourhood U of zero, there exists a finite subset $J \subseteq I$ such that $\sum_{j \in J} g_{j}-g \in U$.

Let R be a separated topological ring, and let us assume that R^{X} has the product topology.

Lemma 3

Recall: summability

Let (G, τ) be a separated topological Abelian group. A family $\left(g_{i}\right)_{i \in I}$ of members of G is summable with sum $g \in G$, which is denoted by $\sum g_{i}=g$, if for every open neighbourhood U of zero, there exists a finite subset $J \subseteq I$ such that $\sum_{j \in J} g_{j}-g \in U$.

Let R be a separated topological ring, and let us assume that R^{X} has the product topology.

For each $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}=\left(\left\langle f \mid \delta_{x}\right\rangle \delta_{x}\right)_{x \in X}$ is summable with sum f,

Lemma 3

Recall: summability

Let (G, τ) be a separated topological Abelian group. A family $\left(g_{i}\right)_{i \in I}$ of members of G is summable with sum $g \in G$, which is denoted by $\sum_{i \in l} g_{i}=g$, if for every open neighbourhood U of zero, there exists a finite subset $J \subseteq I$ such that $\sum_{j \in J} g_{j}-g \in U$.

Let R be a separated topological ring, and let us assume that R^{X} has the product topology.

For each $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}=\left(\left\langle f \mid \delta_{x}\right\rangle \delta_{x}\right)_{x \in X}$ is summable with sum f, that is

$$
f=\sum_{x \in X} f(x) \delta_{x} .
$$

Proof of Lemma 3

It is sufficient to prove that for each $y \in X$, the family $\left(\pi_{y}\left(f(x) \delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\pi_{y}(f)$, where $\pi_{y}: R^{X} \rightarrow R$ is the canonical projection onto R.

Proof of Lemma 3

It is sufficient to prove that for each $y \in X$, the family $\left(\pi_{y}\left(f(x) \delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\pi_{y}(f)$, where $\pi_{y}: R^{X} \rightarrow R$ is the canonical projection onto R.

But this projection is given by $f \mapsto\left\langle f \mid \delta_{y}\right\rangle$.

Proof of Lemma 3

It is sufficient to prove that for each $y \in X$, the family $\left(\pi_{y}\left(f(x) \delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\pi_{y}(f)$, where $\pi_{y}: R^{X} \rightarrow R$ is the canonical projection onto R.

But this projection is given by $f \mapsto\left\langle f \mid \delta_{y}\right\rangle$.
Therefore we need to prove that for each $y \in X$, the family $\left(\left\langle f(x) \delta_{x} \mid \delta_{y}\right\rangle\right)_{x \in X}=\left(f(x) \delta_{y}(x)\right)_{x \in X}$ is summable with sum $f(y)$, which is obvious.

Lemma 4

Under the same assumptions as Lemma 3:

Lemma 4

Under the same assumptions as Lemma 3:
If $\ell \in\left(R^{X}\right)^{\prime}$,
Then the set $Y_{\ell}=\left\{x \in X \mid \ell\left(\delta_{x}\right)\right.$ is invertible in $\left.R\right\}$ is finite.

Lemma 4

Under the same assumptions as Lemma 3:
If $\ell \in\left(R^{X}\right)^{\prime}$,
Then the set $Y_{\ell}=\left\{x \in X \mid \ell\left(\delta_{x}\right)\right.$ is invertible in $\left.R\right\}$ is finite.
We have a direct consequence:
Lemma 5
Let \mathbb{K} be a Hausdorff topological field.
If $\ell \in\left(\mathbb{K}^{X}\right)^{\prime}$, then $\ell\left(\delta_{x}\right)=0$ for all $x \in X$, except a finite number.

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3),

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3), then the family $\left(f(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\ell(f)$.

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3), then the family $\left(f(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell}: X \rightarrow R$ by $f_{\ell}(x)=\ell\left(\delta_{x}\right)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x)=0$ otherwise.

