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Weyl algebra: definition

Let K be any field.

The (first) Weyl algebra A(K) is defined as the quotient algebra of the
algebra of polynomials K(x, y) in non-commuting variables by the
two-sided ideal generated by the relation [x, y] = 1.
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Weyl algebra: definition

Let K be any field.

The (first) Weyl algebra A(K) is defined as the quotient algebra of the
algebra of polynomials K(x, y) in non-commuting variables by the
two-sided ideal generated by the relation [x, y] = 1.

Let a = 7(x) and al = 7(y) where 7: K(x,y) = A(K) is the canonical
epimorphism.
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Support of a polynomial

Definition: Support of a polynomial

The support Supp(P) of a polynomial P € K(X) is the (finite) set of words
w € X* such that (P | w) # 0.
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Weyl algebra: normal ordering basis

As a K-vector space, A(K) is free with basis { (a")a’ }; je (this is a
general fact from the theory of Ore extensions).
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Weyl algebra: normal ordering basis

As a K-vector space, A(K) is free with basis { (a")a’ }; je (this is a
general fact from the theory of Ore extensions).

This means that for every Q € A(K) there is a unique polynomial, call it
Pol () € K(x,y)

with support Supp(?ol(2)) C {y'x/: i,j € N} such that 7(®of(Q)) = Q
(in other terms, Pol : A(K) — K(x,y) is a section of 7).
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Weyl algebra: normal ordering - formal definition

We call normal ordering of a polynomial P € K(x, y), the polynomial

N(P) = pol (7(P)) € K(x,y) .
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Weyl algebra: normal ordering - formal definition

We call normal ordering of a polynomial P € K(x, y), the polynomial

N(P) = pol (7(P)) € K(x,y) .

Remark

Note that P and A((P) define the same element of A since
m(N(P)) = m(®ol (n(P))) = 7(P).
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Weyl algebra: normal ordering - an example

Let P = y?xy + x3yx € Q(x,y), then A(P) = y* + y3x + 3x3 + yx*.
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Weyl algebra: normal ordering - an example

Let P = y°xy + x3yx € Q(x,y), then A(P) = y* + y3x + 3x3 + yx*.

Moreover,
7(P) = (a')%aa’ + a®a'a € A(Q)

and
Pol ((a")2aa’ + a%a'a) = y? + y3x + 3x3 + yx*

in such a way that

m(P) = (a')® + (a')3a + 3a% + (ah)a* .

8/39



Weyl algebra as an algebra of differential operators
Let us assume that K is a field of characteristic zero (i.e., Q is the prime

subfield of K).
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- Extend p by linearity as a K-algebra map p from K(x,y) to
Endg. o (K[2]).

- Since p([x, y]) = [p(x), p(y)] = Idk[;, it follows that there is a unique
algebra map j: A(K) — Endg_.(K[z]) such that

for=p.

9/39



Weyl algebra as an algebra of differential operators
Let us assume that K is a field of characteristic zero (i.e., Q is the prime

subfield of K).

We define a linear representation p of A(K) on K][z] as follows:

- Define p(x)(p) = £p and p(y)(p) = zp for p € K[z].
- Extend p by linearity as a K-algebra map p from K(x,y) to
Endg. o (K[2]).

- Since p([x, y]) = [p(x), p(y)] = Idk;, it follows that there is a uniq
algebra map j: A(K) — Endg_.(K[z]) such that
jor=p.

This representation is faithful, i.e., ker g = (0) in such a way that
A(K) may be identified with the sub-algebra of Endg_q.,(K[z])
generated by the multiplication by z and the formal derivation %.

ue

9/39



Weyl algebra as an algebra of differential operators - an
example

Let Q = (af)%aal 4 a%afa € A(K).
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Weyl algebra as an algebra of differential operators - an
example

Let Q = (af)%aal 4 a%afa € A(K).
Then for every p € K[z],

"

ﬁ(Q)(p)=Z2p—|—z3p'+3p'"—|—zp
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Ladder operators

As operators on K[z], a and a' are graded operators of degree —1 and 1
relatively to the usual degree of polynomials.
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Ladder operators

As operators on K[z], a and a' are graded operators of degree —1 and 1
relatively to the usual degree of polynomials.

Thus, a is a lowering operator, while a' is a raising operator.

Both of them are ladder operators.
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Algebraic part of Jacobson's theorem

Let R be a (unitary) ring (commutative or not). If M is a left R-module,
then we denote by v: R — End (M) the associated (module) structure
map. (This is a ring map since it is a linear representation of R.)
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Algebraic part of Jacobson's theorem

Let R be a (unitary) ring (commutative or not). If M is a left R-module,
then we denote by v: R — End (M) the associated (module) structure
map. (This is a ring map since it is a linear representation of R.)

