Topological Duality and Row-finite Matrices

Laurent Poinsot

LIPN - UMR CNRS 7030 Université Paris-Nord XIII - Institut Galilée

Structured Matrix Days - XLIM May 10-11, 2012 à l'Université de Limoges

Let R be any commutative ring with a unit.

Let R be any commutative ring with a unit.

Let X, Y be any sets.

To each *R*-linear map $\phi \colon R^X \to R^Y$ is associated a « matrix » \mathcal{M}_{ϕ} with entries in $Y \times X$ and coefficients in *R* whose (y, x)-entry is given by

 $\mathcal{M}_{\phi}(y,x) = (\phi(\delta_x))(y)$

where $\delta_x \in R^X$ the Dirac mass at x.

Let R be any commutative ring with a unit.

Let X, Y be any sets.

To each *R*-linear map $\phi \colon R^X \to R^Y$ is associated a « matrix » \mathcal{M}_{ϕ} with entries in $Y \times X$ and coefficients in *R* whose (y, x)-entry is given by

 $\mathcal{M}_{\phi}(y,x) = (\phi(\delta_x))(y)$

where $\delta_x \in R^X$ the Dirac mass at x.

It is similar to the decomposition of a linear map in some bases. Note however that when X is infinite, then $(\delta_x)_{x \in X}$ is not an algebraic basis for R^X .

A matrix M with $Y \times X$ entries is said to be row-finite when for every $y \in Y$, there are only finitely many non-zero entries M(y, x).

A matrix M with $Y \times X$ entries is said to be row-finite when for every $y \in Y$, there are only finitely many non-zero entries M(y, x).

When $X = Y = \mathbb{N}$, a $\mathbb{N} \times \mathbb{N}$ -matrix M is row-finite if for every $i \in \mathbb{N}$, the *i*th row $(M(i,j))_{j\in\mathbb{N}}$ is finite.

Now, let us assume that R is a Hausdorff topological field, and that R^Z has the product topology for every set Z.

Now, let us assume that R is a Hausdorff topological field, and that R^{Z} has the product topology for every set Z.

The main goal of this talk is to prove the following result:

Theorem

If a linear map $\phi \colon R^X \to R^Y$ is continuous, then its matrix \mathcal{M}_{ϕ} is row-finite.

- We note that the previous theorem holds for every Hausdorff field topology on R.

- We note that the previous theorem holds for every Hausdorff field topology on R.

- The definition of \mathcal{M}_{ϕ} does not depend on the topology of *R*.

- We note that the previous theorem holds for every Hausdorff field topology on R.

- The definition of \mathcal{M}_{ϕ} does not depend on the topology of *R*.

Therefore, if \mathcal{M}_{ϕ} is row-finite, then ϕ is continuous (with respect to the product topologies) for all Hausdorff field topologies on R.

- We note that the previous theorem holds for every Hausdorff field topology on R.

- The definition of \mathcal{M}_{ϕ} does not depend on the topology of *R*.

Therefore, if \mathcal{M}_{ϕ} is row-finite, then ϕ is continuous (with respect to the product topologies) for all Hausdorff field topologies on R.

In other terms, if ϕ is continuous for the product topologies relative to one given Hausdorff field topology on R, then ϕ is continuous for all Hausdorff field topologies on R.

- We note that the previous theorem holds for every Hausdorff field topology on R.

- The definition of \mathcal{M}_{ϕ} does not depend on the topology of *R*.

Therefore, if \mathcal{M}_{ϕ} is row-finite, then ϕ is continuous (with respect to the product topologies) for all Hausdorff field topologies on R.

In other terms, if ϕ is continuous for the product topologies relative to one given Hausdorff field topology on R, then ϕ is continuous for all Hausdorff field topologies on R.

Actually, this follows from a deeper result: for all Hausdorff field topologies on R, the topological duals of R^X (R^X has the product topology) are the same.

Table of contents

2 Topological dual of R^X

Table of contents

2 Topological dual of R^X

Convention

By convention, in this talk the rings are assumed to be unitary and commutative.

Convention

By convention, in this talk the rings are assumed to be unitary and commutative.

The modules are also assumed to be unitary.

Let $(E_i, \tau_i)_{i \in I}$ be any family of topological spaces.

Let $(E_i, \tau_i)_{i \in I}$ be any family of topological spaces.

The product topology on the set-theoretic product $\prod_{i \in I} E_i$ is the coarset topology that makes continuous all canonical projections $\pi_j \colon \prod_{i \in I} E_i \to E_j$.

Let $(E_i, \tau_i)_{i \in I}$ be any family of topological spaces.

The product topology on the set-theoretic product $\prod_{i \in I} E_i$ is the coarset topology that makes continuous all canonical projections $\pi_j \colon \prod_{i \in I} E_i \to E_j$.

It is characterized by the following property:

Let (X, τ) be a topological space, and $f: X \to \prod_{i \in I} E_i$. Then, f is continuous if, and only if, $\pi_j \circ f: X \to E_j$ is continuous for each $j \in I$.

Let $(E_i, \tau_i)_{i \in I}$ be any family of topological spaces.

The product topology on the set-theoretic product $\prod_{i \in I} E_i$ is the coarset topology that makes continuous all canonical projections $\pi_j \colon \prod_{i \in I} E_i \to E_j$.

