
Generalized ladder operators
and a « normal form » for endomorphisms

Combinatorial Physics III
24-26 November, 2011, Kraków

Laurent Poinsot

LIPN - UMR CNRS 7030
Université Paris-Nord XIII - Institut Galilée

1 / 39



Table of contents

1 Weyl algebra

2 Jacobson’s density theorem

3 Generalized ladder operators

4 Generalization to operators on « infinite » linear combinations

5 Concluding remarks

2 / 39



Table of contents

1 Weyl algebra

2 Jacobson’s density theorem

3 Generalized ladder operators

4 Generalization to operators on « infinite » linear combinations

5 Concluding remarks

3 / 39



Weyl algebra: definition

Let K be any field.

The (first) Weyl algebra A(K) is defined as the quotient algebra of the
algebra of polynomials K〈x , y〉 in non-commuting variables by the
two-sided ideal generated by the relation [x , y ] = 1.

Let a = π(x) and a† = π(y) where π : K〈x , y〉� A(K) is the canonical
epimorphism.
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Support of a polynomial

Definition: Support of a polynomial
The support Supp(P) of a polynomial P ∈ K〈X 〉 is the (finite) set of words
w ∈ X ∗ such that 〈P | w〉 6= 0.

5 / 39



Weyl algebra: normal ordering basis

As a K-vector space, A(K) is free with basis { (a†)iaj }i ,j∈N (this is a
general fact from the theory of Ore extensions).

This means that for every Ω ∈ A(K) there is a unique polynomial, call it

Pol (Ω) ∈ K〈x , y〉

with support Supp(Pol (Ω)) ⊆ { y ix j : i , j ∈ N } such that π(Pol (Ω)) = Ω
(in other terms, Pol : A(K) ↪→ K〈x , y〉 is a section of π).
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Weyl algebra: normal ordering - formal definition

We call normal ordering of a polynomial P ∈ K〈x , y〉, the polynomial

N (P) = Pol (π(P)) ∈ K〈x , y〉 .

Remark
Note that P and N (P) define the same element of A since
π(N (P)) = π(Pol (π(P))) = π(P).

7 / 39



Weyl algebra: normal ordering - formal definition

We call normal ordering of a polynomial P ∈ K〈x , y〉, the polynomial

N (P) = Pol (π(P)) ∈ K〈x , y〉 .

Remark
Note that P and N (P) define the same element of A since
π(N (P)) = π(Pol (π(P))) = π(P).

7 / 39



Weyl algebra: normal ordering - an example

Let P = y2xy + x3yx ∈ Q〈x , y〉, then N (P) = y2 + y3x + 3x3 + yx4.

Moreover,
π(P) = (a†)2aa† + a3a†a ∈ A(Q)

and
Pol ((a†)2aa† + a3a†a) = y2 + y3x + 3x3 + yx4

in such a way that

π(P) = (a†)2 + (a†)3a + 3a3 + (a†)a4 .
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Weyl algebra as an algebra of differential operators
Let us assume that K is a field of characteristic zero (i.e., Q is the prime
subfield of K).

We define a linear representation ρ of A(K) on K[z ] as follows:

- Define ρ(x)(p) = d
dz p and ρ(y)(p) = zp for p ∈ K[z ].

- Extend ρ by linearity as a K-algebra map ρ from K〈x , y〉 to
EndK-Vect (K[z ]).

- Since ρ([x , y ]) = [ρ(x), ρ(y)] = IdK[z], it follows that there is a unique
algebra map ρ̃ : A(K)→ EndK-Vect (K[z ]) such that

ρ̃ ◦ π = ρ .

This representation is faithful, i.e., ker ρ̃ = (0) in such a way that
A(K) may be identified with the sub-algebra of EndK-Vect (K[z ])
generated by the multiplication by z and the formal derivation d

dz .

9 / 39



Weyl algebra as an algebra of differential operators
Let us assume that K is a field of characteristic zero (i.e., Q is the prime
subfield of K).

We define a linear representation ρ of A(K) on K[z ] as follows:

- Define ρ(x)(p) = d
dz p and ρ(y)(p) = zp for p ∈ K[z ].

- Extend ρ by linearity as a K-algebra map ρ from K〈x , y〉 to
EndK-Vect (K[z ]).

