Generalized ladder operators
 and a < normal form» for endomorphisms

Combinatorial Physics III
24-26 November, 2011, Kraków

Laurent Poinsot
LIPN - UMR CNRS 7030
Université Paris-Nord XIII - Institut Galilée

Table of contents

(1) Weyl algebra
(2) Jacobson's density theorem
(3) Generalized ladder operators

4 Generalization to operators on « infinite» linear combinations
(5) Concluding remarks

Table of contents

(1) Weyl algebra
(2) Jacobson's density theorem
(3) Generalized ladder operators

4 Generalization to operators on « infinite» linear combinations
(5) Concluding remarks

Weyl algebra: definition

Let \mathbb{K} be any field.
The (first) Weyl algebra $A(\mathbb{K})$ is defined as the quotient algebra of the algebra of polynomials $\mathbb{K}\langle x, y\rangle$ in non-commuting variables by the two-sided ideal generated by the relation $[x, y]=1$.

Weyl algebra: definition

Let \mathbb{K} be any field.
The (first) Weyl algebra $A(\mathbb{K})$ is defined as the quotient algebra of the algebra of polynomials $\mathbb{K}\langle x, y\rangle$ in non-commuting variables by the two-sided ideal generated by the relation $[x, y]=1$.

Let $a=\pi(x)$ and $a^{\dagger}=\pi(y)$ where $\pi: \mathbb{K}\langle x, y\rangle \rightarrow A(\mathbb{K})$ is the canonical epimorphism.

Support of a polynomial

Definition: Support of a polynomial
The support $\operatorname{Supp}(P)$ of a polynomial $P \in \mathbb{K}\langle X\rangle$ is the (finite) set of words $w \in X^{*}$ such that $\langle P \mid w\rangle \neq 0$.

Weyl algebra: normal ordering basis

As a \mathbb{K}-vector space, $A(\mathbb{K})$ is free with basis $\left\{\left(a^{\dagger}\right)^{i} a^{j}\right\}_{i, j \in \mathbb{N}}$ (this is a general fact from the theory of Ore extensions).

Weyl algebra: normal ordering basis

As a \mathbb{K}-vector space, $A(\mathbb{K})$ is free with basis $\left\{\left(a^{\dagger}\right)^{i} a^{j}\right\}_{i, j \in \mathbb{N}}$ (this is a general fact from the theory of Ore extensions).

This means that for every $\Omega \in A(\mathbb{K})$ there is a unique polynomial, call it

$$
\operatorname{Pol}(\Omega) \in \mathbb{K}\langle x, y\rangle
$$

with support $\operatorname{Supp}(\operatorname{Pol}(\Omega)) \subseteq\left\{y^{i} x^{j}: i, j \in \mathbb{N}\right\}$ such that $\pi(\mathscr{P o l}(\Omega))=\Omega$ (in other terms, $\mathcal{P o l}: A(\mathbb{K}) \hookrightarrow \mathbb{K}\langle x, y\rangle$ is a section of π).

Weyl algebra: normal ordering - formal definition

We call normal ordering of a polynomial $P \in \mathbb{K}\langle x, y\rangle$, the polynomial

$$
\mathcal{N}(P)=\operatorname{Pol}(\pi(P)) \in \mathbb{K}\langle x, y\rangle .
$$

Weyl algebra: normal ordering - formal definition

We call normal ordering of a polynomial $P \in \mathbb{K}\langle x, y\rangle$, the polynomial

$$
\mathcal{N}(P)=\operatorname{Pol}(\pi(P)) \in \mathbb{K}\langle x, y\rangle .
$$

Remark

Note that P and $\mathcal{N}(P)$ define the same element of A since $\pi(\mathcal{N}(P))=\pi(\operatorname{Pol}(\pi(P)))=\pi(P)$.

Weyl algebra: normal ordering - an example

Let $P=y^{2} x y+x^{3} y x \in \mathbb{Q}\langle x, y\rangle$, then $\mathcal{N}(P)=y^{2}+y^{3} x+3 x^{3}+y x^{4}$.

Weyl algebra: normal ordering - an example

Let $P=y^{2} x y+x^{3} y x \in \mathbb{Q}\langle x, y\rangle$, then $\mathcal{N}(P)=y^{2}+y^{3} x+3 x^{3}+y x^{4}$.
Moreover,

$$
\pi(P)=\left(a^{\dagger}\right)^{2} a a^{\dagger}+a^{3} a^{\dagger} a \in A(\mathbb{Q})
$$

Weyl algebra: normal ordering - an example

Let $P=y^{2} x y+x^{3} y x \in \mathbb{Q}\langle x, y\rangle$, then $\mathcal{N}(P)=y^{2}+y^{3} x+3 x^{3}+y x^{4}$.
Moreover,

$$
\pi(P)=\left(a^{\dagger}\right)^{2} a a^{\dagger}+a^{3} a^{\dagger} a \in A(\mathbb{Q})
$$

and

$$
\mathcal{P o l}\left(\left(a^{\dagger}\right)^{2} a a^{\dagger}+a^{3} a^{\dagger} a\right)=y^{2}+y^{3} x+3 x^{3}+y x^{4}
$$

