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Goal of this talk

Let R be any commutative ring with a unit.

Let X ,Y be any sets.
To each R-linear map φ : RX → RY is associated a « matrix » Mφ with
entries in Y × X and coefficients in R whose (y , x)-entry is given by

Mφ(y , x) = (φ(δx))(y)

where δx ∈ RX the Dirac mass at x .

It is similar to the decomposition of a linear map in some bases. Note
however that when X is infinite, then (δx)x∈X is not an algebraic basis for
RX .
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Goal of this talk

A matrix M with Y × X entries is said to be row-finite when for every
y ∈ Y , there are only finitely many non-zero entries M(y , x).

When X = Y = N, a N× N-matrix M is row-finite if for every i ∈ N, the
ith row (M(i , j))j∈N is finite.
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Goal of this talk

Now, let us assume that R is a Hausdorff topological field, and that RZ

has the product topology for every set Z .

The main goal of this talk is to prove the following result:

Theorem
If a linear map φ : RX → RY is continuous, then its matrix Mφ is row-finite.
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Goal of this talk

- We note that the previous theorem holds for every Hausdorff field
topology on R .

- The definition of Mφ does not depend on the topology of R .

Therefore, if Mφ is row-finite, then φ is continuous (with respect to the
product topologies) for all Hausdorff field topologies on R .

In other terms, if φ is continuous for the product topologies relative to one
given Hausdorff field topology on R , then φ is continuous for all Hausdorff
field topologies on R .

Actually, this follows from a deeper result: for all Hausdorff field topologies
on R , the topological duals of RX (RX has the product topology) are the
same.
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Convention

By convention, in this talk the rings are assumed to be unitary and
commutative.

The modules are also assumed to be unitary.
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Product topology

Let (Ei , τi )i∈I be any family of topological spaces.

The product topology on the set-theoretic product
∏
i∈I

Ei is the coarset

topology that makes continuous all canonical projections πj :
∏
i∈I

Ei → Ej .

It is characterized by the following property:

Let (X , τ) be a topological space, and f : X →
∏
i∈I

Ei . Then, f is

continuous if, and only if, πj ◦ f : X → Ej is continuous for each j ∈ I .

This topology is Hausdorff if, and only if, each space (E , τi ) is separated.
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Example

Let (E , τ) be a topological space, and X be a set.

Then EX ∼=
∏
x∈X

Ex where Ex = E for every x ∈ X .

The product topology on EX is the coarset topology that makes
continuous the projections f 7→ f (x), x ∈ X .

We recover the topology of simple convergence on EX .
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Topological rings, fields

Let R be a ring, and τ be a topology on R .

We say that (R, τ) is a topological ring if the ring operations (addition,
opposite, multiplication) of R are continuous. (In particular, (R,+, 0) is a
topological Abelian group.)

If K is a field, and τ is a ring topology on K, we say that (K, τ) is a
topological field when (K∗,×, 1) is a topological group for the subspace
topology.

For instance any ring (or field) is a topological ring (or field) with either
the trivial or the discrete topologies.
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Topological modules and vector spaces

Let R be a topological ring, M be an R-module, and τ be a topology on M.

We say that (M, τ) is a topological R-module if (M,+, 0) is a topological
Abelian group and multiplication by scalars is continuous.

When R is a topological field, then (M, τ) is said to be a topological
R-vector space.
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Example

Let R be a topological ring, and X be a set.

The R-module RX of all maps from X to R with the product topology is a
topological R-module.
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Let R be a ring and X be a set.

The support of a map f ∈ RX is defined to be the set

Supp(f ) = { x ∈ X : f (x) 6= 0 } .

The R-module of all maps with finite support is denoted by R(X ).

Let K be a Hausdorff topological field and let us assume that KX has the
product topology.

In this part we prove that the topological dual of KX is isomorphic (as a
K-vector space) to K(X ).
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Algebraic and topological duals

Let R be a ring and M,N be R-modules.