- Since ρ([x , y ]) = [ρ(x), ρ(y)] = IdK[z], it follows that there is a unique
algebra map ρ̃ : A(K)→ EndK-Vect (K[z ]) such that

ρ̃ ◦ π = ρ .

This representation is faithful, i.e., ker ρ̃ = (0) in such a way that
A(K) may be identified with the sub-algebra of EndK-Vect (K[z ])
generated by the multiplication by z and the formal derivation d

dz .

9 / 39



Weyl algebra as an algebra of differential operators
Let us assume that K is a field of characteristic zero (i.e., Q is the prime
subfield of K).

We define a linear representation ρ of A(K) on K[z ] as follows:

- Define ρ(x)(p) = d
dz p and ρ(y)(p) = zp for p ∈ K[z ].

- Extend ρ by linearity as a K-algebra map ρ from K〈x , y〉 to
EndK-Vect (K[z ]).

- Since ρ([x , y ]) = [ρ(x), ρ(y)] = IdK[z], it follows that there is a unique
algebra map ρ̃ : A(K)→ EndK-Vect (K[z ]) such that

ρ̃ ◦ π = ρ .

This representation is faithful, i.e., ker ρ̃ = (0) in such a way that
A(K) may be identified with the sub-algebra of EndK-Vect (K[z ])
generated by the multiplication by z and the formal derivation d

dz .

9 / 39



Weyl algebra as an algebra of differential operators
Let us assume that K is a field of characteristic zero (i.e., Q is the prime
subfield of K).

We define a linear representation ρ of A(K) on K[z ] as follows:

- Define ρ(x)(p) = d
dz p and ρ(y)(p) = zp for p ∈ K[z ].

- Extend ρ by linearity as a K-algebra map ρ from K〈x , y〉 to
EndK-Vect (K[z ]).

- Since ρ([x , y ]) = [ρ(x), ρ(y)] = IdK[z], it follows that there is a unique
algebra map ρ̃ : A(K)→ EndK-Vect (K[z ]) such that

ρ̃ ◦ π = ρ .

This representation is faithful, i.e., ker ρ̃ = (0) in such a way that
A(K) may be identified with the sub-algebra of EndK-Vect (K[z ])
generated by the multiplication by z and the formal derivation d

dz .

9 / 39



Weyl algebra as an algebra of differential operators
Let us assume that K is a field of characteristic zero (i.e., Q is the prime
subfield of K).

We define a linear representation ρ of A(K) on K[z ] as follows:

- Define ρ(x)(p) = d
dz p and ρ(y)(p) = zp for p ∈ K[z ].

- Extend ρ by linearity as a K-algebra map ρ from K〈x , y〉 to
EndK-Vect (K[z ]).

- Since ρ([x , y ]) = [ρ(x), ρ(y)] = IdK[z], it follows that there is a unique
algebra map ρ̃ : A(K)→ EndK-Vect (K[z ]) such that

ρ̃ ◦ π = ρ .

This representation is faithful, i.e., ker ρ̃ = (0) in such a way that
A(K) may be identified with the sub-algebra of EndK-Vect (K[z ])
generated by the multiplication by z and the formal derivation d

dz .

9 / 39



Weyl algebra as an algebra of differential operators
Let us assume that K is a field of characteristic zero (i.e., Q is the prime
subfield of K).

We define a linear representation ρ of A(K) on K[z ] as follows:

- Define ρ(x)(p) = d
dz p and ρ(y)(p) = zp for p ∈ K[z ].

- Extend ρ by linearity as a K-algebra map ρ from K〈x , y〉 to
EndK-Vect (K[z ]).

- Since ρ([x , y ]) = [ρ(x), ρ(y)] = IdK[z], it follows that there is a unique
algebra map ρ̃ : A(K)→ EndK-Vect (K[z ]) such that

ρ̃ ◦ π = ρ .

This representation is faithful, i.e., ker ρ̃ = (0) in such a way that
A(K) may be identified with the sub-algebra of EndK-Vect (K[z ])
generated by the multiplication by z and the formal derivation d

dz .

9 / 39



Weyl algebra as an algebra of differential operators - an
example

Let Ω = (a†)2aa† + a3a†a ∈ A(K).