Weyl algebra: normal ordering - an example

Let $P=y^{2} x y+x^{3} y x \in \mathbb{Q}\langle x, y\rangle$, then $\mathcal{N}(P)=y^{2}+y^{3} x+3 x^{3}+y x^{4}$.
Moreover,

$$
\pi(P)=\left(a^{\dagger}\right)^{2} a a^{\dagger}+a^{3} a^{\dagger} a \in A(\mathbb{Q})
$$

and

$$
\operatorname{Pol}\left(\left(a^{\dagger}\right)^{2} a a^{\dagger}+a^{3} a^{\dagger} a\right)=y^{2}+y^{3} x+3 x^{3}+y x^{4}
$$

in such a way that

$$
\pi(P)=\left(a^{\dagger}\right)^{2}+\left(a^{\dagger}\right)^{3} a+3 a^{3}+\left(a^{\dagger}\right) a^{4} .
$$

Weyl algebra as an algebra of differential operators Let us assume that \mathbb{K} is a field of characteristic zero (i.e., \mathbb{Q} is the prime subfield of \mathbb{K}).

Weyl algebra as an algebra of differential operators
Let us assume that \mathbb{K} is a field of characteristic zero (i.e., \mathbb{Q} is the prime subfield of \mathbb{K}).

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

Weyl algebra as an algebra of differential operators
Let us assume that \mathbb{K} is a field of characteristic zero (i.e., \mathbb{Q} is the prime subfield of \mathbb{K}).

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

- Define $\rho(x)(p)=\frac{d}{d z} p$ and $\rho(y)(p)=z p$ for $p \in \mathbb{K}[z]$.

Weyl algebra as an algebra of differential operators
Let us assume that \mathbb{K} is a field of characteristic zero (i.e., \mathbb{Q} is the prime subfield of \mathbb{K}).

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

- Define $\rho(x)(p)=\frac{d}{d z} p$ and $\rho(y)(p)=z p$ for $p \in \mathbb{K}[z]$.
- Extend ρ by linearity as a \mathbb{K}-algebra map ρ from $\mathbb{K}\langle x, y\rangle$ to $\operatorname{End}_{\mathbb{K}-V_{e c t}}(\mathbb{K}[z])$.

Weyl algebra as an algebra of differential operators
Let us assume that \mathbb{K} is a field of characteristic zero (i.e., \mathbb{Q} is the prime subfield of \mathbb{K}).

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

- Define $\rho(x)(p)=\frac{d}{d z} p$ and $\rho(y)(p)=z p$ for $p \in \mathbb{K}[z]$.
- Extend ρ by linearity as a \mathbb{K}-algebra map ρ from $\mathbb{K}\langle x, y\rangle$ to $\operatorname{End}_{\mathbb{K}-V_{e c t}}(\mathbb{K}[z])$.
- Since $\rho([x, y])=[\rho(x), \rho(y)]=I d_{\mathbb{K}[z]}$, it follows that there is a unique algebra map $\tilde{\rho}: A(\mathbb{K}) \rightarrow \operatorname{End}_{\mathbb{K} \text { - } v_{c c t}}(\mathbb{K}[z])$ such that

$$
\tilde{\rho} \circ \pi=\rho .
$$

Weyl algebra as an algebra of differential operators Let us assume that \mathbb{K} is a field of characteristic zero (i.e., \mathbb{Q} is the prime subfield of \mathbb{K}).

We define a linear representation ρ of $A(\mathbb{K})$ on $\mathbb{K}[z]$ as follows:

- Define $\rho(x)(p)=\frac{d}{d z} p$ and $\rho(y)(p)=z p$ for $p \in \mathbb{K}[z]$.
- Extend ρ by linearity as a \mathbb{K}-algebra map ρ from $\mathbb{K}\langle x, y\rangle$ to $\operatorname{End}_{\mathbb{K}-V_{e c t}}(\mathbb{K}[z])$.
- Since $\rho([x, y])=[\rho(x), \rho(y)]=I d_{\mathbb{K}[z]}$, it follows that there is a unique algebra map $\tilde{\rho}: A(\mathbb{K}) \rightarrow \operatorname{End}_{\mathbb{K} \text { - } v_{c c t}}(\mathbb{K}[z])$ such that

$$
\tilde{\rho} \circ \pi=\rho .
$$

This representation is faithful, i.e., $\operatorname{ker} \tilde{\rho}=(0)$ in such a way that $A(\mathbb{K})$ may be identified with the sub-algebra of $\operatorname{End}_{\mathbb{K} \text { - } v e c t}(\mathbb{K}[z])$ generated by the multiplication by z and the formal derivation $\frac{d}{d z}$.

Weyl algebra as an algebra of differential operators - an example

Let $\Omega=\left(a^{\dagger}\right)^{2} a a^{\dagger}+a^{3} a^{\dagger} a \in A(\mathbb{K})$.

