Generalized ladder operators and a « normal form » for endomorphisms

Combinatorial Physics III 24-26 November, 2011, Kraków

Laurent Poinsot

LIPN - UMR CNRS 7030 Université Paris-Nord XIII - Institut Galilée

Table of contents

1 Weyl algebra

- 2 Jacobson's density theorem
- Generalized ladder operators
- Generalization to operators on « infinite » linear combinations

5 Concluding remarks

Table of contents

1 Weyl algebra

- 2 Jacobson's density theorem
- 3 Generalized ladder operators
- 4 Generalization to operators on « infinite » linear combinations
- 5 Concluding remarks

Weyl algebra: definition

Let ${\mathbb K}$ be any field.

The (first) Weyl algebra $A(\mathbb{K})$ is defined as the quotient algebra of the algebra of polynomials $\mathbb{K}\langle x, y \rangle$ in non-commuting variables by the two-sided ideal generated by the relation [x, y] = 1.

Weyl algebra: definition

Let ${\mathbb K}$ be any field.

The (first) Weyl algebra $A(\mathbb{K})$ is defined as the quotient algebra of the algebra of polynomials $\mathbb{K}\langle x, y \rangle$ in non-commuting variables by the two-sided ideal generated by the relation [x, y] = 1.

Let $a = \pi(x)$ and $a^{\dagger} = \pi(y)$ where $\pi \colon \mathbb{K}\langle x, y \rangle \twoheadrightarrow A(\mathbb{K})$ is the canonical epimorphism.

Support of a polynomial

Definition: Support of a polynomial The support Supp(P) of a polynomial $P \in \mathbb{K}\langle X \rangle$ is the (finite) set of words $w \in X^*$ such that $\langle P \mid w \rangle \neq 0$.

Weyl algebra: normal ordering basis

As a \mathbb{K} -vector space, $A(\mathbb{K})$ is free with basis $\{(a^{\dagger})^{i}a^{j}\}_{i,j\in\mathbb{N}}$ (this is a general fact from the theory of Ore extensions).

Weyl algebra: normal ordering basis

As a \mathbb{K} -vector space, $A(\mathbb{K})$ is free with basis $\{(a^{\dagger})^{i}a^{j}\}_{i,j\in\mathbb{N}}$ (this is a general fact from the theory of Ore extensions).

This means that for every $\Omega \in A(\mathbb{K})$ there is a unique polynomial, call it

 $\mathcal{Pol}(\Omega) \in \mathbb{K}\langle x, y \rangle$

with support $\operatorname{Supp}(\operatorname{Pol}(\Omega)) \subseteq \{ y^i x^j : i, j \in \mathbb{N} \}$ such that $\pi(\operatorname{Pol}(\Omega)) = \Omega$ (in other terms, $\operatorname{Pol} : A(\mathbb{K}) \hookrightarrow \mathbb{K}\langle x, y \rangle$ is a section of π). Weyl algebra: normal ordering - formal definition

We call normal ordering of a polynomial $P \in \mathbb{K}\langle x, y \rangle$, the polynomial

 $\mathcal{N}(P) = \mathcal{Pol}(\pi(P)) \in \mathbb{K}\langle x, y \rangle$.

Weyl algebra: normal ordering - formal definition

We call normal ordering of a polynomial $P \in \mathbb{K}\langle x, y \rangle$, the polynomial

 $\mathcal{N}(P) = \mathcal{Pol}(\pi(P)) \in \mathbb{K}\langle x, y \rangle$.

Remark

Note that P and $\mathcal{N}(P)$ define the same element of A since $\pi(\mathcal{N}(P)) = \pi(\mathcal{Pol}(\pi(P))) = \pi(P).$

Let
$$P = y^2 xy + x^3 yx \in \mathbb{Q}\langle x, y \rangle$$
, then $\mathcal{N}(P) = y^2 + y^3 x + 3x^3 + yx^4$.

Let
$$P = y^2 xy + x^3 yx \in \mathbb{Q}\langle x, y \rangle$$
, then $\mathcal{N}(P) = y^2 + y^3 x + 3x^3 + yx^4$.

Moreover,

$$\pi(P) = (a^{\dagger})^2 a a^{\dagger} + a^3 a^{\dagger} a \in A(\mathbb{Q})$$

Let
$$P = y^2 xy + x^3 yx \in \mathbb{Q}\langle x, y \rangle$$
, then $\mathcal{N}(P) = y^2 + y^3 x + 3x^3 + yx^4$.

Moreover,

$$\pi(P) = (a^{\dagger})^2 a a^{\dagger} + a^3 a^{\dagger} a \in A(\mathbb{Q})$$

and

$$\mathcal{P}ol((a^{\dagger})^2aa^{\dagger}+a^3a^{\dagger}a)=y^2+y^3x+3x^3+yx^4$$

Let
$$P = y^2 xy + x^3 yx \in \mathbb{Q}\langle x, y \rangle$$
, then $\mathcal{N}(P) = y^2 + y^3 x + 3x^3 + yx^4$.

Moreover,

$$\pi(P)=(a^{\dagger})^2aa^{\dagger}+a^3a^{\dagger}a\in A(\mathbb{Q})$$

 and

$$\mathcal{P}ol((a^{\dagger})^2aa^{\dagger}+a^3a^{\dagger}a)=y^2+y^3x+3x^3+yx^4$$

in such a way that

$$\pi(P) = (a^{\dagger})^2 + (a^{\dagger})^3 a + 3a^3 + (a^{\dagger})a^4$$
.

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

- Define $\rho(x)(p) = \frac{d}{dz}p$ and $\rho(y)(p) = zp$ for $p \in \mathbb{K}[z]$.