A left R-module M is said to be a faithful module if the structure map is

one-to-one, I.e.,
kerv = (0) .

A left R-module M is said to be a simple module if it is non-zero and it has
no non-trivial submodules.

The ring R is said to be (left-)primitive if it has a faithful simple
left-module.
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Topological part: Compact-open topology

Let X and Y be two topological spaces, and let C(X, Y') be the set of all
continuous mappings from X to Y.
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Topological part: Compact-open topology

Let X and Y be two topological spaces, and let C(X, Y') be the set of all
continuous mappings from X to Y.

Let K be a compact subset of X and U be an open set in Y, then we define
VIK,U)={felC(X,Y): f(K)CU}.

Then the collection of all such sets V(K U) is a subbasis for the
compact-open topology on C(X, Y).

This means that for every non-void open set V in the compact-open

topology, and every f € V, there exists a finite number Ky, - , K, of
compact sets in X and a finite number Uy, --- , U, of open sets in Y such
that

n
fe(\V(K,U)C V.
i=1
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Compact-open topology: a remark

Let D be a skew-field (also called a division ring), and let V' be a left
vector space over D.
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Compact-open topology: a remark

Let D be a skew-field (also called a division ring), and let V' be a left
vector space over D.

Let us assume that V has the discrete topology.
Then, the compact-open topology on Endp.q..(V) C C(V, V) = VY is the
same as the topology of simple convergence, i.e., for every topological

space X, a map ¢: X — Endp_q,, (V) is continuous if, and only if, for
every v € V, the map

P xeX = o(x)(v) eV

is continuous.
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Jacobson’s density theorem

Let R be a unitary ring (commutative or not).
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Jacobson’s density theorem

Let R be a unitary ring (commutative or not).

The ring R is primitive if, and only if, it is a dense subring (in the
compact-open topology) of a ring Endp._q,.,. (V) of linear operators of some
(left) vector space V over a skew-field D (where V is assumed to be
discrete).
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A consequence of Jacobson's density theorem

Let us assume that K is a field of characteristic zero.
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A consequence of Jacobson's density theorem

Let us assume that K is a field of characteristic zero.

Then A(K) is a primitive ring. Indeed, it can be proved that A(K) is a
dense subring of Endgk_q. (K[z]).

A much stronger result actually holds [Kurbanov and Maksimov, '86]:

For every linear operator ¢ on K|z], there is a summable family (,)nen of
elements of A(K) such that

6= _Q,.

n>0
(Sum of a summable family.)

Moreover, the family is uniquely determined by ¢ (i.e., (25)n is a function
of ¢) and may be even explicitly computed.
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An example: the integration operator

Let / be the usual integration operator on K[z].
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An example: the integration operator

Let / be the usual integration operator on K[z].

According to Jacobson's density theorem, | may be seen as a differential
operator of infinite degree (!):
Zn+1 dn

/_Z( (n+1)dz "

n>0
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Ladder operators: definition

Let K be any field (its characteristic may be # 0).

Let V be an infinite-countable dimensional K-vector space, and let
E = (en)nen be a given basis.

The raising operator Rg (associated to E) is defined as
REen = €n+1 -
The lowering operator Lg (associated to E) is defined as

LEe,,+1 = €p, LEeo =0.
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Ladder operators: an example

Let V = K]z] (K being of characteristic zero).
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Ladder operators: an example

Let V = K]z] (K being of characteristic zero).
Then a is the raising operator associated to (z")n>0,

while a is the lowering operator associated to (Z;)n>0.
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Decomposition of endomorphisms

Theorem [2010]

Let E = (ep)n and F = (f,), be two bases of V over the field K such that
spang{ fo } = spang{ ey} (the two bases agree on degree zero).
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Decomposition of endomorphisms

Theorem [2010]

Let E = (en)n and F = (f,)n be two bases of V over the field K such that
spang{ fo } = spang{ ey} (the two bases agree on degree zero).

Let ¢ be a linear operator of V.

Then, there is a family (P,)n>0 of polynomials in one variable such that

¢=> Pa(RE)LE .

n>0
Moreover, (P,), is uniquely determined by ¢,

and the map ¢ € Endg_qe (V) — (Pn)n € K[2]Y is a linear isomorphism.