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3), then the family $\left(f(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell}: X \rightarrow R$ by $f_{\ell}(x)=\ell\left(\delta_{x}\right)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x)=0$ otherwise.

In particular, the family $\left(f_{\ell}(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable with sum $\ell\left(f_{\ell}\right)$.

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3), then the family $\left(f(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell}: X \rightarrow R$ by $f_{\ell}(x)=\ell\left(\delta_{x}\right)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x)=0$ otherwise.

In particular, the family $\left(f_{\ell}(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable with sum $\ell\left(f_{\ell}\right)$.
From general properties of summability we know that for every open neighbourhood U of 0 in $R, f_{\ell}(x) \ell\left(\delta_{x}\right) \in U$ for all, except finitely many, $x \in X$.

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3), then the family $\left(f(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell}: X \rightarrow R$ by $f_{\ell}(x)=\ell\left(\delta_{x}\right)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x)=0$ otherwise.

In particular, the family $\left(f_{\ell}(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable with sum $\ell\left(f_{\ell}\right)$.
From general properties of summability we know that for every open neighbourhood U of 0 in $R, f_{\ell}(x) \ell\left(\delta_{x}\right) \in U$ for all, except finitely many, $x \in X$.

Since R is assumed Hausdorff,

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3), then the family $\left(f(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell}: X \rightarrow R$ by $f_{\ell}(x)=\ell\left(\delta_{x}\right)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x)=0$ otherwise.

In particular, the family $\left(f_{\ell}(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable with sum $\ell\left(f_{\ell}\right)$.
From general properties of summability we know that for every open neighbourhood U of 0 in $R, f_{\ell}(x) \ell\left(\delta_{x}\right) \in U$ for all, except finitely many, $x \in X$.

Since R is assumed Hausdorff, there is an open neighbourhood U of zero such that $1 \notin U$.

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3), then the family $\left(f(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell}: X \rightarrow R$ by $f_{\ell}(x)=\ell\left(\delta_{x}\right)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x)=0$ otherwise.

In particular, the family $\left(f_{\ell}(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable with sum $\ell\left(f_{\ell}\right)$.
From general properties of summability we know that for every open neighbourhood U of 0 in $R, f_{\ell}(x) \ell\left(\delta_{x}\right) \in U$ for all, except finitely many, $x \in X$.

Since R is assumed Hausdorff, there is an open neighbourhood U of zero such that $1 \notin U$.

Because $1=f_{\ell}(x) \ell\left(\delta_{x}\right) \notin U$ for all $x \in Y_{\ell}$,

Proof of Lemma 4

Because ℓ is a continuous linear form, and since for every $f \in R^{X}$, the family $\left(f(x) \delta_{x}\right)_{x \in X}$ is summable with sum f (according to lemma 3), then the family $\left(f(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell}: X \rightarrow R$ by $f_{\ell}(x)=\ell\left(\delta_{x}\right)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x)=0$ otherwise.

In particular, the family $\left(f_{\ell}(x) \ell\left(\delta_{x}\right)\right)_{x \in X}$ is summable with sum $\ell\left(f_{\ell}\right)$.
From general properties of summability we know that for every open neighbourhood U of 0 in $R, f_{\ell}(x) \ell\left(\delta_{x}\right) \in U$ for all, except finitely many, $x \in X$.

Since R is assumed Hausdorff, there is an open neighbourhood U of zero such that $1 \notin U$.

Because $1=f_{\ell}(x) \ell\left(\delta_{x}\right) \notin U$ for all $x \in Y_{\ell}$, if Y_{ℓ} is not finite, this leads to a contradiction.

Lemma 6

Under the same assumptions as Lemma 5,

$$
\Phi: \mathbb{K}^{(X)} \rightarrow\left(\mathbb{K}^{X}\right)^{\prime}
$$

is onto.

Proof of Lemma 6

Let $\ell \in\left(\mathbb{K}^{X}\right)^{\prime}$ be fixed, and let us define $p_{\ell}: X \rightarrow \mathbb{K}$ by $p_{\ell}(x)=\ell\left(\delta_{X}\right)$.