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

- Define $\rho(x)(p) = \frac{d}{dz}p$ and $\rho(y)(p) = zp$ for $p \in \mathbb{K}[z]$.
- Extend ρ by linearity as a \mathbb{K} -algebra map ρ from $\mathbb{K}\langle x, y \rangle$ to $\operatorname{End}_{\mathbb{K}-\operatorname{Wect}}(\mathbb{K}[z]).$

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

- Define $\rho(x)(p) = \frac{d}{dz}p$ and $\rho(y)(p) = zp$ for $p \in \mathbb{K}[z]$.
- Extend ρ by linearity as a \mathbb{K} -algebra map ρ from $\mathbb{K}\langle x, y \rangle$ to $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(\mathbb{K}[z]).$
- Since $\rho([x, y]) = [\rho(x), \rho(y)] = Id_{\mathbb{K}[z]}$, it follows that there is a unique algebra map $\tilde{\rho} \colon A(\mathbb{K}) \to \operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(\mathbb{K}[z])$ such that

 $\tilde{\rho}\circ\pi=\rho$.

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

- Define $\rho(x)(p) = \frac{d}{dz}p$ and $\rho(y)(p) = zp$ for $p \in \mathbb{K}[z]$.
- Extend ρ by linearity as a \mathbb{K} -algebra map ρ from $\mathbb{K}\langle x, y \rangle$ to $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(\mathbb{K}[z]).$
- Since $\rho([x, y]) = [\rho(x), \rho(y)] = Id_{\mathbb{K}[z]}$, it follows that there is a unique algebra map $\tilde{\rho} \colon A(\mathbb{K}) \to \operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(\mathbb{K}[z])$ such that

$$\tilde{o}\circ\pi=
ho$$
 .

This representation is faithful, *i.e.*, ker $\tilde{\rho} = (0)$ in such a way that $A(\mathbb{K})$ may be identified with the sub-algebra of $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(\mathbb{K}[z])$ generated by the multiplication by z and the formal derivation $\frac{d}{dz}$.

Weyl algebra as an algebra of differential operators - an example

Let $\Omega = (a^{\dagger})^2 a a^{\dagger} + a^3 a^{\dagger} a \in A(\mathbb{K}).$

Weyl algebra as an algebra of differential operators - an example

Let $\Omega = (a^{\dagger})^2 a a^{\dagger} + a^3 a^{\dagger} a \in A(\mathbb{K}).$

Then for every $p \in \mathbb{K}[z]$,

$$\widetilde{
ho}(\Omega)(p)=z^2p+z^3p'+3p'''+zp''''$$
 .

As operators on $\mathbb{K}[z]$, *a* and a^{\dagger} are graded operators of degree -1 and 1 relatively to the usual degree of polynomials.

As operators on $\mathbb{K}[z]$, *a* and a^{\dagger} are graded operators of degree -1 and 1 relatively to the usual degree of polynomials.

Thus, a is a lowering operator,

As operators on $\mathbb{K}[z]$, *a* and a^{\dagger} are graded operators of degree -1 and 1 relatively to the usual degree of polynomials.

Thus, *a* is a lowering operator, while a^{\dagger} is a raising operator.

As operators on $\mathbb{K}[z]$, *a* and a^{\dagger} are graded operators of degree -1 and 1 relatively to the usual degree of polynomials.

Thus, *a* is a lowering operator, while a^{\dagger} is a raising operator.

Both of them are ladder operators.

Table of contents

Weyl algebra

- 2 Jacobson's density theorem
 - 3 Generalized ladder operators
- 4 Generalization to operators on « infinite » linear combinations
- 5 Concluding remarks

Let R be a (unitary) ring (commutative or not). If M is a left R-module, then we denote by $\nu \colon R \to \operatorname{End}_{\mathcal{A}b}(M)$ the associated (module) structure map. (This is a ring map since it is a linear representation of R.)

Let R be a (unitary) ring (commutative or not). If M is a left R-module, then we denote by $\nu \colon R \to \operatorname{End}_{\mathcal{A}b}(M)$ the associated (module) structure map. (This is a ring map since it is a linear representation of R.)

A left R-module M is said to be a faithful module if the structure map is one-to-one, *i.e.*,

 $\ker\nu=(0)\;.$

Let R be a (unitary) ring (commutative or not). If M is a left R-module, then we denote by $\nu \colon R \to \operatorname{End}_{\mathcal{A}b}(M)$ the associated (module) structure map. (This is a ring map since it is a linear representation of R.)

A left R-module M is said to be a faithful module if the structure map is one-to-one, *i.e.*,

$$\ker\nu=(0)\;.$$

A left R-module M is said to be a simple module if it is non-zero and it has no non-trivial submodules.

Let R be a (unitary) ring (commutative or not). If M is a left R-module, then we denote by $\nu \colon R \to \operatorname{End}_{\mathcal{A}b}(M)$ the associated (module) structure map. (This is a ring map since it is a linear representation of R.)

A left R-module M is said to be a faithful module if the structure map is one-to-one, *i.e.*,

$$\ker\nu=(0)\;.$$

A left R-module M is said to be a simple module if it is non-zero and it has no non-trivial submodules.

The ring R is said to be (left-)primitive if it has a faithful simple left-module.

Topological part: Compact-open topology

Let X and Y be two topological spaces, and let C(X, Y) be the set of all continuous mappings from X to Y.

Topological part: Compact-open topology

Let X and Y be two topological spaces, and let $\mathcal{C}(X, Y)$ be the set of all continuous mappings from X to Y.

Let K be a compact subset of X and U be an open set in Y, then we define

$$V(K, U) = \{ f \in \mathcal{C}(X, Y) \colon f(K) \subseteq U \}$$

Then the collection of all such sets V(K, U) is a subbasis for the compact-open topology on C(X, Y).

Topological part: Compact-open topology

Let X and Y be two topological spaces, and let $\mathcal{C}(X, Y)$ be the set of all continuous mappings from X to Y.

Let K be a compact subset of X and U be an open set in Y, then we define

$$V(K, U) = \{ f \in \mathcal{C}(X, Y) \colon f(K) \subseteq U \} .$$

Then the collection of all such sets V(K, U) is a subbasis for the compact-open topology on C(X, Y).

This means that for every non-void open set V in the compact-open topology, and every $f \in V$, there exists a finite number K_1, \dots, K_n of compact sets in X and a finite number U_1, \dots, U_n of open sets in Y such that

$$f\in \bigcap_{i=1}^n V(K_i,U_i)\subseteq V$$
.