It is characterized by the following property:

Let (X, τ) be a topological space, and $f: X \to \prod_{i \in I} E_i$. Then, f is continuous if, and only if, $\pi_j \circ f: X \to E_j$ is continuous for each $j \in I$.

This topology is Hausdorff if, and only if, each space (E, τ_i) is separated.

Example

Let (E, τ) be a topological space, and X be a set.

Then
$$E^X \cong \prod_{x \in X} E_x$$
 where $E_x = E$ for every $x \in X$.

The product topology on E^X is the coarset topology that makes continuous the projections $f \mapsto f(x)$, $x \in X$.

We recover the topology of simple convergence on E^{X} .

Let R be a ring, and τ be a topology on R.

Let R be a ring, and τ be a topology on R.

We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous.

Let R be a ring, and τ be a topology on R.

We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous. (In particular, (R, +, 0) is a topological Abelian group.)

Let R be a ring, and τ be a topology on R.

We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous. (In particular, (R, +, 0) is a topological Abelian group.)

If $\mathbb K$ is a field, and τ is a ring topology on $\mathbb K,$

Let R be a ring, and τ be a topology on R.

We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous. (In particular, (R, +, 0) is a topological Abelian group.)

If \mathbb{K} is a field, and τ is a ring topology on \mathbb{K} , we say that (\mathbb{K}, τ) is a topological field when $(\mathbb{K}^*, \times, 1)$ is a topological group for the subspace topology.

Let R be a ring, and τ be a topology on R.

We say that (R, τ) is a topological ring if the ring operations (addition, opposite, multiplication) of R are continuous. (In particular, (R, +, 0) is a topological Abelian group.)

If \mathbb{K} is a field, and τ is a ring topology on \mathbb{K} , we say that (\mathbb{K}, τ) is a topological field when $(\mathbb{K}^*, \times, 1)$ is a topological group for the subspace topology.

For instance any ring (or field) is a topological ring (or field) with either the trivial or the discrete topologies.

Topological modules and vector spaces

Let R be a topological ring, M be an R-module, and τ be a topology on M.

Topological modules and vector spaces

Let R be a topological ring, M be an R-module, and τ be a topology on M.

We say that (M, τ) is a topological *R*-module if (M, +, 0) is a topological Abelian group and multiplication by scalars is continuous.

Topological modules and vector spaces

Let R be a topological ring, M be an R-module, and τ be a topology on M.

We say that (M, τ) is a topological *R*-module if (M, +, 0) is a topological Abelian group and multiplication by scalars is continuous.

When R is a topological field, then (M, τ) is said to be a topological R-vector space.

Example

Let R be a topological ring, and X be a set.

Example

Let R be a topological ring, and X be a set.

The *R*-module R^X of all maps from X to *R* with the product topology is a topological *R*-module.

Table of contents

Topological algebraic structures

2 Topological dual of R^X

3 Consequences on infinite matrices

Let R be a ring and X be a set.

Let R be a ring and X be a set.

The support of a map $f \in R^X$ is defined to be the set

 $\mathsf{Supp}(f) = \{ x \in X \colon f(x) \neq 0 \} .$
Let R be a ring and X be a set.

The support of a map $f \in R^X$ is defined to be the set

 $\operatorname{Supp}(f) = \{ x \in X \colon f(x) \neq 0 \} .$

The *R*-module of all maps with finite support is denoted by $R^{(X)}$.

Let R be a ring and X be a set.

The support of a map $f \in R^X$ is defined to be the set

 $\operatorname{Supp}(f) = \{ x \in X \colon f(x) \neq 0 \} .$

The *R*-module of all maps with finite support is denoted by $R^{(X)}$.

Let $\mathbb K$ be a Hausdorff topological field and let us assume that $\mathbb K^X$ has the product topology.

Let R be a ring and X be a set.

The support of a map $f \in R^X$ is defined to be the set

 $\operatorname{Supp}(f) = \{ x \in X \colon f(x) \neq 0 \} .$

The *R*-module of all maps with finite support is denoted by $R^{(X)}$.

Let $\mathbb K$ be a Hausdorff topological field and let us assume that $\mathbb K^X$ has the product topology.

In this part we prove that the topological dual of \mathbb{K}^X is isomorphic (as a \mathbb{K} -vector space) to $\mathbb{K}^{(X)}$.

Let R be a ring and M, N be R-modules.

Let R be a ring and M, N be R-modules.

The *R*-module of all *R*-linear maps from M to N is denoted by

 $\mathcal{H}om_{R-\mathcal{M}od}(M,N)$.

Let R be a ring and M, N be R-modules.

The *R*-module of all *R*-linear maps from M to N is denoted by

 $\mathcal{H}om_{R-\mathcal{M}od}(M,N)$.

In particular, $M^* = \mathcal{H}om_R(M, R)$ is the algebraic dual of M.

Let R be a ring and M, N be R-modules.

The *R*-module of all *R*-linear maps from M to N is denoted by

 $\mathcal{H}om_{R-\mathcal{M}od}(M,N)$.

In particular, $M^* = \mathcal{H}om_R(M, R)$ is the algebraic dual of M.

When M, N are topological R-modules, then the R-module of all continuous R-linear maps from M to N is denoted by

Let R be a ring and M, N be R-modules.