Proof of Lemma 6

Let $\ell \in\left(\mathbb{K}^{X}\right)^{\prime}$ be fixed, and let us define $p_{\ell}: X \rightarrow \mathbb{K}$ by $p_{\ell}(x)=\ell\left(\delta_{X}\right)$.
According to Lemma $5, p_{\ell} \in \mathbb{K}^{(X)}$.

Proof of Lemma 6

Let $\ell \in\left(\mathbb{K}^{X}\right)^{\prime}$ be fixed, and let us define $p_{\ell}: X \rightarrow \mathbb{K}$ by $p_{\ell}(x)=\ell\left(\delta_{X}\right)$.
According to Lemma $5, p_{\ell} \in \mathbb{K}^{(X)}$.
Let $f \in \mathbb{K}^{X}$. We have

$$
\Phi\left(p_{\ell}\right)(f)=\left\langle f \mid p_{\ell}\right\rangle=\sum_{x \in X} f(x) p_{\ell}(x)=\sum_{x \in X} f(x) \ell\left(\delta_{x}\right)=\ell(f) .
$$

Theorem
Let \mathbb{K} be a separated topological field, and X be a set.

Theorem
Let \mathbb{K} be a separated topological field, and X be a set.
Let us assume that \mathbb{K}^{X} has the product topology.

Theorem

Let \mathbb{K} be a separated topological field, and X be a set.
Let us assume that \mathbb{K}^{X} has the product topology.
The topological dual $\left(\mathbb{K}^{X}\right)^{\prime}$ of \mathbb{K}^{X} is isomorphic to $\mathbb{K}^{(X)}$.

Proof of the Theorem

Proof of the Theorem

Lemma 1 (Φ is one-to-one),

Proof of the Theorem

Lemma 1 (Φ is one-to-one),
Lemma $2\left(\operatorname{Im}(\Phi) \subseteq\left(\mathbb{K}^{X}\right)^{\prime}\right)$,

Proof of the Theorem

Lemma 1 (Φ is one-to-one),
Lemma $2\left(\operatorname{Im}(\Phi) \subseteq\left(\mathbb{K}^{X}\right)^{\prime}\right)$,
Lemma 6 (Φ is onto).

Table of contents

(1) Topological algebraic structures
(2) Topological dual of R^{X}
(3) Consequences on infinite matrices

Let $\phi \in \mathcal{H o m}_{\mathbb{K}-V_{e c t}}\left(\mathbb{K}^{X}, \mathbb{K}^{Y}\right)$.

Let $\phi \in \mathcal{H o m}_{\mathbb{K}-\mathcal{V e c t}}\left(\mathbb{K}^{X}, \mathbb{K}^{Y}\right)$.
We define the matrix $\mathcal{M}_{\phi} \in \mathbb{K}^{Y \times X}$ of ϕ by

$$
\mathcal{M}_{\phi}(y, x)=\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle
$$

Let $\phi \in \mathcal{H o m}_{\mathbb{K}-\mathcal{V e c t}}\left(\mathbb{K}^{X}, \mathbb{K}^{Y}\right)$.
We define the matrix $\mathcal{M}_{\phi} \in \mathbb{K}^{Y \times X}$ of ϕ by

$$
\mathcal{M}_{\phi}(y, x)=\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle .
$$

Remark

For infinite-dimensional spaces, the \mathbb{K}-linear map $\phi \mapsto \mathcal{M}_{\phi}$ is not one-to-one.

Let us assume that $X=Y$ is infinite.

Let us assume that $X=Y$ is infinite.
The family $\left(\delta_{x}\right)_{x \in X}$ is \mathbb{K}-linearly independent (since it is an algebraic basis of $\left.\mathbb{K}^{(X)}\right)$.

Let us assume that $X=Y$ is infinite.
The family $\left(\delta_{x}\right)_{x \in X}$ is \mathbb{K}-linearly independent (since it is an algebraic basis of $\left.\mathbb{K}^{(X)}\right)$.