Compact-open topology: a remark

Let \mathbb{D} be a skew-field (also called a division ring), and let V be a left vector space over \mathbb{D} .

Compact-open topology: a remark

Let \mathbb{D} be a skew-field (also called a division ring), and let V be a left vector space over \mathbb{D} .

Let us assume that V has the discrete topology.
Compact-open topology: a remark

Let \mathbb{D} be a skew-field (also called a division ring), and let V be a left vector space over \mathbb{D} .

Let us assume that V has the discrete topology.

Then, the compact-open topology on $\operatorname{End}_{\mathbb{D}\text{-}\operatorname{Vect}}(V) \subseteq \mathcal{C}(V, V) = V^V$ is the same as the topology of simple convergence,

Compact-open topology: a remark

Let \mathbb{D} be a skew-field (also called a division ring), and let V be a left vector space over \mathbb{D} .

Let us assume that V has the discrete topology.

Then, the compact-open topology on $\operatorname{End}_{\mathbb{D}\text{-}\operatorname{Vect}}(V) \subseteq \mathcal{C}(V, V) = V^V$ is the same as the topology of simple convergence, *i.e.*, for every topological space X, a map $\phi: X \to \operatorname{End}_{\mathbb{D}\text{-}\operatorname{Vect}}(V)$ is continuous if, and only if, for every $v \in V$, the map

 $\phi_{\mathsf{v}} \colon \mathsf{x} \in \mathsf{X} \to \phi(\mathsf{x})(\mathsf{v}) \in \mathsf{V}$

is continuous.

Jacobson's density theorem

Let R be a unitary ring (commutative or not).

Jacobson's density theorem

Let R be a unitary ring (commutative or not).

The ring *R* is primitive if, and only if, it is a dense subring (in the compact-open topology) of a ring $\operatorname{End}_{\mathbb{D}-\mathcal{V}ect}(V)$ of linear operators of some (left) vector space *V* over a skew-field \mathbb{D} (where *V* is assumed to be discrete).

Let us assume that ${\mathbb K}$ is a field of characteristic zero.

Let us assume that ${\mathbb K}$ is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring.

Let us assume that $\mathbb K$ is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring. Indeed, it can be proved that $A(\mathbb{K})$ is a dense subring of $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(\mathbb{K}[z])$.

Let us assume that $\mathbb K$ is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring. Indeed, it can be proved that $A(\mathbb{K})$ is a dense subring of $\operatorname{End}_{\mathbb{K}-\mathcal{V}ect}(\mathbb{K}[z])$.

A much stronger result actually holds [Kurbanov and Maksimov, '86]:

Let us assume that ${\mathbb K}$ is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring. Indeed, it can be proved that $A(\mathbb{K})$ is a dense subring of $\operatorname{End}_{\mathbb{K}-\mathcal{V}ect}(\mathbb{K}[z])$.

A much stronger result actually holds [Kurbanov and Maksimov, '86]:

For every linear operator ϕ on $\mathbb{K}[z]$, there is a summable family $(\Omega_n)_{n \in \mathbb{N}}$ of elements of $A(\mathbb{K})$ such that

$$\phi = \sum_{n \ge 0} \Omega_n \; .$$

(Sum of a summable family.)

Let us assume that ${\mathbb K}$ is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring. Indeed, it can be proved that $A(\mathbb{K})$ is a dense subring of $\operatorname{End}_{\mathbb{K}-\mathcal{V}ect}(\mathbb{K}[z])$.

A much stronger result actually holds [Kurbanov and Maksimov, '86]:

For every linear operator ϕ on $\mathbb{K}[z]$, there is a summable family $(\Omega_n)_{n \in \mathbb{N}}$ of elements of $A(\mathbb{K})$ such that

$$\phi = \sum_{n \ge 0} \Omega_n \; .$$

(Sum of a summable family.)

Moreover, the family is uniquely determined by ϕ (*i.e.*, $(\Omega_n)_n$ is a function of ϕ) and may be even explicitly computed.

An example: the integration operator

Let I be the usual integration operator on $\mathbb{K}[z]$.

An example: the integration operator

Let I be the usual integration operator on $\mathbb{K}[z]$.

According to Jacobson's density theorem, I may be seen as a differential operator of infinite degree (!):

An example: the integration operator

Let I be the usual integration operator on $\mathbb{K}[z]$.

According to Jacobson's density theorem, I may be seen as a differential operator of infinite degree (!):

$$I = \sum_{n \ge 0} (-1)^n \frac{z^{n+1}}{(n+1)!} \frac{d^n}{dz}$$

٠

Table of contents

Weyl algebra

- 2 Jacobson's density theorem
- Generalized ladder operators
 - 4 Generalization to operators on « infinite » linear combinations

5 Concluding remarks

Let \mathbb{K} be any field (its characteristic may be $\neq 0$).

Let \mathbb{K} be any field (its characteristic may be \neq 0).

Let V be an infinite-countable dimensional \mathbb{K} -vector space,

Let \mathbb{K} be any field (its characteristic may be \neq 0).

Let V be an infinite-countable dimensional \mathbb{K} -vector space, and let $E = (e_n)_{n \in \mathbb{N}}$ be a given basis.

Let \mathbb{K} be any field (its characteristic may be \neq 0).

Let V be an infinite-countable dimensional \mathbb{K} -vector space, and let $E = (e_n)_{n \in \mathbb{N}}$ be a given basis.

The raising operator R_E (associated to E) is defined as

 $R_E e_n = e_{n+1} .$

Let \mathbb{K} be any field (its characteristic may be \neq 0).

Let V be an infinite-countable dimensional \mathbb{K} -vector space, and let $E = (e_n)_{n \in \mathbb{N}}$ be a given basis.

The raising operator R_E (associated to E) is defined as

 $R_E e_n = e_{n+1} .$

The lowering operator L_E (associated to E) is defined as

 $L_E e_{n+1} = e_n, \ L_E e_0 = 0$.