The R-module of all R-linear maps from M to N is denoted by

HomR-Mod (M,N) .

In particular, M∗ = HomR(M,R) is the algebraic dual of M.

When M,N are topological R-modules, then the R-module of all
continuous R-linear maps from M to N is denoted by

HomR-TopMod (M,N) .

In particular, M ′ = HomR-TopMod (M,R) is the topological dual of M.
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Duality bracket

Let R be a ring and X be a set.

The map

〈· | ·〉 RX × R(X ) → R

(f , p) 7→ 〈f | p〉 =
∑
x∈X

f (x)p(x)

is a duality bracket (it means that 〈· | ·〉 is R-bilinear and 〈f | ·〉 and 〈· | p〉
have a null kernel for every f , p that is 〈· | ·〉 is said to be non-degenerated).
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Theorem [Poinsot ’10]

Let K be a separated topological field, and X be a set.

Let us assume that KX has the product topology.

Then the topological dual (KX )′ of KX is isomorphic to K(X ).
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Lemma 1

Let R be a ring, and X be a set.

The map

Φ: R(X ) → (RX )∗

p 7→

(
Φ(p) : RX → R

f 7→ 〈f | p〉

)

is R-linear and one-to-one.
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Proof of Lemma 1 (Injectivity of Φ)

Let p ∈ kerΦ (Φ(p)(f ) = 0 for all f ∈ RX ).

So p(x) = Φ(p)(δx) = 0 for every x ∈ X .
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Lemma 2

Let R be a topological ring, and X be a set. We assume that RX has the
product topology.

For all p ∈ R(X ), Φ(p) is continuous, i.e., Φ(p) ∈ (RX )′.

(Proof: Obvious.)
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Lemma 3

Recall: summability
Let (G , τ) be a separated topological Abelian group. A family (gi )i∈I of
members of G is summable with sum g ∈ G , which is denoted by∑
i∈I

gi = g , if for every open neighbourhood U of zero, there exists a finite

subset J ⊆ I such that
∑
j∈J

gj − g ∈ U.

Let R be a separated topological ring, and let us assume that RX has the
product topology.

For each f ∈ RX , the family (f (x)δx)x∈X = (〈f | δx〉δx)x∈X is summable
with sum f , that is

f =
∑
x∈X

f (x)δx .
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Proof of Lemma 3

It is sufficient to prove that for each y ∈ X , the family (πy (f (x)δx))x∈X is
summable in R , with sum πy (f ), where πy : RX → R is the canonical
projection onto R .

But this projection is given by f 7→ 〈f | δy 〉.

Therefore we need to prove that for each y ∈ X , the family
(〈f (x)δx | δy 〉)x∈X = (f (x)δy (x))x∈X is summable with sum f (y), which is
obvious.
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Lemma 4

Under the same assumptions as Lemma 3:

If ` ∈ (RX )′,

Then the set Y` = { x ∈ X | `(δx) is invertible in R } is finite.

We have a direct consequence:

Lemma 5
Let K be a Hausdorff topological field.

If ` ∈ (KX )′, then `(δx) = 0 for all x ∈ X , except a finite number.
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Proof of Lemma 4
Because ` is a continuous linear form, and since for every f ∈ RX , the
family (f (x)δx)x∈X is summable with sum f (according to lemma 3),

then
the family (f (x)`(δx))x∈X is summable in R , with sum `(f ).

Let us define f` : X → R by f`(x) = `(δx)−1 if x ∈ Y`, and f`(x) = 0
otherwise.

In particular, the family (f`(x)`(δx))x∈X is summable with sum `(f`).

From general properties of summability we know that for every open
neighbourhood U of 0 in R , f`(x)`(δx) ∈ U for all, except finitely many,
x ∈ X .

Since R is assumed Hausdorff, there is an open neighbourhood U of zero
such that 1 6∈ U.