According to the axiom of choice, $\left(\delta_{x}\right)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^{X}.

Let us assume that $X=Y$ is infinite.
The family $\left(\delta_{x}\right)_{x \in X}$ is \mathbb{K}-linearly independent (since it is an algebraic basis of $\left.\mathbb{K}^{(X)}\right)$.

According to the axiom of choice, $\left(\delta_{x}\right)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^{X}.

Let V be the \mathbb{K}-subvector space of \mathbb{K}^{X} generated by $\mathcal{B} \backslash\left\{\delta_{x}: x \in X\right\} \neq \emptyset$.

Let us assume that $X=Y$ is infinite.
The family $\left(\delta_{x}\right)_{x \in X}$ is \mathbb{K}-linearly independent (since it is an algebraic basis of $\left.\mathbb{K}^{(X)}\right)$.

According to the axiom of choice, $\left(\delta_{x}\right)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^{X}.

Let V be the \mathbb{K}-subvector space of \mathbb{K}^{X} generated by $\mathcal{B} \backslash\left\{\delta_{x}: x \in X\right\} \neq \emptyset$.
It is clear that $\mathbb{K}^{X}=\mathbb{K}^{(X)} \oplus V$,

Let us assume that $X=Y$ is infinite.
The family $\left(\delta_{x}\right)_{x \in X}$ is \mathbb{K}-linearly independent (since it is an algebraic basis of $\left.\mathbb{K}^{(X)}\right)$.

According to the axiom of choice, $\left(\delta_{x}\right)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^{X}.

Let V be the \mathbb{K}-subvector space of \mathbb{K}^{X} generated by $\mathcal{B} \backslash\left\{\delta_{x}: x \in X\right\} \neq \emptyset$.
It is clear that $\mathbb{K}^{X}=\mathbb{K}^{(X)} \oplus V$, and let us consider $\pi_{V}: \mathbb{K}^{X} \rightarrow \mathbb{K}^{X}$ the projection along $\mathbb{K}^{(X)}$ onto V.

Let us assume that $X=Y$ is infinite.
The family $\left(\delta_{x}\right)_{x \in X}$ is \mathbb{K}-linearly independent (since it is an algebraic basis of $\left.\mathbb{K}^{(X)}\right)$.

According to the axiom of choice, $\left(\delta_{x}\right)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^{X}.

Let V be the \mathbb{K}-subvector space of \mathbb{K}^{X} generated by $\mathcal{B} \backslash\left\{\delta_{x}: x \in X\right\} \neq \emptyset$.
It is clear that $\mathbb{K}^{X}=\mathbb{K}^{(X)} \oplus V$, and let us consider $\pi_{V}: \mathbb{K}^{X} \rightarrow \mathbb{K}^{X}$ the projection along $\mathbb{K}^{(X)}$ onto V.

Since $\mathbb{K}^{(X)}=\operatorname{ker} \pi_{V}$, for every $x, y \in X,\left\langle\pi_{V}\left(\delta_{y}\right) \mid \delta_{X}\right\rangle=0$ so that $\mathcal{M}_{\pi_{V}}$ is the null matrix, while $\pi_{V} \neq 0$.

Some definitions

A matrix $M \in R^{Y \times X}$ is said to be row-finite if for every $y \in Y$, the map $M(y, \cdot): x \in X \rightarrow M(y, x) \in R$ is finitely supported, that is $M(y, \cdot) \in R^{(X)}$.

Some definitions

A matrix $M \in R^{Y \times X}$ is said to be row-finite if for every $y \in Y$, the map $M(y, \cdot): x \in X \rightarrow M(y, x) \in R$ is finitely supported, that is $M(y, \cdot) \in R^{(X)}$.

The sub-R-module of $R^{Y \times X}$ of all row-finite matrices is denoted by

$$
R^{Y \times(X)}
$$

Some definitions

A matrix $M \in R^{Y \times X}$ is said to be row-finite if for every $y \in Y$, the map $M(y, \cdot): x \in X \rightarrow M(y, x) \in R$ is finitely supported, that is $M(y, \cdot) \in R^{(X)}$.