Ladder operators: an example

Let $V = \mathbb{K}[z]$ (\mathbb{K} being of characteristic zero).

Ladder operators: an example

Let $V = \mathbb{K}[z]$ (\mathbb{K} being of characteristic zero).

Then a^{\dagger} is the raising operator associated to $(z^n)_{n\geq 0}$,

Ladder operators: an example

Let $V = \mathbb{K}[z]$ (\mathbb{K} being of characteristic zero).

Then a^{\dagger} is the raising operator associated to $(z^n)_{n\geq 0}$,

while a is the lowering operator associated to $(\frac{z^n}{n!})_{n\geq 0}$.

Theorem [2010]

Let $E = (e_n)_n$ and $F = (f_n)_n$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}} \{ f_0 \} = \operatorname{span}_{\mathbb{K}} \{ e_0 \}$ (the two bases agree on degree zero).

Theorem [2010]

Let $E = (e_n)_n$ and $F = (f_n)_n$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}} \{ f_0 \} = \operatorname{span}_{\mathbb{K}} \{ e_0 \}$ (the two bases agree on degree zero).

Let ϕ be a linear operator of V.

Theorem [2010]

Let $E = (e_n)_n$ and $F = (f_n)_n$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}} \{ f_0 \} = \operatorname{span}_{\mathbb{K}} \{ e_0 \}$ (the two bases agree on degree zero).

Let ϕ be a linear operator of V.

Then, there is a family $(P_n)_{n\geq 0}$ of polynomials in one variable such that

 $\phi = \sum_{n \ge 0} P_n(R_E) L_F^n \; .$

Theorem [2010]

Let $E = (e_n)_n$ and $F = (f_n)_n$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}} \{ f_0 \} = \operatorname{span}_{\mathbb{K}} \{ e_0 \}$ (the two bases agree on degree zero).

Let ϕ be a linear operator of V.

Then, there is a family $(P_n)_{n\geq 0}$ of polynomials in one variable such that

$$\phi = \sum_{n \ge 0} P_n(R_E) L_F^n \; .$$

Moreover, $(P_n)_n$ is uniquely determined by ϕ ,

Theorem [2010]

Let $E = (e_n)_n$ and $F = (f_n)_n$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}} \{ f_0 \} = \operatorname{span}_{\mathbb{K}} \{ e_0 \}$ (the two bases agree on degree zero).

Let ϕ be a linear operator of V.

Then, there is a family $(P_n)_{n\geq 0}$ of polynomials in one variable such that

 $\phi = \sum_{n \ge 0} P_n(R_E) L_F^n \; .$

Moreover, $(P_n)_n$ is uniquely determined by ϕ ,

and the map $\phi \in \operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V) \mapsto (P_n)_n \in \mathbb{K}[z]^{\mathbb{N}}$ is a linear isomorphism.

Let $U = (u_n)_n$ be any sequence of elements of V, and let $P = \sum_{i \ge 0} P_i z^i \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_i).

Let
$$U = (u_n)_n$$
 be any sequence of elements of V , and let
 $P = \sum_{i \ge 0} P_i z^i \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_i).

Then we define $P(U) = \sum_{i \ge 0} P_i u_i$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let
$$U = (u_n)_n$$
 be any sequence of elements of V , and let
 $P = \sum_{i \ge 0} P_i z^i \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_i).

Then we define $P(U) = \sum_{i \ge 0} P_i u_i$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let $\lambda \in \mathbb{K}$, $\lambda \neq 0$ such that $\lambda e_0 = f_0$ (since *E* and *F* agree on degree zero).

Let
$$U = (u_n)_n$$
 be any sequence of elements of V , and let
 $P = \sum_{i \ge 0} P_i z^i \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_i).

Then we define $P(U) = \sum_{i \ge 0} P_i u_i$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let $\lambda \in \mathbb{K}$, $\lambda \neq 0$ such that $\lambda e_0 = f_0$ (since *E* and *F* agree on degree zero). The family $(P_n)_n$ of ϕ satisfies the following recursion:

Let
$$U = (u_n)_n$$
 be any sequence of elements of V , and let
 $P = \sum_{i \ge 0} P_i z^i \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_i).

Then we define $P(U) = \sum_{i \ge 0} P_i u_i$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let $\lambda \in \mathbb{K}$, $\lambda \neq 0$ such that $\lambda e_0 = f_0$ (since *E* and *F* agree on degree zero). The family $(P_n)_n$ of ϕ satisfies the following recursion: • $\lambda P_0(E) = \phi(f_0)$.

Let
$$U = (u_n)_n$$
 be any sequence of elements of V , and let
 $P = \sum_{i \ge 0} P_i z^i \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_i).

Then we define $P(U) = \sum_{i \ge 0} P_i u_i$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let $\lambda \in \mathbb{K}$, $\lambda \neq 0$ such that $\lambda e_0 = f_0$ (since E and F agree on degree zero). The family $(P_n)_n$ of ϕ satisfies the following recursion: • $\lambda P_0(E) = \phi(f_0)$. • $\lambda P_{n+1}(E) = \phi(f_{n+1}) - \sum_{k=0}^n P_k(R_E) f_{n+1-k}$.

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y \rangle\rangle$:

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y \rangle\rangle$:

$$\mathbb{K}\langle x,y\rangle\rangle = \{\sum_{n\geq 0} P_n(x)y^n \colon \forall n, \ P_n(x) \in \mathbb{K}[x]\}$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition.
Let us consider the following subset of $\mathbb{K}\langle\langle x, y \rangle\rangle$:

$$\mathbb{K}\langle x,y\rangle\rangle = \{\sum_{n\geq 0} P_n(x)y^n \colon \forall n, \ P_n(x) \in \mathbb{K}[x]\}$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition.Call it the space of non-commutative generating functions of polynomials.

Let us consider the following subset of $\mathbb{K}\langle\langle x, y \rangle\rangle$:

$$\mathbb{K}\langle x,y\rangle\rangle = \{\sum_{n\geq 0} P_n(x)y^n \colon \forall n, \ P_n(x) \in \mathbb{K}[x]\}$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition.Call it the space of non-commutative generating functions of polynomials.