The *R*-module of all *R*-linear maps from M to N is denoted by

 $\mathcal{H}om_{R-\mathcal{M}od}(M,N)$.

In particular, $M^* = \mathcal{H}om_R(M, R)$ is the algebraic dual of M.

When M, N are topological R-modules, then the R-module of all continuous R-linear maps from M to N is denoted by

 $\mathcal{H}om_{R-TopMod}(M,N)$.

Let R be a ring and M, N be R-modules.

The *R*-module of all *R*-linear maps from M to N is denoted by

 $\mathcal{H}om_{R-\mathcal{M}od}(M,N)$.

In particular, $M^* = \mathcal{H}om_R(M, R)$ is the algebraic dual of M.

When M, N are topological R-modules, then the R-module of all continuous R-linear maps from M to N is denoted by

 $\mathcal{H}om_{R-TopMod}(M,N)$.

In particular, $M' = \mathcal{H}om_{R-\mathcal{T}opMod}(M, R)$ is the topological dual of M.

Duality bracket

Let R be a ring and X be a set.

Duality bracket

Let R be a ring and X be a set.

The map

$$\begin{array}{cccc} \langle \cdot \mid \cdot \rangle & R^X \times R^{(X)} & \to & R \\ & (f,p) & \mapsto & \langle f \mid p \rangle = \sum_{x \in X} f(x) p(x) \end{array}$$

is a duality bracket (it means that $\langle \cdot | \cdot \rangle$ is *R*-bilinear and $\langle f | \cdot \rangle$ and $\langle \cdot | p \rangle$ have a null kernel for every f, p that is $\langle \cdot | \cdot \rangle$ is said to be non-degenerated).

Theorem [Poinsot '10]

Let \mathbb{K} be a separated topological field, and X be a set.

Theorem [Poinsot '10]

Let \mathbb{K} be a separated topological field, and X be a set.

Let us assume that \mathbb{K}^X has the product topology.

Theorem [Poinsot '10]

Let \mathbb{K} be a separated topological field, and X be a set.

Let us assume that \mathbb{K}^X has the product topology.

Then the topological dual $(\mathbb{K}^X)'$ of \mathbb{K}^X is isomorphic to $\mathbb{K}^{(X)}$.

Let R be a ring, and X be a set.

Let R be a ring, and X be a set.

The map

$$\begin{split} \Phi \colon & R^{(X)} \to & (R^X)^* \\ & p & \mapsto & \left(\begin{array}{ccc} \Phi(p) \colon & R^X \to & R \\ & f & \mapsto & \langle f \mid p \rangle \end{array} \right) \end{array}$$

is *R*-linear and one-to-one.

Proof of Lemma 1 (Injectivity of Φ)

Proof of Lemma 1 (Injectivity of Φ)

Let $p \in \ker \Phi$ $(\Phi(p)(f) = 0$ for all $f \in R^X$).

Proof of Lemma 1 (Injectivity of Φ)

Let
$$p \in \ker \Phi$$
 $(\Phi(p)(f) = 0$ for all $f \in R^X$).

So
$$p(x) = \Phi(p)(\delta_x) = 0$$
 for every $x \in X$.

Let R be a topological ring, and X be a set. We assume that R^X has the product topology.

Let R be a topological ring, and X be a set. We assume that R^X has the product topology.

For all $p \in R^{(X)}$, $\Phi(p)$ is continuous, *i.e.*, $\Phi(p) \in (R^X)'$.

Let R be a topological ring, and X be a set. We assume that R^X has the product topology.

For all $p \in R^{(X)}$, $\Phi(p)$ is continuous, *i.e.*, $\Phi(p) \in (R^X)'$.

(Proof: Obvious.)

Recall: summability

Let (G, τ) be a separated topological Abelian group. A family $(g_i)_{i \in I}$ of members of G is summable with sum $g \in G$, which is denoted by $\sum_{i \in I} g_i = g$, if for every open neighbourhood U of zero, there exists a finite subset $J \subseteq I$ such that $\sum_{j \in J} g_j - g \in U$.

Recall: summability

Let (G, τ) be a separated topological Abelian group. A family $(g_i)_{i \in I}$ of members of G is summable with sum $g \in G$, which is denoted by $\sum_{i \in I} g_i = g$, if for every open neighbourhood U of zero, there exists a finite subset $J \subseteq I$ such that $\sum_{j \in J} g_j - g \in U$.

Let R be a separated topological ring, and let us assume that R^X has the product topology.

Recall: summability

Let (G, τ) be a separated topological Abelian group. A family $(g_i)_{i \in I}$ of members of G is summable with sum $g \in G$, which is denoted by $\sum_{i \in I} g_i = g$, if for every open neighbourhood U of zero, there exists a finite subset $J \subseteq I$ such that $\sum_{j \in J} g_j - g \in U$.

Let R be a separated topological ring, and let us assume that R^X has the product topology.

For each $f \in R^X$, the family $(f(x)\delta_x)_{x \in X} = (\langle f \mid \delta_x \rangle \delta_x)_{x \in X}$ is summable with sum f,

Recall: summability

Let (G, τ) be a separated topological Abelian group. A family $(g_i)_{i \in I}$ of members of G is summable with sum $g \in G$, which is denoted by $\sum_{i \in I} g_i = g$, if for every open neighbourhood U of zero, there exists a finite subset $J \subseteq I$ such that $\sum_{j \in J} g_j - g \in U$.