The sub-R-module of $R^{Y \times X}$ of all row-finite matrices is denoted by

$$
R^{Y \times(X)}
$$

Convention

In what follows, \mathbb{K} denotes a Hausdorff topological field and \mathbb{K}^{Z} has the product topology for every set Z.

A first result

Lemma 7

For every $\phi \in \mathcal{H o m}_{\mathbb{K}-\mathcal{T o p}_{\text {opect }}}\left(\mathbb{K}^{X}, \mathbb{K}^{Y}\right), \mathcal{M}_{\phi}$ is row-finite, that is $\operatorname{Im}(\mathcal{M}) \subseteq \mathbb{K}^{Y \times(X)}$.

Proof of Lemma 7

Proof of Lemma 7

For every $y \in Y$, the map $f \in \mathbb{K}^{X} \mapsto\left\langle\phi(f) \mid \delta_{y}\right\rangle \in \mathbb{K}$ belongs to $\left(\mathbb{K}^{X}\right)^{\prime}$ by composition of continuous maps.

Proof of Lemma 7

For every $y \in Y$, the map $f \in \mathbb{K}^{X} \mapsto\left\langle\phi(f) \mid \delta_{y}\right\rangle \in \mathbb{K}$ belongs to $\left(\mathbb{K}^{X}\right)^{\prime}$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi, y} \in \mathbb{K}^{(X)}$ such that $\left\langle f \mid p_{\phi, y}\right\rangle=\left\langle\phi(f) \mid \delta_{y}\right\rangle$.

Proof of Lemma 7

For every $y \in Y$, the map $f \in \mathbb{K}^{X} \mapsto\left\langle\phi(f) \mid \delta_{y}\right\rangle \in \mathbb{K}$ belongs to $\left(\mathbb{K}^{X}\right)^{\prime}$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi, y} \in \mathbb{K}^{(X)}$ such that $\left\langle f \mid p_{\phi, y}\right\rangle=\left\langle\phi(f) \mid \delta_{y}\right\rangle$.

In particular, for every $x \in X$,
$p_{\phi, y}(x)$

Proof of Lemma 7

For every $y \in Y$, the map $f \in \mathbb{K}^{X} \mapsto\left\langle\phi(f) \mid \delta_{y}\right\rangle \in \mathbb{K}$ belongs to $\left(\mathbb{K}^{X}\right)^{\prime}$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi, y} \in \mathbb{K}^{(X)}$ such that $\left\langle f \mid p_{\phi, y}\right\rangle=\left\langle\phi(f) \mid \delta_{y}\right\rangle$.

In particular, for every $x \in X$,
$p_{\phi, y}(x)=\sum_{z \in X} p_{\phi, y}(z) \delta_{x}(z)$

Proof of Lemma 7

For every $y \in Y$, the map $f \in \mathbb{K}^{X} \mapsto\left\langle\phi(f) \mid \delta_{y}\right\rangle \in \mathbb{K}$ belongs to $\left(\mathbb{K}^{X}\right)^{\prime}$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi, y} \in \mathbb{K}^{(X)}$ such that $\left\langle f \mid p_{\phi, y}\right\rangle=\left\langle\phi(f) \mid \delta_{y}\right\rangle$.

In particular, for every $x \in X$,
$p_{\phi, y}(x)=\sum_{z \in X} p_{\phi, y}(z) \delta_{x}(z)=\left\langle\delta_{x} \mid p_{\phi, y}\right\rangle$

Proof of Lemma 7

Let $\phi \in \mathcal{H o m}_{\mathbb{K} \text {-TopVect }}\left(\mathbb{K}^{X}, \mathbb{K}^{Y}\right)$ be given.
For every $y \in Y$, the map $f \in \mathbb{K}^{X} \mapsto\left\langle\phi(f) \mid \delta_{y}\right\rangle \in \mathbb{K}$ belongs to $\left(\mathbb{K}^{X}\right)^{\prime}$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi, y} \in \mathbb{K}^{(X)}$ such that $\left\langle f \mid p_{\phi, y}\right\rangle=\left\langle\phi(f) \mid \delta_{y}\right\rangle$.