Weyl algebra as an algebra of differential operators - an example

Let $\Omega=\left(a^{\dagger}\right)^{2} a a^{\dagger}+a^{3} a^{\dagger} a \in A(\mathbb{K})$.
Then for every $p \in \mathbb{K}[z]$,

$$
\tilde{\rho}(\Omega)(p)=z^{2} p+z^{3} p^{\prime}+3 p^{\prime \prime \prime}+z p^{\prime \prime \prime \prime} .
$$

Ladder operators

As operators on $\mathbb{K}[z]$, a and a^{\dagger} are graded operators of degree -1 and 1 relatively to the usual degree of polynomials.

Ladder operators

As operators on $\mathbb{K}[z]$, a and a^{\dagger} are graded operators of degree -1 and 1 relatively to the usual degree of polynomials.

Thus, a is a lowering operator,

Ladder operators

As operators on $\mathbb{K}[z]$, a and a^{\dagger} are graded operators of degree -1 and 1 relatively to the usual degree of polynomials.

Thus, a is a lowering operator, while a^{\dagger} is a raising operator.

Ladder operators

As operators on $\mathbb{K}[z]$, a and a^{\dagger} are graded operators of degree -1 and 1 relatively to the usual degree of polynomials.

Thus, a is a lowering operator, while a^{\dagger} is a raising operator.
Both of them are ladder operators.

Table of contents

(1) Weyl algebra
(2) Jacobson's density theorem
(3) Generalized ladder operators

4 Generalization to operators on « infinite» linear combinations
(5) Concluding remarks

Algebraic part of Jacobson's theorem

Let R be a (unitary) ring (commutative or not). If M is a left R-module, then we denote by $\nu: R \rightarrow \operatorname{End}_{\mathscr{A} 6}(M)$ the associated (module) structure map. (This is a ring map since it is a linear representation of R.)

Algebraic part of Jacobson's theorem

Let R be a (unitary) ring (commutative or not). If M is a left R-module, then we denote by $\nu: R \rightarrow \operatorname{End}_{\mathfrak{A} 6}(M)$ the associated (module) structure map. (This is a ring map since it is a linear representation of R.)

A left R-module M is said to be a faithful module if the structure map is one-to-one, i.e.,

$$
\operatorname{ker} \nu=(0) .
$$

Algebraic part of Jacobson's theorem

Let R be a (unitary) ring (commutative or not). If M is a left R-module, then we denote by $\nu: R \rightarrow \operatorname{End}_{\mathfrak{A} 6}(M)$ the associated (module) structure map. (This is a ring map since it is a linear representation of R.)

A left R-module M is said to be a faithful module if the structure map is one-to-one, i.e.,

$$
\operatorname{ker} \nu=(0) .
$$

A left R-module M is said to be a simple module if it is non-zero and it has no non-trivial submodules.

Algebraic part of Jacobson's theorem

Let R be a (unitary) ring (commutative or not). If M is a left R-module, then we denote by $\nu: R \rightarrow \operatorname{End}_{\mathfrak{A} 6}(M)$ the associated (module) structure map. (This is a ring map since it is a linear representation of R.)

A left R-module M is said to be a faithful module if the structure map is one-to-one, i.e.,

$$
\operatorname{ker} \nu=(0) .
$$

A left R-module M is said to be a simple module if it is non-zero and it has no non-trivial submodules.

The ring R is said to be (left-) primitive if it has a faithful simple left-module.

Topological part: Compact-open topology

Let X and Y be two topological spaces, and let $\mathcal{C}(X, Y)$ be the set of all continuous mappings from X to Y.

Topological part: Compact-open topology

Let X and Y be two topological spaces, and let $\mathcal{C}(X, Y)$ be the set of all continuous mappings from X to Y.

Let K be a compact subset of X and U be an open set in Y, then we define

$$
V(K, U)=\{f \in \mathcal{C}(X, Y): f(K) \subseteq U\}
$$

Then the collection of all such sets $V(K, U)$ is a subbasis for the compact-open topology on $\mathcal{C}(X, Y)$.

Topological part: Compact-open topology

Let X and Y be two topological spaces, and let $\mathcal{C}(X, Y)$ be the set of all continuous mappings from X to Y.

Let K be a compact subset of X and U be an open set in Y, then we define

$$
V(K, U)=\{f \in \mathcal{C}(X, Y): f(K) \subseteq U\}
$$

Then the collection of all such sets $V(K, U)$ is a subbasis for the compact-open topology on $\mathcal{C}(X, Y)$.

This means that for every non-void open set V in the compact-open topology, and every $f \in V$, there exists a finite number K_{1}, \cdots, K_{n} of compact sets in X and a finite number U_{1}, \cdots, U_{n} of open sets in Y such that

$$
f \in \bigcap_{i=1}^{n} V\left(K_{i}, U_{i}\right) \subseteq V .
$$

Compact-open topology: a remark

Let \mathbb{D} be a skew-field (also called a division ring), and let V be a left vector space over \mathbb{D}.

Compact-open topology: a remark

Let \mathbb{D} be a skew-field (also called a division ring), and let V be a left vector space over \mathbb{D}.

Let us assume that V has the discrete topology.

Compact-open topology: a remark

Let \mathbb{D} be a skew-field (also called a division ring), and let V be a left vector space over \mathbb{D}.