Let R be a separated topological ring, and let us assume that R^X has the product topology.

For each $f \in R^X$, the family $(f(x)\delta_x)_{x \in X} = (\langle f \mid \delta_x \rangle \delta_x)_{x \in X}$ is summable with sum f, that is _____

$$f=\sum_{x\in X}f(x)\delta_x\;.$$

It is sufficient to prove that for each $y \in X$, the family $(\pi_y(f(x)\delta_x))_{x\in X}$ is summable in R, with sum $\pi_y(f)$, where $\pi_y \colon R^X \to R$ is the canonical projection onto R.

It is sufficient to prove that for each $y \in X$, the family $(\pi_y(f(x)\delta_x))_{x\in X}$ is summable in R, with sum $\pi_y(f)$, where $\pi_y \colon R^X \to R$ is the canonical projection onto R.

But this projection is given by $f \mapsto \langle f \mid \delta_y \rangle$.

It is sufficient to prove that for each $y \in X$, the family $(\pi_y(f(x)\delta_x))_{x\in X}$ is summable in R, with sum $\pi_y(f)$, where $\pi_y \colon R^X \to R$ is the canonical projection onto R.

But this projection is given by $f \mapsto \langle f \mid \delta_y \rangle$.

Therefore we need to prove that for each $y \in X$, the family $(\langle f(x)\delta_x | \delta_y \rangle)_{x \in X} = (f(x)\delta_y(x))_{x \in X}$ is summable with sum f(y), which is obvious.

Under the same assumptions as Lemma 3:

Under the same assumptions as Lemma 3:

If $\ell \in (R^X)'$,

Then the set $Y_{\ell} = \{ x \in X \mid \ell(\delta_x) \text{ is invertible in } R \}$ is finite.

Under the same assumptions as Lemma 3:

If $\ell \in (R^X)'$,

Then the set $Y_{\ell} = \{ x \in X \mid \ell(\delta_x) \text{ is invertible in } R \}$ is finite.

We have a direct consequence:

Lemma 5

Let \mathbb{K} be a Hausdorff topological field.

If $\ell \in (\mathbb{K}^X)'$, then $\ell(\delta_x) = 0$ for all $x \in X$, except a finite number.

Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3),

Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3), then the family $(f(x)\ell(\delta_x))_{x\in X}$ is summable in R, with sum $\ell(f)$.

Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3), then the family $(f(x)\ell(\delta_x))_{x\in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell} \colon X \to R$ by $f_{\ell}(x) = \ell(\delta_x)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x) = 0$ otherwise.

Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3), then the family $(f(x)\ell(\delta_x))_{x\in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell} \colon X \to R$ by $f_{\ell}(x) = \ell(\delta_x)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x) = 0$ otherwise.

In particular, the family $(f_{\ell}(x)\ell(\delta_x))_{x\in X}$ is summable with sum $\ell(f_{\ell})$.
Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3), then the family $(f(x)\ell(\delta_x))_{x\in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell} \colon X \to R$ by $f_{\ell}(x) = \ell(\delta_x)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x) = 0$ otherwise.

In particular, the family $(f_{\ell}(x)\ell(\delta_x))_{x\in X}$ is summable with sum $\ell(f_{\ell})$.

From general properties of summability we know that for every open neighbourhood U of 0 in R, $f_{\ell}(x)\ell(\delta_x) \in U$ for all, except finitely many, $x \in X$.

Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3), then the family $(f(x)\ell(\delta_x))_{x\in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell} \colon X \to R$ by $f_{\ell}(x) = \ell(\delta_x)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x) = 0$ otherwise.

In particular, the family $(f_{\ell}(x)\ell(\delta_x))_{x\in X}$ is summable with sum $\ell(f_{\ell})$.

From general properties of summability we know that for every open neighbourhood U of 0 in R, $f_{\ell}(x)\ell(\delta_x) \in U$ for all, except finitely many, $x \in X$.

Since R is assumed Hausdorff,

Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3), then the family $(f(x)\ell(\delta_x))_{x\in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell} \colon X \to R$ by $f_{\ell}(x) = \ell(\delta_x)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x) = 0$ otherwise.

In particular, the family $(f_{\ell}(x)\ell(\delta_x))_{x\in X}$ is summable with sum $\ell(f_{\ell})$.

From general properties of summability we know that for every open neighbourhood U of 0 in R, $f_{\ell}(x)\ell(\delta_x) \in U$ for all, except finitely many, $x \in X$.

Since R is assumed Hausdorff, there is an open neighbourhood U of zero such that $1 \notin U$.

Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3), then the family $(f(x)\ell(\delta_x))_{x\in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell} \colon X \to R$ by $f_{\ell}(x) = \ell(\delta_x)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x) = 0$ otherwise.

In particular, the family $(f_{\ell}(x)\ell(\delta_x))_{x\in X}$ is summable with sum $\ell(f_{\ell})$.

From general properties of summability we know that for every open neighbourhood U of 0 in R, $f_{\ell}(x)\ell(\delta_x) \in U$ for all, except finitely many, $x \in X$.