Then for every p ∈ K[z ],

ρ̃(Ω)(p) = z2p + z3p′ + 3p′′′ + zp′′′′ .
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Ladder operators

As operators on K[z ], a and a† are graded operators of degree −1 and 1
relatively to the usual degree of polynomials.

Thus, a is a lowering operator, while a† is a raising operator.

Both of them are ladder operators.
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Algebraic part of Jacobson’s theorem

Let R be a (unitary) ring (commutative or not). If M is a left R-module,
then we denote by ν : R → EndAb(M) the associated (module) structure
map. (This is a ring map since it is a linear representation of R .)

A left R-module M is said to be a faithful module if the structure map is
one-to-one, i.e.,

ker ν = (0) .

A left R-module M is said to be a simple module if it is non-zero and it has
no non-trivial submodules.

The ring R is said to be (left-)primitive if it has a faithful simple
left-module.
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Topological part: Compact-open topology
Let X and Y be two topological spaces, and let C(X ,Y ) be the set of all
continuous mappings from X to Y .

Let K be a compact subset of X and U be an open set in Y , then we define

V (K ,U) = { f ∈ C(X ,Y ) : f (K ) ⊆ U } .

Then the collection of all such sets V (K ,U) is a subbasis for the
compact-open topology on C(X ,Y ).

This means that for every non-void open set V in the compact-open
topology, and every f ∈ V , there exists a finite number K1, · · · ,Kn of
compact sets in X and a finite number U1, · · · ,Un of open sets in Y such
that

f ∈
n⋂

i=1

V (Ki ,Ui ) ⊆ V .
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Compact-open topology: a remark

Let D be a skew-field (also called a division ring), and let V be a left
vector space over D.

Let us assume that V has the discrete topology.

Then, the compact-open topology on EndD-Vect (V ) ⊆ C(V ,V ) = V V is the
same as the topology of simple convergence, i.e., for every topological
space X , a map φ : X → EndD-Vect (V ) is continuous if, and only if, for
every v ∈ V , the map

φv : x ∈ X → φ(x)(v) ∈ V

is continuous.
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Jacobson’s density theorem

Let R be a unitary ring (commutative or not).

The ring R is primitive if, and only if, it is a dense subring (in the
compact-open topology) of a ring EndD-Vect (V ) of linear operators of some
(left) vector space V over a skew-field D (where V is assumed to be
discrete).
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A consequence of Jacobson’s density theorem

Let us assume that K is a field of characteristic zero.

Then A(K) is a primitive ring. Indeed, it can be proved that A(K) is a
dense subring of EndK-Vect (K[z ]).

A much stronger result actually holds [Kurbanov and Maksimov, ’86]:

For every linear operator φ on K[z ], there is a summable family (Ωn)n∈N of
elements of A(K) such that

φ =
∑
n≥0

Ωn .

(Sum of a summable family.)

Moreover, the family is uniquely determined by φ (i.e., (Ωn)n is a function
of φ) and may be even explicitly computed.
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An example: the integration operator

Let I be the usual integration operator on K[z ].

According to Jacobson’s density theorem, I may be seen as a differential
operator of infinite degree (!):

I =
∑
n≥0

(−1)n zn+1

(n + 1)!

dn

dz
.
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Ladder operators: definition

Let K be any field (its characteristic may be 6= 0).

Let V be an infinite-countable dimensional K-vector space, and let
E = (en)n∈N be a given basis.

The raising operator RE (associated to E ) is defined as

REen = en+1 .

The lowering operator LE (associated to E ) is defined as

LEen+1 = en, LEe0 = 0 .
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Ladder operators: an example

Let V = K[z ] (K being of characteristic zero).

Then a† is the raising operator associated to (zn)n≥0,

while a is the lowering operator associated to ( zn

n! )n≥0.
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Decomposition of endomorphisms

Theorem [2010]
Let E = (en)n and F = (fn)n be two bases of V over the field K such that
spanK{ f0 } = spanK{ e0 } (the two bases agree on degree zero).

Let φ be a linear operator of V .

Then, there is a family (Pn)n≥0 of polynomials in one variable such that

φ =
∑
n≥0

Pn(RE )Ln
F .

Moreover, (Pn)n is uniquely determined by φ,

and the map φ ∈ EndK-Vect (V ) 7→ (Pn)n ∈ K[z ]N is a linear isomorphism.
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Decomposition of endomorphisms: a remark
The family (Pn)n of a linear endomorphism φ may be explicitely computed
by recursion.