Properties

• $\mathbb{K}\langle x, y \rangle \rangle$ is a sub \mathbb{K} -vector space of $\mathbb{K}\langle \langle x, y \rangle \rangle$.

Let us consider the following subset of $\mathbb{K}\langle\langle x, y \rangle\rangle$:

$$\mathbb{K}\langle x,y\rangle\rangle = \{\sum_{n\geq 0} P_n(x)y^n \colon \forall n, \ P_n(x) \in \mathbb{K}[x]\}$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition.Call it the space of non-commutative generating functions of polynomials.

- $\mathbb{K}\langle x, y \rangle \rangle$ is a sub \mathbb{K} -vector space of $\mathbb{K}\langle \langle x, y \rangle \rangle$.
- $\mathbb{K}\langle x, y \rangle \rangle$ is a (two-sided) $\mathbb{K}[x]$ -module with (left and right) actions given by

Let us consider the following subset of $\mathbb{K}\langle\langle x, y \rangle\rangle$:

$$\mathbb{K}\langle x,y\rangle\rangle = \{\sum_{n\geq 0} P_n(x)y^n \colon \forall n, \ P_n(x) \in \mathbb{K}[x]\}$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition.Call it the space of non-commutative generating functions of polynomials.

- $\mathbb{K}\langle x, y \rangle \rangle$ is a sub \mathbb{K} -vector space of $\mathbb{K}\langle \langle x, y \rangle \rangle$.
- $\mathbb{K}\langle x, y \rangle \rangle$ is a (two-sided) $\mathbb{K}[x]$ -module with (left and right) actions given by $Q(x) \cdot \sum_{n \ge 0} P_n(x)y^n = \sum_{n \ge 0} (Q(x)P_n(x))y^n$ and

Let us consider the following subset of $\mathbb{K}\langle\langle x, y \rangle\rangle$:

$$\mathbb{K}\langle x,y\rangle\rangle = \{\sum_{n\geq 0} P_n(x)y^n \colon \forall n, \ P_n(x) \in \mathbb{K}[x]\}$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition.Call it the space of non-commutative generating functions of polynomials.

- $\mathbb{K}\langle x, y \rangle \rangle$ is a sub \mathbb{K} -vector space of $\mathbb{K}\langle \langle x, y \rangle \rangle$.
- $\mathbb{K}\langle x, y \rangle \rangle$ is a (two-sided) $\mathbb{K}[x]$ -module with (left and right) actions given by $Q(x) \cdot \sum_{n \ge 0} P_n(x)y^n = \sum_{n \ge 0} (Q(x)P_n(x))y^n$ and $\sum_{n \ge 0} P_n(x)y^n \cdot Q(x) = \sum_{n \ge 0} (P_n(x)Q(x))y^n = \sum_{n \ge 0} (Q(x)P_n(x))y^n.$

Let us consider the following subset of $\mathbb{K}\langle\langle x, y \rangle\rangle$:

$$\mathbb{K}\langle x,y\rangle\rangle = \{\sum_{n\geq 0} P_n(x)y^n \colon \forall n, \ P_n(x) \in \mathbb{K}[x]\}$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition.Call it the space of non-commutative generating functions of polynomials.

- $\mathbb{K}\langle x, y \rangle \rangle$ is a sub \mathbb{K} -vector space of $\mathbb{K}\langle \langle x, y \rangle \rangle$.
- $\mathbb{K}\langle x, y \rangle \rangle$ is a (two-sided) $\mathbb{K}[x]$ -module with (left and right) actions given by $Q(x) \cdot \sum_{n \ge 0} P_n(x) y^n = \sum_{n \ge 0} (Q(x)P_n(x)) y^n$ and $\sum_{n \ge 0} P_n(x) y^n \cdot Q(x) = \sum_{n \ge 0} (P_n(x)Q(x)) y^n = \sum_{n \ge 0} (Q(x)P_n(x)) y^n.$
- Actually it is the completion (for the product topology with $\mathbb{K}[x]$ discrete) of the $\mathbb{K}[x]$ -module of all $\sum_{n\geq 0} P_n(x)y^n \in \mathbb{K}\langle\langle x, y \rangle\rangle$ where only finitely many $P_n(x) \neq 0$.

Remarks

• We note that $xy = y \cdot x$ but yx does not belong to $\mathbb{K}\langle x, y \rangle \rangle$.

Remarks

- We note that $xy = y \cdot x$ but yx does not belong to $\mathbb{K}\langle x, y \rangle \rangle$.
- Actually, $\mathbb{K}\langle x, y \rangle \rangle$ is the completion of the free $\mathbb{K}[x]$ -module on basis { $y^n : n \ge 0$ }, namely

 $\mathbb{K}[x] \otimes_{\mathbb{K}} \operatorname{span}_{\mathbb{K}} \{ y^n \colon n \ge 0 \}$

(with the obvious $\mathbb{K}[x]$ -action), with respect to the coarsest topology that makes continuous the maps $x^i \otimes y^j \mapsto x^i$ for $\mathbb{K}[x]$ discrete.

According to the previous theorem, there exists a $\mathbb{K}\text{-linear}$ isomorphism

$$\pi_{E,F} \colon \mathbb{K}\langle x, y \rangle \rangle \to \mathsf{End}_{\mathbb{K}\text{-}\mathscr{V}\!\mathit{ect}}(V)$$

which maps
$$\sum_{n\geq 0} P_n(x)y^n$$
 to $\sum_{n\geq 0} P_n(R_E)L_F^n$.

According to the previous theorem, there exists a \mathbb{K} -linear isomorphism

$$\pi_{E,F} \colon \mathbb{K}\langle x, y \rangle \rangle \to \mathsf{End}_{\mathbb{K}\text{-}\mathscr{V}\!\mathit{ect}}(V)$$

which maps
$$\sum_{n\geq 0} P_n(x)y^n$$
 to $\sum_{n\geq 0} P_n(R_E)L_F^n$.