Since R is assumed Hausdorff, there is an open neighbourhood U of zero such that $1 \notin U$.

Because $1 = f_{\ell}(x)\ell(\delta_x) \notin U$ for all $x \in Y_{\ell}$,

Because ℓ is a continuous linear form, and since for every $f \in R^X$, the family $(f(x)\delta_x)_{x\in X}$ is summable with sum f (according to lemma 3), then the family $(f(x)\ell(\delta_x))_{x\in X}$ is summable in R, with sum $\ell(f)$.

Let us define $f_{\ell} \colon X \to R$ by $f_{\ell}(x) = \ell(\delta_x)^{-1}$ if $x \in Y_{\ell}$, and $f_{\ell}(x) = 0$ otherwise.

In particular, the family $(f_{\ell}(x)\ell(\delta_x))_{x\in X}$ is summable with sum $\ell(f_{\ell})$.

From general properties of summability we know that for every open neighbourhood U of 0 in R, $f_{\ell}(x)\ell(\delta_x) \in U$ for all, except finitely many, $x \in X$.

Since R is assumed Hausdorff, there is an open neighbourhood U of zero such that $1 \notin U$.

Because $1 = f_{\ell}(x)\ell(\delta_x) \notin U$ for all $x \in Y_{\ell}$, if Y_{ℓ} is not finite, this leads to a contradiction.

Lemma 6

Under the same assumptions as Lemma 5,

$$\Phi \colon \mathbb{K}^{(X)} o (\mathbb{K}^X)'$$

is onto.

Let $\ell \in (\mathbb{K}^X)'$ be fixed, and let us define $p_\ell \colon X \to \mathbb{K}$ by $p_\ell(x) = \ell(\delta_x)$.

Let $\ell \in (\mathbb{K}^X)'$ be fixed, and let us define $p_\ell \colon X \to \mathbb{K}$ by $p_\ell(x) = \ell(\delta_x)$. According to Lemma 5, $p_\ell \in \mathbb{K}^{(X)}$.

Let $\ell \in (\mathbb{K}^X)'$ be fixed, and let us define $p_\ell \colon X \to \mathbb{K}$ by $p_\ell(x) = \ell(\delta_x)$. According to Lemma 5, $p_\ell \in \mathbb{K}^{(X)}$.

Let $f \in \mathbb{K}^X$. We have

$$\Phi(p_{\ell})(f) = \langle f \mid p_{\ell} \rangle = \sum_{x \in X} f(x)p_{\ell}(x) = \sum_{x \in X} f(x)\ell(\delta_x) = \ell(f) .$$

Theorem

Let \mathbb{K} be a separated topological field, and X be a set.

Theorem

Let \mathbb{K} be a separated topological field, and X be a set.

Let us assume that \mathbb{K}^X has the product topology.

Theorem

Let \mathbb{K} be a separated topological field, and X be a set.

Let us assume that \mathbb{K}^X has the product topology.

The topological dual $(\mathbb{K}^X)'$ of \mathbb{K}^X is isomorphic to $\mathbb{K}^{(X)}$.

Lemma 1 (Φ is one-to-one),

Lemma 1 (Φ is one-to-one),

Lemma 2 $(Im(\Phi) \subseteq (\mathbb{K}^X)')$,

- Lemma 1 (Φ is one-to-one),
- Lemma 2 $(Im(\Phi) \subseteq (\mathbb{K}^X)')$,
- Lemma 6 (Φ is onto).

Table of contents

1 Topological algebraic structures

2 Topological dual of R^X

Let $\phi \in \mathcal{H}om_{\mathbb{K}-\mathcal{V}ect}(\mathbb{K}^X, \mathbb{K}^Y)$.

Let $\phi \in \mathcal{H}om_{\mathbb{K}}\text{-}\mathcal{V}ect}(\mathbb{K}^X,\mathbb{K}^Y).$

We define the matrix $\mathcal{M}_{\phi} \in \mathbb{K}^{Y \times X}$ of ϕ by

 $\mathcal{M}_{\phi}(y,x) = \langle \phi(\delta_x) \mid \delta_y \rangle \;.$

Let $\phi \in \mathcal{H}om_{\mathbb{K}}\text{-}\mathcal{V}ect}(\mathbb{K}^X,\mathbb{K}^Y).$

We define the matrix $\mathcal{M}_{\phi} \in \mathbb{K}^{Y \times X}$ of ϕ by

 $\mathcal{M}_{\phi}(y,x) = \langle \phi(\delta_x) \mid \delta_y \rangle \;.$

Remark

For infinite-dimensional spaces, the $\mathbb{K}\text{-linear}$ map $\phi\mapsto\mathcal{M}_\phi$ is not one-to-one.

The family $(\delta_x)_{x \in X}$ is K-linearly independent (since it is an algebraic basis of $\mathbb{K}^{(X)}$).

The family $(\delta_x)_{x \in X}$ is K-linearly independent (since it is an algebraic basis of $\mathbb{K}^{(X)}$).

According to the axiom of choice, $(\delta_x)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^X .

The family $(\delta_x)_{x \in X}$ is K-linearly independent (since it is an algebraic basis of $\mathbb{K}^{(X)}$).

According to the axiom of choice, $(\delta_x)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^X .