Let us assume that V has the discrete topology.
Then, the compact-open topology on $\operatorname{End}_{\mathbb{D}-V_{e c t}}(V) \subseteq \mathcal{C}(V, V)=V^{V}$ is the same as the topology of simple convergence,

Compact-open topology: a remark

Let \mathbb{D} be a skew-field (also called a division ring), and let V be a left vector space over \mathbb{D}.

Let us assume that V has the discrete topology.
Then, the compact-open topology on $\operatorname{End}_{\mathbb{D}-V_{e c t}}(V) \subseteq \mathcal{C}(V, V)=V^{V}$ is the same as the topology of simple convergence, i.e., for every topological space X, a map $\phi: X \rightarrow \operatorname{End}_{\mathbb{D}-V_{e c t}}(V)$ is continuous if, and only if, for every $v \in V$, the map

$$
\phi_{v}: x \in X \rightarrow \phi(x)(v) \in V
$$

is continuous.

Jacobson's density theorem

Let R be a unitary ring (commutative or not).

Jacobson's density theorem

Let R be a unitary ring (commutative or not).

The ring R is primitive if, and only if, it is a dense subring (in the compact-open topology) of a ring $\operatorname{End}_{\mathbb{D}-V_{e c t}}(V)$ of linear operators of some (left) vector space V over a skew-field \mathbb{D} (where V is assumed to be discrete).

A consequence of Jacobson's density theorem

Let us assume that \mathbb{K} is a field of characteristic zero.

A consequence of Jacobson's density theorem

Let us assume that \mathbb{K} is a field of characteristic zero.
Then $A(\mathbb{K})$ is a primitive ring.

A consequence of Jacobson's density theorem

Let us assume that \mathbb{K} is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring. Indeed, it can be proved that $A(\mathbb{K})$ is a dense subring of $\left.\operatorname{End}_{\mathbb{K}-\mathcal{V e c t}} \mathbb{K}[z]\right)$.

A consequence of Jacobson's density theorem

Let us assume that \mathbb{K} is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring. Indeed, it can be proved that $A(\mathbb{K})$ is a dense subring of $\left.E n d_{\mathbb{K}-\mathcal{V e c t}} \mathbb{K}[z]\right)$.

A much stronger result actually holds [Kurbanov and Maksimov, '86]:

A consequence of Jacobson's density theorem

Let us assume that \mathbb{K} is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring. Indeed, it can be proved that $A(\mathbb{K})$ is a dense subring of $\left.\operatorname{End}_{\mathbb{K}-\mathcal{V e c t}} \mathbb{K}[z]\right)$.

A much stronger result actually holds [Kurbanov and Maksimov, '86]:
For every linear operator ϕ on $\mathbb{K}[z]$, there is a summable family $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ of elements of $A(\mathbb{K})$ such that

$$
\phi=\sum_{n \geq 0} \Omega_{n} .
$$

(Sum of a summable family.)

A consequence of Jacobson's density theorem

Let us assume that \mathbb{K} is a field of characteristic zero.

Then $A(\mathbb{K})$ is a primitive ring. Indeed, it can be proved that $A(\mathbb{K})$ is a dense subring of $\left.\operatorname{End}_{\mathbb{K}-\mathcal{V e c t}} \mathbb{K}[z]\right)$.

A much stronger result actually holds [Kurbanov and Maksimov, '86]:
For every linear operator ϕ on $\mathbb{K}[z]$, there is a summable family $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ of elements of $A(\mathbb{K})$ such that

$$
\phi=\sum_{n \geq 0} \Omega_{n} .
$$

(Sum of a summable family.)
Moreover, the family is uniquely determined by ϕ (i.e., $\left(\Omega_{n}\right)_{n}$ is a function of ϕ) and may be even explicitly computed.

An example: the integration operator

Let / be the usual integration operator on $\mathbb{K}[z]$.

An example: the integration operator

Let $/$ be the usual integration operator on $\mathbb{K}[z]$.
According to Jacobson's density theorem, I may be seen as a differential operator of infinite degree (!):

An example: the integration operator

Let / be the usual integration operator on $\mathbb{K}[z]$.
According to Jacobson's density theorem, I may be seen as a differential operator of infinite degree (!):

$$
I=\sum_{n \geq 0}(-1)^{n} \frac{z^{n+1}}{(n+1)!} \frac{d^{n}}{d z}
$$

Table of contents

(1) Weyl algebra
(2) Jacobson's density theorem
(3) Generalized ladder operators
(4) Generalization to operators on « infinite» linear combinations
(5) Concluding remarks

Ladder operators: definition

Let \mathbb{K} be any field (its characteristic may be $\neq 0$).

Ladder operators: definition

Let \mathbb{K} be any field (its characteristic may be $\neq 0$).
Let V be an infinite-countable dimensional \mathbb{K}-vector space,

Ladder operators: definition

Let \mathbb{K} be any field (its characteristic may be $\neq 0$).
Let V be an infinite-countable dimensional \mathbb{K}-vector space, and let $E=\left(e_{n}\right)_{n \in \mathbb{N}}$ be a given basis.