It is an evaluation map: $x \leftarrow R_E$ and $y \leftarrow L_F$.

According to the previous theorem, there exists a \mathbb{K} -linear isomorphism

$$\pi_{E,F} \colon \mathbb{K}\langle x, y \rangle \rangle \to \mathsf{End}_{\mathbb{K}\text{-}\mathscr{V}\!\mathit{ect}}(V)$$

which maps $\sum_{n\geq 0} P_n(x)y^n$ to $\sum_{n\geq 0} P_n(R_E)L_F^n$.

It is an evaluation map: $x \leftarrow R_E$ and $y \leftarrow L_F$.

Remark

Note that it should be the case that $xy \neq yx$ for if xy = yx, then $\pi_{E,F}(xy) = R_E L_F \neq L_F R_E = \pi_{E,F}(yx)$.

According to the previous theorem, there exists a \mathbb{K} -linear isomorphism

$$\pi_{E,F} \colon \mathbb{K}\langle x, y \rangle \rangle \to \mathsf{End}_{\mathbb{K}\text{-}\mathscr{V}\!\mathit{ect}}(V)$$

which maps $\sum_{n\geq 0} P_n(x)y^n$ to $\sum_{n\geq 0} P_n(R_E)L_F^n$.

It is an evaluation map: $x \leftarrow R_E$ and $y \leftarrow L_F$.

Remark

Note that it should be the case that $xy \neq yx$ for if xy = yx, then $\pi_{E,F}(xy) = R_E L_F \neq L_F R_E = \pi_{E,F}(yx)$.

Let $\phi \in \operatorname{End}_{\mathbb{K}-\operatorname{Vlct}}(V)$. The unique element $S \in \mathbb{K}\langle x, y \rangle$ such that $\pi_{E,F}(S) = \phi$ may be called the normal form of ϕ with respect to the bases E, F of V.

Table of contents

Weyl algebra

- 2 Jacobson's density theorem
- 3 Generalized ladder operators

Generalization to operators on « infinite » linear combinations

5 Concluding remarks

A certain (Cauchy) completion of a graded vector space

Let us consider again an infinite-countable dimensional \mathbb{K} -vector space V with a given basis $E = (e_n)_{n \ge 0}$.

A topology may be defined for V which «agrees» with the decomposition

$$V = \bigoplus_{n \ge 0} \operatorname{span}_{\mathbb{K}}(e_n)$$

in the following way:

A topology may be defined for V which «agrees» with the decomposition

$$V = \bigoplus_{n \ge 0} \operatorname{span}_{\mathbb{K}}(e_n)$$

in the following way: define a valuation $\nu \colon V \to \mathbb{N} \sqcup \{\infty\}$ such that $\nu(v) = \inf\{ n \ge 0 \colon \langle v \mid e_n \rangle \neq 0 \}$ for $v \ne 0$ and $\nu(0) = \infty$.

A topology may be defined for V which «agrees» with the decomposition

$$V = \bigoplus_{n \ge 0} \operatorname{span}_{\mathbb{K}}(e_n)$$

in the following way: define a valuation $\nu \colon V \to \mathbb{N} \sqcup \{\infty\}$ such that $\nu(v) = \inf\{ n \ge 0 \colon \langle v \mid e_n \rangle \neq 0 \}$ for $v \ne 0$ and $\nu(0) = \infty$.

With respect to the topology induced by this valuation, we can describe the completion \widehat{V} of V as the infinite direct product $\prod_{n>0} \operatorname{span}_{\mathbb{K}}(e_n)$.

A topology may be defined for V which «agrees» with the decomposition

$$V = \bigoplus_{n \ge 0} \operatorname{span}_{\mathbb{K}}(e_n)$$

in the following way: define a valuation $\nu \colon V \to \mathbb{N} \sqcup \{\infty\}$ such that $\nu(v) = \inf\{ n \ge 0 \colon \langle v \mid e_n \rangle \neq 0 \}$ for $v \ne 0$ and $\nu(0) = \infty$.

With respect to the topology induced by this valuation, we can describe the completion \widehat{V} of V as the infinite direct product $\prod_{n>0} \operatorname{span}_{\mathbb{K}}(e_n)$.

Its elements are infinite linear combinations:

$$\sum_{n\geq 0} \alpha_n e_n$$

where all coefficients α_n are allowed to be different from zero.

Duality

Actually V and \widehat{V} may be paired by

$$\langle S \mid P \rangle = \sum_{n \ge 0} \langle S \mid e_n \rangle \langle P \mid e_n \rangle$$

where $S \in \widehat{V}$ and $P \in V$ (similarly to $\mathbb{K}\langle\langle X \rangle\rangle$ and $\mathbb{K}\langle X \rangle$).

Duality

Actually V and \widehat{V} may be paired by

$$\langle S \mid P \rangle = \sum_{n \ge 0} \langle S \mid e_n \rangle \langle P \mid e_n \rangle$$

where $S \in \widehat{V}$ and $P \in V$ (similarly to $\mathbb{K}\langle\langle X \rangle\rangle$ and $\mathbb{K}\langle X \rangle$).

Using this (non-degenerate) pairing,

 $V^* \cong \widehat{V}$

and

 $\widehat{V}' \cong V$.

Duality allows us to define transpose operators.

Duality allows us to define transpose operators.

Let $\phi \in \operatorname{End}_{\mathbb{K}\text{-}\operatorname{Vect}}(V)$ and $\psi \in \operatorname{End}_{\mathbb{K}\text{-}\operatorname{Top}\operatorname{Vect}}(\widehat{V})$.