Let V be the \mathbb{K} -subvector space of \mathbb{K}^X generated by $\mathcal{B} \setminus \{ \delta_x : x \in X \} \neq \emptyset$.

The family $(\delta_x)_{x \in X}$ is K-linearly independent (since it is an algebraic basis of $\mathbb{K}^{(X)}$).

According to the axiom of choice, $(\delta_x)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^X .

Let V be the \mathbb{K} -subvector space of \mathbb{K}^X generated by $\mathcal{B} \setminus \{ \delta_x : x \in X \} \neq \emptyset$. It is clear that $\mathbb{K}^X = \mathbb{K}^{(X)} \oplus V$,

The family $(\delta_x)_{x \in X}$ is K-linearly independent (since it is an algebraic basis of $\mathbb{K}^{(X)}$).

According to the axiom of choice, $(\delta_x)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^X .

Let V be the \mathbb{K} -subvector space of \mathbb{K}^X generated by $\mathcal{B} \setminus \{ \delta_x : x \in X \} \neq \emptyset$.

It is clear that $\mathbb{K}^X = \mathbb{K}^{(X)} \oplus V$, and let us consider $\pi_V \colon \mathbb{K}^X \to \mathbb{K}^X$ the projection along $\mathbb{K}^{(X)}$ onto V.

The family $(\delta_x)_{x \in X}$ is K-linearly independent (since it is an algebraic basis of $\mathbb{K}^{(X)}$).

According to the axiom of choice, $(\delta_x)_{x \in X}$ may be extended to an algebraic basis \mathcal{B} of \mathbb{K}^X .

Let V be the \mathbb{K} -subvector space of \mathbb{K}^X generated by $\mathcal{B} \setminus \{ \delta_x \colon x \in X \} \neq \emptyset$.

It is clear that $\mathbb{K}^X = \mathbb{K}^{(X)} \oplus V$, and let us consider $\pi_V \colon \mathbb{K}^X \to \mathbb{K}^X$ the projection along $\mathbb{K}^{(X)}$ onto V.

Since $\mathbb{K}^{(X)} = \ker \pi_V$, for every $x, y \in X$, $\langle \pi_V(\delta_y) | \delta_X \rangle = 0$ so that \mathcal{M}_{π_V} is the null matrix, while $\pi_V \neq 0$.

Some definitions

A matrix $M \in R^{Y \times X}$ is said to be row-finite if for every $y \in Y$, the map $M(y, \cdot) : x \in X \to M(y, x) \in R$ is finitely supported, that is $M(y, \cdot) \in R^{(X)}$.

Some definitions

A matrix $M \in R^{Y \times X}$ is said to be row-finite if for every $y \in Y$, the map $M(y, \cdot): x \in X \to M(y, x) \in R$ is finitely supported, that is $M(y, \cdot) \in R^{(X)}$.

The sub-*R*-module of $R^{Y \times X}$ of all row-finite matrices is denoted by

 $R^{Y \times (X)}$.

Some definitions

A matrix $M \in R^{Y \times X}$ is said to be row-finite if for every $y \in Y$, the map $M(y, \cdot) : x \in X \to M(y, x) \in R$ is finitely supported, that is $M(y, \cdot) \in R^{(X)}$.

The sub-*R*-module of $R^{Y \times X}$ of all row-finite matrices is denoted by

 $R^{Y \times (X)}$.

Convention

In what follows, \mathbb{K} denotes a Hausdorff topological field and \mathbb{K}^Z has the product topology for every set Z.

A first result

Lemma 7

For every $\phi \in \mathcal{H}om_{\mathbb{K}\text{-}Top\mathcal{V}ect}(\mathbb{K}^X, \mathbb{K}^Y)$, \mathcal{M}_{ϕ} is row-finite, that is $\operatorname{Im}(\mathcal{M}) \subseteq \mathbb{K}^{Y \times (X)}$.

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-}Top\mathcal{V}ect}(\mathbb{K}^{X},\mathbb{K}^{Y})$ be given.

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ be given.

For every $y \in Y$, the map $f \in \mathbb{K}^X \mapsto \langle \phi(f) \mid \delta_y \rangle \in \mathbb{K}$ belongs to $(\mathbb{K}^X)'$ by composition of continuous maps.

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ be given.

For every $y \in Y$, the map $f \in \mathbb{K}^X \mapsto \langle \phi(f) \mid \delta_y \rangle \in \mathbb{K}$ belongs to $(\mathbb{K}^X)'$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi,y} \in \mathbb{K}^{(X)}$ such that $\langle f \mid p_{\phi,y} \rangle = \langle \phi(f) \mid \delta_y \rangle$.

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ be given.

For every $y \in Y$, the map $f \in \mathbb{K}^X \mapsto \langle \phi(f) \mid \delta_y \rangle \in \mathbb{K}$ belongs to $(\mathbb{K}^X)'$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi,y} \in \mathbb{K}^{(X)}$ such that $\langle f \mid p_{\phi,y} \rangle = \langle \phi(f) \mid \delta_y \rangle$.

In particular, for every $x \in X$, $p_{\phi,y}(x)$

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ be given.