Ladder operators: definition

Let \mathbb{K} be any field (its characteristic may be $\neq 0$).

Let V be an infinite-countable dimensional \mathbb{K}-vector space, and let $E=\left(e_{n}\right)_{n \in \mathbb{N}}$ be a given basis.

The raising operator R_{E} (associated to E) is defined as

$$
R_{E} e_{n}=e_{n+1}
$$

Ladder operators: definition

Let \mathbb{K} be any field (its characteristic may be $\neq 0$).

Let V be an infinite-countable dimensional \mathbb{K}-vector space, and let $E=\left(e_{n}\right)_{n \in \mathbb{N}}$ be a given basis.

The raising operator R_{E} (associated to E) is defined as

$$
R_{E} e_{n}=e_{n+1} .
$$

The lowering operator L_{E} (associated to E) is defined as

$$
L_{E} e_{n+1}=e_{n}, L_{E} e_{0}=0 .
$$

Ladder operators: an example

Let $V=\mathbb{K}[z]$ (\mathbb{K} being of characteristic zero).

Ladder operators: an example

Let $V=\mathbb{K}[z]$ (\mathbb{K} being of characteristic zero).
Then a^{\dagger} is the raising operator associated to $\left(z^{n}\right)_{n \geq 0}$,

Ladder operators: an example

Let $V=\mathbb{K}[z]$ (\mathbb{K} being of characteristic zero).
Then a^{\dagger} is the raising operator associated to $\left(z^{n}\right)_{n \geq 0}$, while a is the lowering operator associated to $\left(\frac{z^{n}}{n!}\right)_{n \geq 0}$.

Decomposition of endomorphisms

Theorem [2010]
Let $E=\left(e_{n}\right)_{n}$ and $F=\left(f_{n}\right)_{n}$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}}\left\{f_{0}\right\}=\operatorname{span}_{\mathbb{K}}\left\{e_{0}\right\}$ (the two bases agree on degree zero).

Decomposition of endomorphisms

Theorem [2010]
Let $E=\left(e_{n}\right)_{n}$ and $F=\left(f_{n}\right)_{n}$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}}\left\{f_{0}\right\}=\operatorname{span}_{\mathbb{K}}\left\{e_{0}\right\}$ (the two bases agree on degree zero).

Let ϕ be a linear operator of V.

Decomposition of endomorphisms

Theorem [2010]

Let $E=\left(e_{n}\right)_{n}$ and $F=\left(f_{n}\right)_{n}$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}}\left\{f_{0}\right\}=\operatorname{span}_{\mathbb{K}}\left\{e_{0}\right\}$ (the two bases agree on degree zero).

Let ϕ be a linear operator of V.

Then, there is a family $\left(P_{n}\right)_{n \geq 0}$ of polynomials in one variable such that

$$
\phi=\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n}
$$

Decomposition of endomorphisms

Theorem [2010]

Let $E=\left(e_{n}\right)_{n}$ and $F=\left(f_{n}\right)_{n}$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}}\left\{f_{0}\right\}=\operatorname{span}_{\mathbb{K}}\left\{e_{0}\right\}$ (the two bases agree on degree zero).

Let ϕ be a linear operator of V.
Then, there is a family $\left(P_{n}\right)_{n \geq 0}$ of polynomials in one variable such that

$$
\phi=\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n} .
$$

Moreover, $\left(P_{n}\right)_{n}$ is uniquely determined by ϕ,

Decomposition of endomorphisms

Theorem [2010]

Let $E=\left(e_{n}\right)_{n}$ and $F=\left(f_{n}\right)_{n}$ be two bases of V over the field \mathbb{K} such that $\operatorname{span}_{\mathbb{K}}\left\{f_{0}\right\}=\operatorname{span}_{\mathbb{K}}\left\{e_{0}\right\}$ (the two bases agree on degree zero).

Let ϕ be a linear operator of V.
Then, there is a family $\left(P_{n}\right)_{n \geq 0}$ of polynomials in one variable such that

$$
\phi=\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n} .
$$

Moreover, $\left(P_{n}\right)_{n}$ is uniquely determined by ϕ, and the map $\phi \in \operatorname{End}_{\mathbb{K}-\mathcal{V}_{e c t}}(V) \mapsto\left(P_{n}\right)_{n} \in \mathbb{K}[z]^{\mathbb{N}}$ is a linear isomorphism.

Decomposition of endomorphisms: a remark

The family $\left(P_{n}\right)_{n}$ of a linear endomorphism ϕ may be explicitely computed by recursion.

Decomposition of endomorphisms: a remark

The family $\left(P_{n}\right)_{n}$ of a linear endomorphism ϕ may be explicitely computed by recursion.

Let $U=\left(u_{n}\right)_{n}$ be any sequence of elements of V, and let
$P=\sum_{i \geq 0} P_{i} z^{i} \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_{i}).

Decomposition of endomorphisms: a remark

The family $\left(P_{n}\right)_{n}$ of a linear endomorphism ϕ may be explicitely computed by recursion.