4
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The family (P,), of a linear endomorphism ¢ may be explicitely computed
by recursion.
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The family (P,), of a linear endomorphism ¢ may be explicitely computed
by recursion.

Let U = (un)n be any sequence of elements of V, and let

P = Z P;z' € K[z] (sum with finitely many non-zero coefficients P;).
>0

Then we define P(U) = Z Piu; and if U is a basis of V, then P +— P(U)
>0
is a linear isomorphism from K[z] into V.

Let A € K, X\ # 0 such that Aey = fy (since E and F agree on degree
zero). The family (P,), of ¢ satisfies the following recursion:

° MPo(E) = ¢(f).

© APpi1(E) = ¢(fas1) — Y Pu(Re)fos1 &
k=0
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Let us consider the following subset of K((x, y)):
K(x, y)) —{ZP x)y":¥n, Pp(x) € K[x] }
n>0

where the (non-commutative) concatenation is denoted by a simple
juxtaposition.Call it the space of non-commutative generating functions of
polynomials.
Properties

o K(x,y)) is a sub K-vector space of K((x, y)).

o K(x,y))is a (two sided) K[x] module with (left and right) actions

given by Q(x Z Pa( Z(Q(X)P,,(x))y” and

n>0 n>0
> Pa(x)y™- Q(x) = Z(Pn(X)Q(X)))/” = (Q(x)Pa(x))y".
n>0 n>0 n>0

@ Actually it is the completion (for the product topology with K[x]
discrete) of the K[x]-module of all >~ -, Pn(x)y" € K((x,y)) where
only finitely many P,(x) # 0. N
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A normal form for operators

Remarks
e We note that xy = y - x but yx does not belong to K(x, y)).
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A normal form for operators

Remarks
e We note that xy = y - x but yx does not belong to K(x, y)).

o Actually, K(x, y)) is the completion of the free K[x]-module on basis
{y": n>0}, namely

K[x] ®k spang{y": n>0}

(with the obvious K[x]-action), with respect to the coarsest topology
that makes continuous the maps x’ ® y?/ — x' for K[x] discrete.
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TEF: K<X,y>> — EndK_q/m(V)
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According to the previous theorem, there exists a K-linear isomorphism
TEF: K<X,y>> — EndK_q/m(V)

which maps Z Pn(x)y" to Z P.(Re)L

n>0 n>0
It is an evaluation map: x < Rg and y < Lf.

Remark
Note that it should be the case that xy # yx for if xy = yx, then
me,F(xy) = RELF # LERe = me F(yx).

Let ¢ € Endg_q4.(V). The unique element S € K(x, y)) such that
7e F(S) = ¢ may be called the normal form of ¢ with respect to the bases
EFof V.
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A certain (Cauchy) completion of a graded vector space
Let us consider again an infinite-countable dimensional K-vector space V
with a given basis E = (e,)n>0.

A topology may be defined for V which «agrees» with the decomposition
V= @spanK(en)
n>0
in the following way: define a valuation v: V — N U { 0o } such that
v(v)=inf{ n>0: (v|e,) #0} for v #0 and v(0) = cc.

With respect to the topology induced by this valuation, we can describe the

completion V of V as the infinite direct product H spang(ep).
n>0

Its elements are infinite linear combinations:

g ap€p

n>0

where all coefficients o, are allowed to be different from zero.
28 /39
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Transpose

Duality allows us to define transpose operators.
Let ¢ € Endg_pee(V) and ¢ € Endic_qopaiee (V).
Then we define ¢ € EndK_q/ect%p(V) by

{fo(S) | P) = (S| (P))
and ! € Endg_ge (V) by

(S1v'(P) = (W(S)| P).
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Decomposition of continuous endomorphisms

Using this duality and transpose, we can prove that any continuous
operator ¢ on V admits a decomposition as the sum of a summable family

=) R'Py(L).

n>0
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Decomposition of continuous endomorphisms

Using this duality and transpose, we can prove that any continuous
operator ¢ on V admits a decomposition as the sum of a summable family

=) R'Py(L).

n>0

If follows in particular that we have a linear isomorphism

EndK-'Vect(V) = EndK-Top‘Vect(V) .
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Links with other well-known combinatorial structures

Any sequence of polynomials
(Pn(x))nen € K[x]"

is bi-univocally transformed into a doubly-infinite matrix with coefficients in
K

((Pi(x) [ ¥))ij0

where (P | x') is the coefficient of the monomial x’ in the polynomial P

(the so-called Dirac-Schiitzenberger bracket) in such a way that

P=> (P|x)x

i>0

(sum with only finitely many non-zero terms).
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Links with other well-known combinatorial structures

Note that any such matrix satisfies the following: for each i € N, there are
only finitely many j such that the coefficient (P;(x) | x/) # 0.