In particular, for every $x \in X$,
$p_{\phi, y}(x)=\sum_{z \in X} p_{\phi, y}(z) \delta_{x}(z)=\left\langle\delta_{x} \mid p_{\phi, y}\right\rangle=\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle$

Proof of Lemma 7

Let $\phi \in \mathcal{H o m}_{\mathbb{K} \text {-TopVect }}\left(\mathbb{K}^{X}, \mathbb{K}^{Y}\right)$ be given.
For every $y \in Y$, the map $f \in \mathbb{K}^{X} \mapsto\left\langle\phi(f) \mid \delta_{y}\right\rangle \in \mathbb{K}$ belongs to $\left(\mathbb{K}^{X}\right)^{\prime}$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi, y} \in \mathbb{K}^{(X)}$ such that $\left\langle f \mid p_{\phi, y}\right\rangle=\left\langle\phi(f) \mid \delta_{y}\right\rangle$.

In particular, for every $x \in X$,
$p_{\phi, y}(x)=\sum_{z \in X} p_{\phi, y}(z) \delta_{x}(z)=\left\langle\delta_{x} \mid p_{\phi, y}\right\rangle=\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle=\mathcal{M}_{\phi}(y, x)$.

Proof of Lemma 7

Let $\phi \in \mathcal{H o m}_{\mathbb{K} \text {-TopVect }}\left(\mathbb{K}^{X}, \mathbb{K}^{Y}\right)$ be given.
For every $y \in Y$, the map $f \in \mathbb{K}^{X} \mapsto\left\langle\phi(f) \mid \delta_{y}\right\rangle \in \mathbb{K}$ belongs to $\left(\mathbb{K}^{X}\right)^{\prime}$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi, y} \in \mathbb{K}^{(X)}$ such that $\left\langle f \mid p_{\phi, y}\right\rangle=\left\langle\phi(f) \mid \delta_{y}\right\rangle$.

In particular, for every $x \in X$,
$p_{\phi, y}(x)=\sum_{z \in X} p_{\phi, y}(z) \delta_{x}(z)=\left\langle\delta_{x} \mid p_{\phi, y}\right\rangle=\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle=\mathcal{M}_{\phi}(y, x)$.
Therefore $\operatorname{Supp}\left(p_{\phi, y}\right)=\left\{x \in X: \mathcal{M}_{\phi}(y, x) \neq 0\right\}$ so that $\mathscr{M}_{\phi} \in \mathbb{K}^{Y \times(X)}$.

Lemma 8

Proof of Lemma 8

Proof of Lemma 8

Therefore for every $(y, x) \in Y \times X,\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle=0$.

Proof of Lemma 8

Therefore for every $(y, x) \in Y \times X,\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle=0$.
The previous equality holds for every $y \in Y$ so that $\phi\left(\delta_{x}\right)=0$ for every $x \in X$ (since $\langle\cdot \mid \cdot\rangle$ is non-degenerated).

Proof of Lemma 8

Therefore for every $(y, x) \in Y \times X,\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle=0$.
The previous equality holds for every $y \in Y$ so that $\phi\left(\delta_{x}\right)=0$ for every $x \in X$ (since $\langle\cdot \mid \cdot\rangle$ is non-degenerated).

Therefore ϕ is the null linear map on $\mathbb{K}^{(X)}$.

Proof of Lemma 8

Therefore for every $(y, x) \in Y \times X,\left\langle\phi\left(\delta_{x}\right) \mid \delta_{y}\right\rangle=0$.
The previous equality holds for every $y \in Y$ so that $\phi\left(\delta_{x}\right)=0$ for every $x \in X$ (since $\langle\cdot \mid \cdot\rangle$ is non-degenerated).