Let $U=\left(u_{n}\right)_{n}$ be any sequence of elements of V, and let
$P=\sum_{i \geq 0} P_{i} z^{i} \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_{i}).
Then we define $P(U)=\sum_{i \geq 0} P_{i} u_{i}$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Decomposition of endomorphisms: a remark

The family $\left(P_{n}\right)_{n}$ of a linear endomorphism ϕ may be explicitely computed by recursion.

Let $U=\left(u_{n}\right)_{n}$ be any sequence of elements of V, and let
$P=\sum_{i \geq 0} P_{i} z^{i} \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_{i}).
Then we define $P(U)=\sum_{i \geq 0} P_{i} u_{i}$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let $\lambda \in \mathbb{K}, \lambda \neq 0$ such that $\lambda e_{0}=f_{0}$ (since E and F agree on degree zero).

Decomposition of endomorphisms: a remark

The family $\left(P_{n}\right)_{n}$ of a linear endomorphism ϕ may be explicitely computed by recursion.

Let $U=\left(u_{n}\right)_{n}$ be any sequence of elements of V, and let
$P=\sum_{i \geq 0} P_{i} z^{i} \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_{i}).
Then we define $P(U)=\sum_{i \geq 0} P_{i} u_{i}$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let $\lambda \in \mathbb{K}, \lambda \neq 0$ such that $\lambda e_{0}=f_{0}$ (since E and F agree on degree zero). The family $\left(P_{n}\right)_{n}$ of ϕ satisfies the following recursion:

Decomposition of endomorphisms: a remark

The family $\left(P_{n}\right)_{n}$ of a linear endomorphism ϕ may be explicitely computed by recursion.

Let $U=\left(u_{n}\right)_{n}$ be any sequence of elements of V, and let
$P=\sum_{i \geq 0} P_{i} z^{i} \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_{i}).
Then we define $P(U)=\sum_{i \geq 0} P_{i} u_{i}$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let $\lambda \in \mathbb{K}, \lambda \neq 0$ such that $\lambda e_{0}=f_{0}$ (since E and F agree on degree zero). The family $\left(P_{n}\right)_{n}$ of ϕ satisfies the following recursion:

- $\lambda P_{0}(E)=\phi\left(f_{0}\right)$.

Decomposition of endomorphisms: a remark

The family $\left(P_{n}\right)_{n}$ of a linear endomorphism ϕ may be explicitely computed by recursion.

Let $U=\left(u_{n}\right)_{n}$ be any sequence of elements of V, and let
$P=\sum_{i \geq 0} P_{i} z^{i} \in \mathbb{K}[z]$ (sum with finitely many non-zero coefficients P_{i}).
Then we define $P(U)=\sum_{i \geq 0} P_{i} u_{i}$ and if U is a basis of V, then $P \mapsto P(U)$ is a linear isomorphism from $\mathbb{K}[z]$ into V.

Let $\lambda \in \mathbb{K}, \lambda \neq 0$ such that $\lambda e_{0}=f_{0}$ (since E and F agree on degree zero). The family $\left(P_{n}\right)_{n}$ of ϕ satisfies the following recursion:

- $\lambda P_{0}(E)=\phi\left(f_{0}\right)$.
- $\lambda P_{n+1}(E)=\phi\left(f_{n+1}\right)-\sum_{k=0}^{n} P_{k}\left(R_{E}\right) f_{n+1-k}$.

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y\rangle\rangle$:

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y\rangle\rangle$:

$$
\mathbb{K}\langle x, y\rangle\rangle=\left\{\sum_{n \geq 0} P_{n}(x) y^{n}: \forall n, P_{n}(x) \in \mathbb{K}[x]\right\}
$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition.

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y\rangle\rangle$:

$$
\mathbb{K}\langle x, y\rangle\rangle=\left\{\sum_{n \geq 0} P_{n}(x) y^{n}: \forall n, P_{n}(x) \in \mathbb{K}[x]\right\}
$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition. Call it the space of non-commutative generating functions of polynomials.

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y\rangle\rangle$:

$$
\mathbb{K}\langle x, y\rangle\rangle=\left\{\sum_{n \geq 0} P_{n}(x) y^{n}: \forall n, P_{n}(x) \in \mathbb{K}[x]\right\}
$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition. Call it the space of non-commutative generating functions of polynomials.

Properties

- $\mathbb{K}\langle x, y\rangle\rangle$ is a sub \mathbb{K}-vector space of $\mathbb{K}\langle\langle x, y\rangle\rangle$.

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y\rangle\rangle$:

$$
\mathbb{K}\langle x, y\rangle\rangle=\left\{\sum_{n \geq 0} P_{n}(x) y^{n}: \forall n, P_{n}(x) \in \mathbb{K}[x]\right\}
$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition. Call it the space of non-commutative generating functions of polynomials.

Properties

- $\mathbb{K}\langle x, y\rangle\rangle$ is a sub \mathbb{K}-vector space of $\mathbb{K}\langle\langle x, y\rangle\rangle$.
- $\mathbb{K}\langle x, y\rangle\rangle$ is a (two-sided) $\mathbb{K}[x]$-module with (left and right) actions given by

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y\rangle\rangle$:

$$
\mathbb{K}\langle x, y\rangle\rangle=\left\{\sum_{n \geq 0} P_{n}(x) y^{n}: \forall n, P_{n}(x) \in \mathbb{K}[x]\right\}
$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition. Call it the space of non-commutative generating functions of polynomials.