Because 1 = f`(x)`(δx) 6∈ U for all x ∈ Y`, if Y` is not finite, this leads to a
contradiction.
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Lemma 6

Under the same assumptions as Lemma 5,

Φ: K(X ) → (KX )′

is onto.
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Proof of Lemma 6

Let ` ∈ (KX )′ be fixed, and let us define p` : X → K by p`(x) = `(δx).

According to Lemma 5, p` ∈ K(X ).

Let f ∈ KX . We have

Φ(p`)(f ) = 〈f | p`〉 =
∑
x∈X

f (x)p`(x) =
∑
x∈X

f (x)`(δx) = `(f ) .
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Theorem
Let K be a separated topological field, and X be a set.

Let us assume that KX has the product topology.

The topological dual (KX )′ of KX is isomorphic to K(X ).
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Proof of the Theorem

Lemma 1 (Φ is one-to-one),

Lemma 2 (Im(Φ) ⊆ (KX )′),

Lemma 6 (Φ is onto).
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Let φ ∈ HomK-Vect (KX ,KY ).

We define the matrix Mφ ∈ KY×X of φ by

Mφ(y , x) = 〈φ(δx) | δy 〉 .

Remark
For infinite-dimensional spaces, the K-linear map φ 7→ Mφ is not
one-to-one.
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Let us assume that X = Y is infinite.

The family (δx)x∈X is K-linearly independent (since it is an algebraic basis
of K(X )).

According to the axiom of choice, (δx)x∈X may be extended to an algebraic
basis B of KX .

Let V be the K-subvector space of KX generated by B \ { δx : x ∈ X } 6= ∅.

It is clear that KX = K(X ) ⊕ V , and let us consider πV : KX → KX the
projection along K(X ) onto V .

Since K(X ) = ker πV , for every x , y ∈ X , 〈πV (δy ) | δX 〉 = 0 so that MπV is
the null matrix, while πV 6= 0.
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Some definitions

A matrix M ∈ RY×X is said to be row-finite if for every y ∈ Y , the map
M(y , ·) : x ∈ X → M(y , x) ∈ R is finitely supported, that is
M(y , ·) ∈ R(X ).

The sub-R-module of RY×X of all row-finite matrices is denoted by

RY×(X ) .

Convention
In what follows, K denotes a Hausdorff topological field and KZ has the
product topology for every set Z .
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A first result

Lemma 7
For every φ ∈ HomK-TopVect (KX ,KY ), Mφ is row-finite, that is
Im(M ) ⊆ KY×(X ).
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Proof of Lemma 7

Let φ ∈ HomK-TopVect (KX ,KY ) be given.

For every y ∈ Y , the map f ∈ KX 7→ 〈φ(f ) | δy 〉 ∈ K belongs to (KX )′ by
composition of continuous maps.

According to the previous theorem, there exists a unique pφ,y ∈ K(X ) such
that 〈f | pφ,y 〉 = 〈φ(f ) | δy 〉.

In particular, for every x ∈ X ,
pφ,y (x) =

∑
z∈X

pφ,y (z)δx(z) = 〈δx | pφ,y 〉 = 〈φ(δx) | δy 〉 = Mφ(y , x).

Therefore Supp(pφ,y ) = { x ∈ X : Mφ(y , x) 6= 0 } so that Mφ ∈ KY×(X ).
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pφ,y (z)δx(z) = 〈δx | pφ,y 〉 = 〈φ(δx) | δy 〉 = Mφ(y , x).

Therefore Supp(pφ,y ) = { x ∈ X : Mφ(y , x) 6= 0 } so that Mφ ∈ KY×(X ).

35 / 40



Proof of Lemma 7

Let φ ∈ HomK-TopVect (KX ,KY ) be given.

For every y ∈ Y , the map f ∈ KX 7→ 〈φ(f ) | δy 〉 ∈ K belongs to (KX )′ by
composition of continuous maps.

According to the previous theorem, there exists a unique pφ,y ∈ K(X ) such
that 〈f | pφ,y 〉 = 〈φ(f ) | δy 〉.