Duality allows us to define transpose operators.

$$\mathsf{Let} \ \phi \in \mathsf{End}_{\mathbb{K}\text{-}\mathcal{V}\!ect}(\mathcal{V}) \ \mathsf{and} \ \psi \in \mathsf{End}_{\mathbb{K}\text{-}\mathcal{T}\!op\mathcal{V}\!ect}(\widehat{\mathcal{V}}).$$

Then we define $^{\dagger}\phi\in\mathsf{End}_{\mathbb{K}-\mathscr{V}ect\mathcal{T}op}(\widehat{V})$ by

 $\langle^{\dagger}\phi(S) \mid P \rangle = \langle S \mid \phi(P) \rangle$

and

Duality allows us to define transpose operators.

$$\mathsf{Let} \,\,\phi \in \mathsf{End}_{\mathbb{K}\text{-}\!\operatorname{\mathscr{V}\!ect}}(\mathsf{V}) \,\,\mathsf{and}\,\,\psi \in \mathsf{End}_{\mathbb{K}\text{-}\!\operatorname{\operatorname{\mathcal{T}\!op}\!}\!\operatorname{\mathscr{V}\!ect}}(\widehat{\mathsf{V}}).$$

Then we define $^{\dagger}\phi\in\mathsf{End}_{\mathbb{K}\text{-}\mathscr{V}ect\mathcal{T}op}(\widehat{V})$ by

 $\langle {}^{\dagger}\phi(S) \mid P \rangle = \langle S \mid \phi(P) \rangle$

and $\psi^{\dagger} \in \mathsf{End}_{\mathbb{K}\text{-}\mathcal{V}\!ect}(V)$ by

 $\langle S \mid \psi^{\dagger}(P) \rangle = \langle \psi(S) \mid P \rangle \; .$

Decomposition of continuous endomorphisms

Using this duality and transpose, we can prove that any continuous operator ψ on \widehat{V} admits a decomposition as the sum of a summable family

$$\psi = \sum_{n\geq 0} R^n P_n(L) \; .$$

Decomposition of continuous endomorphisms

Using this duality and transpose, we can prove that any continuous operator ψ on \widehat{V} admits a decomposition as the sum of a summable family

$$\psi = \sum_{n\geq 0} R^n P_n(L) \; .$$

If follows in particular that we have a linear isomorphism

$$\operatorname{End}_{\mathbb{K}\operatorname{-}\!\operatorname{Vect}}(V)\cong\operatorname{End}_{\mathbb{K}\operatorname{-}\!\operatorname{Top}\!\operatorname{Vect}}(\widehat{V})$$
.

Table of contents

Weyl algebra

- 2 Jacobson's density theorem
- 3 Generalized ladder operators
- 4 Generalization to operators on « infinite » linear combinations

6 Concluding remarks

Any sequence of polynomials

 $(P_n(x))_{n\in\mathbb{N}}\in\mathbb{K}[x]^{\mathbb{N}}$

is bi-univocally transformed into a doubly-infinite matrix with coefficients in $\mathbb K$

 $(\langle P_i(x) \mid x^j \rangle)_{i,j \geq 0}$

where $\langle P \mid x^i \rangle$ is the coefficient of the monomial x^i in the polynomial P

(the so-called Dirac-Schützenberger bracket) in such a way that

$$P = \sum_{i \ge 0} \langle P \mid x^i \rangle x^i$$

(sum with only finitely many non-zero terms).

Note that any such matrix satisfies the following:

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\langle P_i(x) | x^j \rangle \neq 0$.

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\langle P_i(x) | x^j \rangle \neq 0$.

More generally, let $M = (M_{i,j})_{i,j\geq 0}$ be an infinite matrix.

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\langle P_i(x) | x^j \rangle \neq 0$.

More generally, let $M = (M_{i,j})_{i,j\geq 0}$ be an infinite matrix. We say that M is row-finite if for each i, there are only finitely many j such that $M_{i,j} \neq 0$.

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\langle P_i(x) | x^j \rangle \neq 0$.

More generally, let $M = (M_{i,j})_{i,j\geq 0}$ be an infinite matrix. We say that M is row-finite if for each i, there are only finitely many j such that $M_{i,j} \neq 0$.

So it follows that the set $\mathbb{K}[x]^{\mathbb{N}}$ of sequences of polynomials and the set $\mathbb{K}^{\mathbb{N}\times(\mathbb{N})}$ are equipotent by $(P_n)_n \mapsto (\langle P_i(x) \mid x^j \rangle)_{i,j}$.

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\langle P_i(x) | x^j \rangle \neq 0$.

More generally, let $M = (M_{i,j})_{i,j\geq 0}$ be an infinite matrix. We say that M is row-finite if for each i, there are only finitely many j such that $M_{i,j} \neq 0$.

So it follows that the set $\mathbb{K}[x]^{\mathbb{N}}$ of sequences of polynomials and the set $\mathbb{K}^{\mathbb{N}\times(\mathbb{N})}$ are equipotent by $(P_n)_n \mapsto (\langle P_i(x) \mid x^j \rangle)_{i,j}$.

Actually there are isomorphic as K-vector spaces.

 $\operatorname{End}_{\mathbb{K}\operatorname{-}\mathcal{V}ect}(V)\cong_{\mathbb{K}\operatorname{-}Vect}\mathbb{K}\langle x,y\rangle\rangle\cong_{\mathbb{K}\operatorname{-}Vect}\mathbb{K}[x]^{\mathbb{N}}\cong_{\mathbb{K}\operatorname{-}Vect}\mathbb{K}^{\mathbb{N}\times(\mathbb{N})}$.

 $\mathsf{End}_{\mathbb{K}\operatorname{-}\mathcal{V}ect}(V) \cong_{\mathbb{K}\operatorname{-}Vect} \mathbb{K}\langle x, y \rangle \rangle \cong_{\mathbb{K}\operatorname{-}Vect} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K}\operatorname{-}Vect} \mathbb{K}^{\mathbb{N}\times(\mathbb{N})}$.

Moreover, both spaces $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V)$ and $\mathbb{K}^{\mathbb{N}\times(\mathbb{N})}$ are \mathbb{K} -algebras.
$\mathsf{End}_{\mathbb{K}\text{-}\mathscr{V}\!\mathit{ect}}(V) \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}\langle x, y \rangle \rangle \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}^{\mathbb{N}\times(\mathbb{N})} .$

Moreover, both spaces $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V)$ and $\mathbb{K}^{\mathbb{N}\times(\mathbb{N})}$ are \mathbb{K} -algebras. But the linear isomorphism that maps a linear operator $\phi = \sum_{i\geq 0} P_i(R_E)L_F^i$ to the

row-finite matrix $(\langle P_i(x) | x^j)_{i,j \ge 0}$ is not a ring map.