Properties

- $\mathbb{K}\langle x, y\rangle\rangle$ is a sub \mathbb{K}-vector space of $\mathbb{K}\langle\langle x, y\rangle\rangle$.
- $\mathbb{K}\langle x, y\rangle\rangle$ is a (two-sided) $\mathbb{K}[x]$-module with (left and right) actions given by $Q(x) \cdot \sum_{n \geq 0} P_{n}(x) y^{n}=\sum_{n \geq 0}\left(Q(x) P_{n}(x)\right) y^{n}$ and

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y\rangle\rangle$:

$$
\mathbb{K}\langle x, y\rangle\rangle=\left\{\sum_{n \geq 0} P_{n}(x) y^{n}: \forall n, P_{n}(x) \in \mathbb{K}[x]\right\}
$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition. Call it the space of non-commutative generating functions of polynomials.

Properties

- $\mathbb{K}\langle x, y\rangle\rangle$ is a sub \mathbb{K}-vector space of $\mathbb{K}\langle\langle x, y\rangle\rangle$.
- $\mathbb{K}\langle x, y\rangle\rangle$ is a (two-sided) $\mathbb{K}[x]$-module with (left and right) actions given by $Q(x) \cdot \sum_{n \geq 0} P_{n}(x) y^{n}=\sum_{n \geq 0}\left(Q(x) P_{n}(x)\right) y^{n}$ and

$$
\sum_{n \geq 0} P_{n}(x) y^{n} \cdot Q(x)=\sum_{n \geq 0}\left(P_{n}(x) Q(x)\right) y^{n}=\sum_{n \geq 0}\left(Q(x) P_{n}(x)\right) y^{n} .
$$

A normal form for operators

Let us consider the following subset of $\mathbb{K}\langle\langle x, y\rangle\rangle$:

$$
\mathbb{K}\langle x, y\rangle\rangle=\left\{\sum_{n \geq 0} P_{n}(x) y^{n}: \forall n, P_{n}(x) \in \mathbb{K}[x]\right\}
$$

where the (non-commutative) concatenation is denoted by a simple juxtaposition. Call it the space of non-commutative generating functions of polynomials.

Properties

- $\mathbb{K}\langle x, y\rangle\rangle$ is a sub \mathbb{K}-vector space of $\mathbb{K}\langle\langle x, y\rangle\rangle$.
- $\mathbb{K}\langle x, y\rangle\rangle$ is a (two-sided) $\mathbb{K}[x]$-module with (left and right) actions given by $Q(x) \cdot \sum_{n \geq 0} P_{n}(x) y^{n}=\sum_{n \geq 0}\left(Q(x) P_{n}(x)\right) y^{n}$ and
$\sum_{n \geq 0} P_{n}(x) y^{n} \cdot Q(x)=\sum_{n \geq 0}\left(P_{n}(x) Q(x)\right) y^{n}=\sum_{n \geq 0}\left(Q(x) P_{n}(x)\right) y^{n}$.
- Actually it is the completion (for the product topology with $\mathbb{K}[x]$ discrete) of the $\mathbb{K}[x]$-module of all $\sum_{n \geq 0} P_{n}(x) y^{n} \in \mathbb{K}\langle\langle x, y\rangle\rangle$ where only finitely many $P_{n}(x) \neq 0$.

A normal form for operators

Remarks

- We note that $x y=y \cdot x$ but $y x$ does not belong to $\mathbb{K}\langle x, y\rangle\rangle$.

A normal form for operators

Remarks

- We note that $x y=y \cdot x$ but $y x$ does not belong to $\mathbb{K}\langle x, y\rangle\rangle$.
- Actually, $\mathbb{K}\langle x, y\rangle\rangle$ is the completion of the free $\mathbb{K}[x]$-module on basis $\left\{y^{n}: n \geq 0\right\}$, namely

$$
\mathbb{K}[x] \otimes_{\mathbb{K}} \operatorname{span}_{\mathbb{K}}\left\{y^{n}: n \geq 0\right\}
$$

(with the obvious $\mathbb{K}[x]$-action), with respect to the coarsest topology that makes continuous the maps $x^{i} \otimes y^{j} \mapsto x^{i}$ for $\mathbb{K}[x]$ discrete.

A normal form for operators

According to the previous theorem, there exists a \mathbb{K}-linear isomorphism

$$
\left.\pi_{E, F}: \mathbb{K}\langle x, y\rangle\right\rangle \rightarrow \text { End }_{\mathbb{K}-v_{e c t}}(V)
$$

which maps $\sum_{n \geq 0} P_{n}(x) y^{n}$ to $\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n}$.