Let U = (un)n be any sequence of elements of V , and let
P =

∑
i≥0

Piz i ∈ K[z ] (sum with finitely many non-zero coefficients Pi ).

Then we define P(U) =
∑
i≥0

Piui and if U is a basis of V , then P 7→ P(U)

is a linear isomorphism from K[z ] into V .

Let λ ∈ K, λ 6= 0 such that λe0 = f0 (since E and F agree on degree
zero). The family (Pn)n of φ satisfies the following recursion:

λP0(E ) = φ(f0).

λPn+1(E ) = φ(fn+1)−
n∑

k=0

Pk(RE )fn+1−k .
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A normal form for operators
Let us consider the following subset of K〈〈x , y〉〉:

K〈x , y〉〉 = {
∑
n≥0

Pn(x)yn : ∀n, Pn(x) ∈ K[x ] }

where the (non-commutative) concatenation is denoted by a simple
juxtaposition.Call it the space of non-commutative generating functions of
polynomials.

Properties
K〈x , y〉〉 is a sub K-vector space of K〈〈x , y〉〉.
K〈x , y〉〉 is a (two-sided) K[x ]-module with (left and right) actions
given by Q(x) ·

∑
n≥0

Pn(x)yn =
∑
n≥0

(Q(x)Pn(x))yn and∑
n≥0

Pn(x)yn · Q(x) =
∑
n≥0

(Pn(x)Q(x))yn =
∑
n≥0

(Q(x)Pn(x))yn.

Actually it is the completion (for the product topology with K[x ]
discrete) of the K[x ]-module of all

∑
n≥0 Pn(x)yn ∈ K〈〈x , y〉〉 where

only finitely many Pn(x) 6= 0.
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A normal form for operators

Remarks
We note that xy = y · x but yx does not belong to K〈x , y〉〉.

Actually, K〈x , y〉〉 is the completion of the free K[x ]-module on basis
{ yn : n ≥ 0 }, namely

K[x ]⊗K spanK{ yn : n ≥ 0 }

(with the obvious K[x ]-action), with respect to the coarsest topology
that makes continuous the maps x i ⊗ y j 7→ x i for K[x ] discrete.
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A normal form for operators

According to the previous theorem, there exists a K-linear isomorphism

πE ,F : K〈x , y〉〉 → EndK-Vect (V )

which maps
∑
n≥0

Pn(x)yn to
∑
n≥0

Pn(RE )Ln
F .

It is an evaluation map: x ← RE and y ← LF .

Remark
Note that it should be the case that xy 6= yx for if xy = yx , then
πE ,F (xy) = RELF 6= LFRE = πE ,F (yx).

Let φ ∈ EndK-Vect (V ). The unique element S ∈ K〈x , y〉〉 such that
πE ,F (S) = φ may be called the normal form of φ with respect to the bases
E ,F of V .
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A certain (Cauchy) completion of a graded vector space
Let us consider again an infinite-countable dimensional K-vector space V
with a given basis E = (en)n≥0.

A topology may be defined for V which «agrees» with the decomposition

V =
⊕
n≥0

spanK(en)

in the following way: define a valuation ν : V → N t {∞} such that
ν(v) = inf{ n ≥ 0 : 〈v | en〉 6= 0 } for v 6= 0 and ν(0) =∞.

With respect to the topology induced by this valuation, we can describe the
completion V̂ of V as the infinite direct product

∏
n≥0

spanK(en).

Its elements are infinite linear combinations:∑
n≥0

αnen

where all coefficients αn are allowed to be different from zero.
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A topology may be defined for V which «agrees» with the decomposition

V =
⊕
n≥0

spanK(en)

in the following way: define a valuation ν : V → N t {∞} such that
ν(v) = inf{ n ≥ 0 : 〈v | en〉 6= 0 } for v 6= 0 and ν(0) =∞.

With respect to the topology induced by this valuation, we can describe the
completion V̂ of V as the infinite direct product

∏
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Duality

Actually V and V̂ may be paired by

〈S | P〉 =
∑
n≥0

〈S | en〉〈P | en〉

where S ∈ V̂ and P ∈ V (similarly to K〈〈X 〉〉 and K〈X 〉).