 $\mathsf{End}_{\mathbb{K}\text{-}\mathscr{V}\!\mathit{ect}}(V) \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}\langle x, y \rangle \rangle \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}^{\mathbb{N}\times(\mathbb{N})} .$

Moreover, both spaces $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V)$ and $\mathbb{K}^{\mathbb{N}\times(\mathbb{N})}$ are \mathbb{K} -algebras. But the linear isomorphism that maps a linear operator $\phi = \sum_{i\geq 0} P_i(R_E)L_F^i$ to the row-finite matrix $(\langle P_i(x) \mid x^j)_{i,i\geq 0}$ is not a ring map.

However, we can transport the matrix product on $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V)$ (by isomorphism):

 $\mathsf{End}_{\mathbb{K}\text{-}\mathscr{V}\!\mathit{ect}}(V) \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}\langle x, y \rangle \rangle \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K}\text{-}\mathit{Vect}} \mathbb{K}^{\mathbb{N}\times(\mathbb{N})} .$

Moreover, both spaces $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V)$ and $\mathbb{K}^{\mathbb{N}\times(\mathbb{N})}$ are \mathbb{K} -algebras. But the linear isomorphism that maps a linear operator $\phi = \sum_{i\geq 0} P_i(R_E)L_F^i$ to the row-finite matrix $(\langle P_i(x) \mid x^j)_{i,i\geq 0}$ is not a ring map.

However, we can transport the matrix product on $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V)$ (by isomorphism):

$$\left(\sum_{i\geq 0} P_i(R_E) L_F^i\right) \# \left(\sum_{i\geq 0} Q_i(R_E) L_F^i\right) = \sum_{i\geq 0} \left(\sum_{j\geq 0} \langle P_i(x) \mid x^j \rangle Q_j(R_E)\right) L_F^i$$

This « new » product # on $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V)$ is a generalization of the umbral composition of polynomial sequences (*i.e.*, sequences of polynomials $(P_n(x))_n$ such that for all n, deg $P_n = n$, or, equivalently, the associated matrix is lower triangular):

This « new » product # on $\operatorname{End}_{\mathbb{K}-\operatorname{Vect}}(V)$ is a generalization of the umbral composition of polynomial sequences (*i.e.*, sequences of polynomials $(P_n(x))_n$ such that for all n, deg $P_n = n$, or, equivalently, the associated matrix is lower triangular):

$$(p_n(x))_n \# (q_n(x))_n = \left(\sum_{k \ge 0} \langle p_n(x) \mid x^k \rangle q_k(x) \right)_n$$

A polynomial sequence $(p_n(x))_n$ (thus deg $p_n = n$) is said to be a Sheffer sequence if there are two formal power series g and ϕ such that $g(0) \neq 0$ and $\phi(0) = 0$, $\phi'(0) \neq 0$ such that

$$\sum_{n\geq 0} p_n(x)y^n = g(y)e^{x\phi(y)} \in \mathbb{K}[[x,y]] .$$

A polynomial sequence $(p_n(x))_n$ (thus deg $p_n = n$) is said to be a Sheffer sequence if there are two formal power series g and ϕ such that $g(0) \neq 0$ and $\phi(0) = 0$, $\phi'(0) \neq 0$ such that

$$\sum_{n\geq 0} p_n(x)y^n = g(y)e^{x\phi(y)} \in \mathbb{K}[[x,y]] .$$

Sheffer sequences form a group under umbral composition which is isomorphic to the Riordan group (following Shapiro's terminology) $\mathbb{K}[x]^* \rtimes x\mathbb{K}[x]$, also called the group of substitutions with prefunction.

A polynomial sequence $(p_n(x))_n$ (thus deg $p_n = n$) is said to be a Sheffer sequence if there are two formal power series g and ϕ such that $g(0) \neq 0$ and $\phi(0) = 0$, $\phi'(0) \neq 0$ such that

$$\sum_{n\geq 0} p_n(x)y^n = g(y)e^{x\phi(y)} \in \mathbb{K}[[x,y]] .$$

Sheffer sequences form a group under umbral composition which is isomorphic to the Riordan group (following Shapiro's terminology) $\mathbb{K}[x]^* \rtimes x\mathbb{K}[x]$, also called the group of substitutions with prefunction.

As lower triangular matrices, Sheffer sequences form a sub-group of the group of invertible elements of the (completed) incidence algebra $I(\mathbb{N}^{op}, \mathbb{K})$ of the integers (with opposite ordering).

A polynomial sequence $(p_n(x))_n$ (thus deg $p_n = n$) is said to be a Sheffer sequence if there are two formal power series g and ϕ such that $g(0) \neq 0$ and $\phi(0) = 0$, $\phi'(0) \neq 0$ such that

$$\sum_{n\geq 0} p_n(x)y^n = g(y)e^{x\phi(y)} \in \mathbb{K}[[x,y]] .$$

Sheffer sequences form a group under umbral composition which is isomorphic to the Riordan group (following Shapiro's terminology) $\mathbb{K}[x]^* \rtimes x\mathbb{K}[x]$, also called the group of substitutions with prefunction.

As lower triangular matrices, Sheffer sequences form a sub-group of the group of invertible elements of the (completed) incidence algebra $I(\mathbb{N}^{op}, \mathbb{K})$ of the integers (with opposite ordering).

Need to understand the relations between these combinatorial objects in the setting of decomposition of operators.

Infinite commutation formula

As any operator, the commutator $[L_F, R_E]$ admits a decomposition in the form $\sum_{n\geq 0} P_n(R_E)L_F^n$.

Infinite commutation formula

As any operator, the commutator $[L_F, R_E]$ admits a decomposition in the form $\sum_{n\geq 0} P_n(R_E)L_F^n$.

We obtain an infinite commutation formula !

Dziękuję za uwagę.