Therefore ϕ is the null linear map on $\mathbb{K}^{(X)}$.
Since ϕ is assumed to be continuous, and $\mathbb{K}^{(X)}$ is dense in $\mathbb{K}^{X}, \phi=0$.

Lemma 9

Lemma 9

(Proof: It is an easy exercice.)

From lemmas 7, 8 and 9, we easily obtain the following result:

From lemmas 7, 8 and 9, we easily obtain the following result:

Proposition

From lemmas 7, 8 and 9, we easily obtain the following result:

Proposition

 we have

$$
\mathcal{M}_{\psi \circ \phi}=\mathscr{M}_{\psi} \mathcal{M}_{\phi}
$$

From lemmas 7, 8 and 9, we easily obtain the following result:

Proposition

$\mathcal{H o m}_{\mathbb{K} \text { - } \text { orp }_{\text {ect }}}\left(\mathbb{K}^{X}, \mathbb{K}^{Y}\right)$ and $\mathbb{K}^{Y \times(X)}$ are isomorphic \mathbb{K}-vector spaces,
 we have

$$
\mathcal{M}_{\psi \circ \phi}=\mathscr{M}_{\psi} \mathcal{M}_{\phi}
$$

In particular, \mathcal{M} is an isomorphism of algebras from $\operatorname{End}_{\mathbb{K}-\text { Top } \mathcal{V e c t}\left(\mathbb{K}^{X}\right) \text { into }}$ $\mathbb{K}^{X \times(X)}$ 。

Conclusion

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$),

Conclusion

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite,

Conclusion

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K}.

Conclusion

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K}.

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K}, then it is continuous for all of them.

Conclusion

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), then \mathscr{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K}.

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K}, then it is continuous for all of them.

Conversely, if a matrix $M \in \mathbb{K}^{Y \times X}$ is row-finite, then the linear map $\psi_{M}: \mathbb{K}^{X} \rightarrow \mathbb{K}^{Y}$ given by $\psi_{M}(f)(y)=\sum_{x \in X} M(y, x) f(x)$ is continuous.

Conclusion

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), then \mathscr{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K}.

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K}, then it is continuous for all of them.

Conversely, if a matrix $M \in \mathbb{K}^{Y \times X}$ is row-finite, then the linear map $\psi_{M}: \mathbb{K}^{X} \rightarrow \mathbb{K}^{Y}$ given by $\psi_{M}(f)(y)=\sum_{x \in X} M(y, x) f(x)$ is continuous.

Note however that it is not true that \mathcal{M}_{ϕ} is row-finite implies that the linear map ϕ is continuous.

Conclusion

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), then \mathscr{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K}.

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K}, then it is continuous for all of them.

Conversely, if a matrix $M \in \mathbb{K}^{Y \times X}$ is row-finite, then the linear map $\psi_{M}: \mathbb{K}^{X} \rightarrow \mathbb{K}^{Y}$ given by $\psi_{M}(f)(y)=\sum_{x \in X} M(y, x) f(x)$ is continuous.

Note however that it is not true that \mathcal{M}_{ϕ} is row-finite implies that the linear $\operatorname{map} \phi$ is continuous. Because it is not always the case that $\phi=\psi_{\mathcal{M}_{\phi}}$.

Conclusion

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K}.

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K}, then it is continuous for all of them.

Conversely, if a matrix $M \in \mathbb{K}^{Y \times X}$ is row-finite, then the linear map $\psi_{M}: \mathbb{K}^{X} \rightarrow \mathbb{K}^{Y}$ given by $\psi_{M}(f)(y)=\sum_{x \in X} M(y, x) f(x)$ is continuous.

Note however that it is not true that \mathcal{M}_{ϕ} is row-finite implies that the linear $\operatorname{map} \phi$ is continuous. Because it is not always the case that $\phi=\psi_{\mathcal{M}_{\phi}}$. For instance $\mathcal{M}_{\pi_{V}}=0$ is row-finite but π_{V} is not continuous (if it was the case, by injectivity of $\left.\mathcal{M}, \pi_{V}=0\right)$.