In particular, for every x ∈ X ,
pφ,y (x) =

∑
z∈X

pφ,y (z)δx(z) = 〈δx | pφ,y 〉 = 〈φ(δx) | δy 〉 = Mφ(y , x).

Therefore Supp(pφ,y ) = { x ∈ X : Mφ(y , x) 6= 0 } so that Mφ ∈ KY×(X ).

35 / 40



Lemma 8
The map M : φ ∈ HomK-TopVect (KX ,KY ) 7→ Mφ ∈ KY×(X ) is one-to-one.
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Proof of Lemma 8

Let φ ∈ HomK-TopVect (KX ,KY ) such that Mφ = 0.

Therefore for every (y , x) ∈ Y × X , 〈φ(δx) | δy 〉 = 0.

The previous equality holds for every y ∈ Y so that φ(δx) = 0 for every
x ∈ X (since 〈· | ·〉 is non-degenerated).

Therefore φ is the null linear map on K(X ).

Since φ is assumed to be continuous, and K(X ) is dense in KX , φ = 0.
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Lemma 9
The map M : φ ∈ HomK-TopVect (KX ,KY ) 7→ Mφ ∈ KY×(X ) is onto.

(Proof: It is an easy exercice.)
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From lemmas 7, 8 and 9, we easily obtain the following result:

Proposition

HomK-TopVect (KX ,KY ) and KY×(X ) are isomorphic K-vector spaces,

and for every φ ∈ HomK-TopVect (KX ,KY ), and ψ ∈ HomK-TopVect (KY ,KZ ),
we have

Mψ◦φ = MψMφ .

In particular, M is an isomorphism of algebras from End K-TopVect (KX ) into
KX×(X ).

39 / 40



From lemmas 7, 8 and 9, we easily obtain the following result:

Proposition

HomK-TopVect (KX ,KY ) and KY×(X ) are isomorphic K-vector spaces,

and for every φ ∈ HomK-TopVect (KX ,KY ), and ψ ∈ HomK-TopVect (KY ,KZ ),
we have

Mψ◦φ = MψMφ .

In particular, M is an isomorphism of algebras from End K-TopVect (KX ) into
KX×(X ).

39 / 40



From lemmas 7, 8 and 9, we easily obtain the following result:

Proposition

HomK-TopVect (KX ,KY ) and KY×(X ) are isomorphic K-vector spaces,

and for every φ ∈ HomK-TopVect (KX ,KY ), and ψ ∈ HomK-TopVect (KY ,KZ ),
we have

Mψ◦φ = MψMφ .

In particular, M is an isomorphism of algebras from End K-TopVect (KX ) into
KX×(X ).

39 / 40



From lemmas 7, 8 and 9, we easily obtain the following result:

Proposition

HomK-TopVect (KX ,KY ) and KY×(X ) are isomorphic K-vector spaces,

and for every φ ∈ HomK-TopVect (KX ,KY ), and ψ ∈ HomK-TopVect (KY ,KZ ),
we have

Mψ◦φ = MψMφ .

In particular, M is an isomorphism of algebras from End K-TopVect (KX ) into
KX×(X ).

39 / 40



Conclusion

If one proves that φ is continuous for a fixed separated topology on K (for
instance the discrete topology or the usual topologies for K ∈ {R,C }),

then Mφ is row-finite, and φ is continuous with respect to all Hausdorff
field topologies on K.

In other terms if φ is continuous for one Hausdorff topology on K, then it
is continuous for all of them.

Conversely, if a matrix M ∈ KY×X is row-finite, then the linear map
ψM : KX → KY given by ψM(f )(y) =

∑
x∈X

M(y , x)f (x) is continuous.

Note however that it is not true that Mφ is row-finite implies that the linear
map φ is continuous. Because it is not always the case that φ = ψMφ

. For
instance MπV = 0 is row-finite but πV is not continuous (if it was the case,
by injectivity of M , πV = 0).
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