For every $y \in Y$, the map $f \in \mathbb{K}^X \mapsto \langle \phi(f) \mid \delta_y \rangle \in \mathbb{K}$ belongs to $(\mathbb{K}^X)'$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi,y} \in \mathbb{K}^{(X)}$ such that $\langle f \mid p_{\phi,y} \rangle = \langle \phi(f) \mid \delta_y \rangle$.

In particular, for every $x \in X$, $p_{\phi,y}(x) = \sum_{z \in X} p_{\phi,y}(z) \delta_x(z)$
Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ be given.

For every $y \in Y$, the map $f \in \mathbb{K}^X \mapsto \langle \phi(f) \mid \delta_y \rangle \in \mathbb{K}$ belongs to $(\mathbb{K}^X)'$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi,y} \in \mathbb{K}^{(X)}$ such that $\langle f \mid p_{\phi,y} \rangle = \langle \phi(f) \mid \delta_y \rangle$.

In particular, for every $x \in X$, $p_{\phi,y}(x) = \sum_{z \in X} p_{\phi,y}(z) \delta_x(z) = \langle \delta_x \mid p_{\phi,y} \rangle$

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ be given.

For every $y \in Y$, the map $f \in \mathbb{K}^X \mapsto \langle \phi(f) \mid \delta_y \rangle \in \mathbb{K}$ belongs to $(\mathbb{K}^X)'$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi,y} \in \mathbb{K}^{(X)}$ such that $\langle f \mid p_{\phi,y} \rangle = \langle \phi(f) \mid \delta_y \rangle$.

In particular, for every $x \in X$, $p_{\phi,y}(x) = \sum_{z \in X} p_{\phi,y}(z)\delta_x(z) = \langle \delta_x | p_{\phi,y} \rangle = \langle \phi(\delta_x) | \delta_y \rangle$

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ be given.

For every $y \in Y$, the map $f \in \mathbb{K}^X \mapsto \langle \phi(f) \mid \delta_y \rangle \in \mathbb{K}$ belongs to $(\mathbb{K}^X)'$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi,y} \in \mathbb{K}^{(X)}$ such that $\langle f \mid p_{\phi,y} \rangle = \langle \phi(f) \mid \delta_y \rangle$.

In particular, for every $x \in X$, $p_{\phi,y}(x) = \sum_{z \in X} p_{\phi,y}(z)\delta_x(z) = \langle \delta_x \mid p_{\phi,y} \rangle = \langle \phi(\delta_x) \mid \delta_y \rangle = \mathcal{M}_{\phi}(y,x).$

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ be given.

For every $y \in Y$, the map $f \in \mathbb{K}^X \mapsto \langle \phi(f) \mid \delta_y \rangle \in \mathbb{K}$ belongs to $(\mathbb{K}^X)'$ by composition of continuous maps.

According to the previous theorem, there exists a unique $p_{\phi,y} \in \mathbb{K}^{(X)}$ such that $\langle f \mid p_{\phi,y} \rangle = \langle \phi(f) \mid \delta_y \rangle$.

In particular, for every
$$x \in X$$
,
 $p_{\phi,y}(x) = \sum_{z \in X} p_{\phi,y}(z) \delta_x(z) = \langle \delta_x \mid p_{\phi,y} \rangle = \langle \phi(\delta_x) \mid \delta_y \rangle = \mathcal{M}_{\phi}(y, x).$

Therefore $\text{Supp}(p_{\phi,y}) = \{ x \in X : \mathcal{M}_{\phi}(y,x) \neq 0 \}$ so that $\mathcal{M}_{\phi} \in \mathbb{K}^{Y \times (X)}$.

Lemma 8

The map $\mathcal{M}: \phi \in \mathcal{H}\!\mathit{om}_{\mathbb{K}\text{-}\mathcal{T}\!\mathit{opVect}}(\mathbb{K}^X, \mathbb{K}^Y) \mapsto \mathcal{M}_{\phi} \in \mathbb{K}^{Y \times (X)}$ is one-to-one.

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ such that $\mathcal{M}_{\phi} = 0$.

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ such that $\mathcal{M}_{\phi} = 0$.

Therefore for every $(y, x) \in Y \times X$, $\langle \phi(\delta_x) | \delta_y \rangle = 0$.

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ such that $\mathcal{M}_{\phi} = 0$.

Therefore for every $(y,x) \in Y imes X$, $\langle \phi(\delta_x) \mid \delta_y
angle = 0$.

The previous equality holds for every $y \in Y$ so that $\phi(\delta_x) = 0$ for every $x \in X$ (since $\langle \cdot | \cdot \rangle$ is non-degenerated).

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ such that $\mathcal{M}_{\phi} = 0$.

Therefore for every $(y,x) \in Y imes X$, $\langle \phi(\delta_x) \mid \delta_y \rangle = 0$.

The previous equality holds for every $y \in Y$ so that $\phi(\delta_x) = 0$ for every $x \in X$ (since $\langle \cdot | \cdot \rangle$ is non-degenerated).

Therefore ϕ is the null linear map on $\mathbb{K}^{(X)}$.

Let $\phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ such that $\mathcal{M}_{\phi} = 0$.

Therefore for every $(y,x) \in Y imes X$, $\langle \phi(\delta_x) \mid \delta_y \rangle = 0$.

The previous equality holds for every $y \in Y$ so that $\phi(\delta_x) = 0$ for every $x \in X$ (since $\langle \cdot | \cdot \rangle$ is non-degenerated).