More generally, let M = (M; ;)i j>o0 be an infinite matrix. We say that M is
row-finite if for each i/, there are only finitely many j such that M;; # 0.

So it follows that the set K[x]"' of sequences of polynomials and the set
KN*(N) are equipotent by (P,), — ((Pi(x) | x1))ij.

Actually there are isomorphic as K-vector spaces.
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Links with other well-known combinatorial structures

We have
EndK—’l/ect(V) g]K—Vect K<X7Y>> gK—Vect K[X]N g]K—Vec:t KNX(N) .

Moreover, both spaces Endg_q;..(V) and KN*() are K-algebras. But the

linear isomorphism that maps a linear operator ¢ = Z P;(Rg)LE to the
i>0
row-finite matrix ((P;(x) | x/); j>o0 is not a ring map.

However, we can transport the matrix product on Endg_ g, (V) (by
isomorphism):

S OPReE | # [ D QiRe)LE | =D | D (Pi(x) | ) Q(Re) | Lk -

i>0 i>0 i>0 \j>0
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Links with other well-known combinatorial structures

This « new » product # on Endg_q,., (V) is a generalization of the umbral
composition of polynomial sequences (i.e., sequences of polynomials

(Pn(x))n such that for all n, deg P, = n, or, equivalently, the associated
matrix is lower triangular):
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Links with other well-known combinatorial structures

This « new » product # on Endg_q,., (V) is a generalization of the umbral
composition of polynomial sequences (i.e., sequences of polynomials

(Pn(x))n such that for all n, deg P, = n, or, equivalently, the associated
matrix is lower triangular):

(Pn(x))n#(qn(x))n = Z<Pn(x) | xk>qk(x)

k>0
n
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Links with other well-known combinatorial structures

A polynomial sequence (pn(x))n (thus deg p, = n) is said to be a Sheffer
sequence if there are two formal power series g and ¢ such that g(0) # 0
and ¢(0) = 0, ¢'(0) # 0 such that

Y palx)y" = g(y)e™*™) € Klx, y]] -
n>0

37/39



Links with other well-known combinatorial structures

A polynomial sequence (pn(x))n (thus deg p, = n) is said to be a Sheffer
sequence if there are two formal power series g and ¢ such that g(0) # 0
and ¢(0) = 0, ¢'(0) # 0 such that

Y palx)y" = g(y)e™*™) € Klx, y]] -
n>0

Sheffer sequences form a group under umbral composition which is

isomorphic to the Riordan group (following Shapiro’s terminology)
K[x]* x xK[x], also called the group of substitutions with prefunction.

37/39



Links with other well-known combinatorial structures

A polynomial sequence (pn(x))n (thus deg p, = n) is said to be a Sheffer
sequence if there are two formal power series g and ¢ such that g(0) # 0
and ¢(0) = 0, ¢'(0) # 0 such that

Y palx)y" = g(y)e™*™) € Klx, y]] -
n>0

Sheffer sequences form a group under umbral composition which is
isomorphic to the Riordan group (following Shapiro’s terminology)
K[x]* x xK[x], also called the group of substitutions with prefunction.

As lower triangular matrices, Sheffer sequences form a sub-group of the
group of invertible elements of the (completed) incidence algebra /(N°P, K)
of the integers (with opposite ordering).

37/39
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A polynomial sequence (pn(x))n (thus deg p, = n) is said to be a Sheffer
sequence if there are two formal power series g and ¢ such that g(0) # 0
and ¢(0) = 0, ¢'(0) # 0 such that

Y palx)y" = g(y)e™*™) € Klx, y]] -
n>0

Sheffer sequences form a group under umbral composition which is
isomorphic to the Riordan group (following Shapiro’s terminology)
K[x]* x xK[x], also called the group of substitutions with prefunction.

As lower triangular matrices, Sheffer sequences form a sub-group of the
group of invertible elements of the (completed) incidence algebra /(N°P, K)
of the integers (with opposite ordering).

Need to understand the relations between these combinatorial objects in
the setting of decomposition of operators.
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Infinite commutation formula

As any operator, the commutator [Lg, Rg] admits a decomposition in the
form >~ Pa(Re)LE.

n>0
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Infinite commutation formula

As any operator, the commutator [Lg, Rg] admits a decomposition in the
form >~ Pa(Re)LE.

n>0

We obtain an infinite commutation formula !
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Dziekuje za uwage.
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