Using this (non-degenerate) pairing,

V ∗ ∼= V̂

and
V̂ ′ ∼= V .
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Transpose

Duality allows us to define transpose operators.

Let φ ∈ EndK-Vect (V ) and ψ ∈ EndK-TopVect (V̂ ).

Then we define †φ ∈ EndK-VectTop(V̂ ) by

〈†φ(S) | P〉 = 〈S | φ(P)〉

and ψ† ∈ EndK-Vect (V ) by

〈S | ψ†(P)〉 = 〈ψ(S) | P〉 .
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Decomposition of continuous endomorphisms

Using this duality and transpose, we can prove that any continuous
operator ψ on V̂ admits a decomposition as the sum of a summable family

ψ =
∑
n≥0

RnPn(L) .

If follows in particular that we have a linear isomorphism

EndK-Vect (V ) ∼= EndK-TopVect (V̂ ) .
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Links with other well-known combinatorial structures

Any sequence of polynomials

(Pn(x))n∈N ∈ K[x ]N

is bi-univocally transformed into a doubly-infinite matrix with coefficients in
K

(〈Pi (x) | x j〉)i ,j≥0

where 〈P | x i 〉 is the coefficient of the monomial x i in the polynomial P

(the so-called Dirac-Schützenberger bracket) in such a way that

P =
∑
i≥0

〈P | x i 〉x i

(sum with only finitely many non-zero terms).
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Links with other well-known combinatorial structures

Note that any such matrix satisfies the following:

for each i ∈ N, there are
only finitely many j such that the coefficient 〈Pi (x) | x j〉 6= 0.

More generally, let M = (Mi ,j)i ,j≥0 be an infinite matrix. We say that M is
row-finite if for each i , there are only finitely many j such that Mi ,j 6= 0.

So it follows that the set K[x ]N of sequences of polynomials and the set
KN×(N) are equipotent by (Pn)n 7→ (〈Pi (x) | x j〉)i ,j .

Actually there are isomorphic as K-vector spaces.
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Links with other well-known combinatorial structures
We have

EndK-Vect (V ) ∼=K-Vect K〈x , y〉〉 ∼=K-Vect K[x ]N ∼=K-Vect KN×(N) .

Moreover, both spaces EndK-Vect (V ) and KN×(N) are K-algebras. But the
linear isomorphism that maps a linear operator φ =

∑
i≥0

Pi (RE )Li
F to the

row-finite matrix (〈Pi (x) | x j)i ,j≥0 is not a ring map.

However, we can transport the matrix product on EndK-Vect (V ) (by
isomorphism):∑

i≥0

Pi (RE )Li
F

#

∑
i≥0

Qi (RE )Li
F

 =
∑
i≥0

∑
j≥0

〈Pi (x) | x j〉Qj(RE )

 Li
F .
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Links with other well-known combinatorial structures

This « new » product # on EndK-Vect (V ) is a generalization of the umbral
composition of polynomial sequences (i.e., sequences of polynomials
(Pn(x))n such that for all n, degPn = n, or, equivalently, the associated
matrix is lower triangular):

(pn(x))n#(qn(x))n =

∑
k≥0

〈pn(x) | xk〉qk(x)


n

.
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Links with other well-known combinatorial structures
A polynomial sequence (pn(x))n (thus deg pn = n) is said to be a Sheffer
sequence if there are two formal power series g and φ such that g(0) 6= 0
and φ(0) = 0, φ′(0) 6= 0 such that∑

n≥0

pn(x)yn = g(y)exφ(y) ∈ K[[x , y ]] .

Sheffer sequences form a group under umbral composition which is
isomorphic to the Riordan group (following Shapiro’s terminology)
K[x ]∗ o xK[x ], also called the group of substitutions with prefunction.

As lower triangular matrices, Sheffer sequences form a sub-group of the
group of invertible elements of the (completed) incidence algebra I (Nop,K)
of the integers (with opposite ordering).

Need to understand the relations between these combinatorial objects in
the setting of decomposition of operators.
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Infinite commutation formula

As any operator, the commutator [LF ,RE ] admits a decomposition in the
form

∑
n≥0

Pn(RE )Ln
F .

We obtain an infinite commutation formula !
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Dziękuję za uwagę.
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