Therefore ϕ is the null linear map on $\mathbb{K}^{(X)}$.

Since ϕ is assumed to be continuous, and $\mathbb{K}^{(X)}$ is dense in \mathbb{K}^{X} , $\phi = 0$.

Lemma 9

The map $\mathcal{M} \colon \phi \in \mathcal{H}\!\mathit{om}_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y) \mapsto \mathcal{M}_{\phi} \in \mathbb{K}^{Y \times (X)}$ is onto.

Lemma 9

The map $\mathcal{M}: \phi \in \mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y) \mapsto \mathcal{M}_{\phi} \in \mathbb{K}^{Y \times (X)}$ is onto.

(Proof: It is an easy exercice.)

Proposition

 $\mathcal{H}om_{\mathbb{K}\text{-}TopVect}(\mathbb{K}^X,\mathbb{K}^Y)$ and $\mathbb{K}^{Y\times(X)}$ are isomorphic \mathbb{K} -vector spaces,

Proposition

 $\mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ and $\mathbb{K}^{Y \times (X)}$ are isomorphic \mathbb{K} -vector spaces,

and for every $\phi \in \mathcal{H}om_{\mathbb{K}\text{-}Top\mathcal{V}ect}(\mathbb{K}^{X},\mathbb{K}^{Y})$, and $\psi \in \mathcal{H}om_{\mathbb{K}\text{-}Top\mathcal{V}ect}(\mathbb{K}^{Y},\mathbb{K}^{Z})$, we have

 $\mathcal{M}_{\psi \circ \phi} = \mathcal{M}_{\psi} \mathcal{M}_{\phi}$.

Proposition

 $\mathcal{H}om_{\mathbb{K}\text{-TopVect}}(\mathbb{K}^X, \mathbb{K}^Y)$ and $\mathbb{K}^{Y \times (X)}$ are isomorphic \mathbb{K} -vector spaces,

and for every $\phi \in \mathcal{H}om_{\mathbb{K}\text{-}Top\mathcal{V}ect}(\mathbb{K}^X, \mathbb{K}^Y)$, and $\psi \in \mathcal{H}om_{\mathbb{K}\text{-}Top\mathcal{V}ect}(\mathbb{K}^Y, \mathbb{K}^Z)$, we have

$$\mathcal{M}_{\psi \circ \phi} = \mathcal{M}_{\psi} \mathcal{M}_{\phi}$$
 .

In particular, \mathcal{M} is an isomorphism of algebras from $\mathcal{E}nd_{\mathbb{K}-\mathcal{T}op\mathcal{V}ect}(\mathbb{K}^X)$ into $\mathbb{K}^{X\times(X)}$.

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$),

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite,

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K} .

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K} .

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K} , then it is continuous for all of them.

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K} .

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K} , then it is continuous for all of them.

Conversely, if a matrix $M \in \mathbb{K}^{Y \times X}$ is row-finite, then the linear map $\psi_M \colon \mathbb{K}^X \to \mathbb{K}^Y$ given by $\psi_M(f)(y) = \sum_{x \in X} M(y, x) f(x)$ is continuous.

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K} .

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K} , then it is continuous for all of them.

Conversely, if a matrix $M \in \mathbb{K}^{Y \times X}$ is row-finite, then the linear map $\psi_M \colon \mathbb{K}^X \to \mathbb{K}^Y$ given by $\psi_M(f)(y) = \sum_{x \in X} M(y, x) f(x)$ is continuous.

Note however that it is not true that \mathcal{M}_{ϕ} is row-finite implies that the linear map ϕ is continuous.

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K} .

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K} , then it is continuous for all of them.

Conversely, if a matrix $M \in \mathbb{K}^{Y \times X}$ is row-finite, then the linear map $\psi_M \colon \mathbb{K}^X \to \mathbb{K}^Y$ given by $\psi_M(f)(y) = \sum_{x \in X} M(y, x) f(x)$ is continuous.

Note however that it is not true that \mathcal{M}_{ϕ} is row-finite implies that the linear map ϕ is continuous. Because it is not always the case that $\phi = \psi_{\mathcal{M}_{\phi}}$.

If one proves that ϕ is continuous for a fixed separated topology on \mathbb{K} (for instance the discrete topology or the usual topologies for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), then \mathcal{M}_{ϕ} is row-finite, and ϕ is continuous with respect to all Hausdorff field topologies on \mathbb{K} .

In other terms if ϕ is continuous for one Hausdorff topology on \mathbb{K} , then it is continuous for all of them.

Conversely, if a matrix $M \in \mathbb{K}^{Y \times X}$ is row-finite, then the linear map $\psi_M \colon \mathbb{K}^X \to \mathbb{K}^Y$ given by $\psi_M(f)(y) = \sum_{x \in X} M(y, x) f(x)$ is continuous.

Note however that it is not true that \mathcal{M}_{ϕ} is row-finite implies that the linear map ϕ is continuous. Because it is not always the case that $\phi = \psi_{\mathcal{M}_{\phi}}$. For instance $\mathcal{M}_{\pi_{V}} = 0$ is row-finite but π_{V} is not continuous (if it was the case, by injectivity of \mathcal{M} , $\pi_{V} = 0$).