A normal form for operators

According to the previous theorem, there exists a \mathbb{K}-linear isomorphism

$$
\left.\pi_{E, F}: \mathbb{K}\langle x, y\rangle\right\rangle \rightarrow \operatorname{End}_{\mathbb{K}-\mathcal{V}_{e c t}}(V)
$$

which maps $\sum_{n \geq 0} P_{n}(x) y^{n}$ to $\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n}$.
It is an evaluation map: $x \leftarrow R_{E}$ and $y \leftarrow L_{F}$.

A normal form for operators

According to the previous theorem, there exists a \mathbb{K}-linear isomorphism

$$
\left.\pi_{E, F}: \mathbb{K}\langle x, y\rangle\right\rangle \rightarrow \operatorname{End}_{\mathbb{K}-V_{e c t}}(V)
$$

which maps $\sum_{n \geq 0} P_{n}(x) y^{n}$ to $\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n}$.
It is an evaluation map: $x \leftarrow R_{E}$ and $y \leftarrow L_{F}$.

Remark

Note that it should be the case that $x y \neq y x$ for if $x y=y x$, then $\pi_{E, F}(x y)=R_{E} L_{F} \neq L_{F} R_{E}=\pi_{E, F}(y x)$.

A normal form for operators

According to the previous theorem, there exists a \mathbb{K}-linear isomorphism

$$
\left.\pi_{E, F}: \mathbb{K}\langle x, y\rangle\right\rangle \rightarrow \operatorname{End}_{\mathbb{K}-V_{e c t}}(V)
$$

which maps $\sum_{n \geq 0} P_{n}(x) y^{n}$ to $\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n}$.
It is an evaluation map: $x \leftarrow R_{E}$ and $y \leftarrow L_{F}$.

Remark

Note that it should be the case that $x y \neq y x$ for if $x y=y x$, then $\pi_{E, F}(x y)=R_{E} L_{F} \neq L_{F} R_{E}=\pi_{E, F}(y x)$.

Let $\phi \in \operatorname{End}_{\mathbb{K}-V_{e c t}}(V)$. The unique element $\left.S \in \mathbb{K}\langle x, y\rangle\right\rangle$ such that $\pi_{E, F}(S)=\phi$ may be called the normal form of ϕ with respect to the bases E, F of V.

Table of contents

(1) Weyl algebra
(2) Jacobson's density theorem
(3) Generalized ladder operators
(4) Generalization to operators on « infinite» linear combinations
(5) Concluding remarks

A certain (Cauchy) completion of a graded vector space Let us consider again an infinite-countable dimensional \mathbb{K}-vector space V with a given basis $E=\left(e_{n}\right)_{n \geq 0}$.

A certain (Cauchy) completion of a graded vector space Let us consider again an infinite-countable dimensional \mathbb{K}-vector space V with a given basis $E=\left(e_{n}\right)_{n \geq 0}$.

A topology may be defined for V which «agrees» with the decomposition

$$
V=\bigoplus_{n \geq 0} \operatorname{span}_{\mathbb{K}}\left(e_{n}\right)
$$

in the following way:

A certain (Cauchy) completion of a graded vector space Let us consider again an infinite-countable dimensional \mathbb{K}-vector space V with a given basis $E=\left(e_{n}\right)_{n \geq 0}$.

A topology may be defined for V which «agrees» with the decomposition

$$
V=\bigoplus_{n \geq 0} \operatorname{span}_{\mathbb{K}}\left(e_{n}\right)
$$

in the following way: define a valuation $\nu: V \rightarrow \mathbb{N} \sqcup\{\infty\}$ such that $\nu(v)=\inf \left\{n \geq 0:\left\langle v \mid e_{n}\right\rangle \neq 0\right\}$ for $v \neq 0$ and $\nu(0)=\infty$.

A certain (Cauchy) completion of a graded vector space Let us consider again an infinite-countable dimensional \mathbb{K}-vector space V with a given basis $E=\left(e_{n}\right)_{n \geq 0}$.

A topology may be defined for V which «agrees» with the decomposition

$$
V=\bigoplus_{n \geq 0} \operatorname{span}_{\mathbb{K}}\left(e_{n}\right)
$$

in the following way: define a valuation $\nu: V \rightarrow \mathbb{N} \sqcup\{\infty\}$ such that $\nu(v)=\inf \left\{n \geq 0:\left\langle v \mid e_{n}\right\rangle \neq 0\right\}$ for $v \neq 0$ and $\nu(0)=\infty$.

With respect to the topology induced by this valuation, we can describe the completion \widehat{V} of V as the infinite direct product $\prod_{n \geq 0} \operatorname{span}_{\mathbb{K}}\left(e_{n}\right)$.

A certain (Cauchy) completion of a graded vector space

 Let us consider again an infinite-countable dimensional \mathbb{K}-vector space V with a given basis $E=\left(e_{n}\right)_{n \geq 0}$.A topology may be defined for V which «agrees» with the decomposition

$$
V=\bigoplus_{n \geq 0} \operatorname{span}_{\mathbb{K}}\left(e_{n}\right)
$$

in the following way: define a valuation $\nu: V \rightarrow \mathbb{N} \sqcup\{\infty\}$ such that $\nu(v)=\inf \left\{n \geq 0:\left\langle v \mid e_{n}\right\rangle \neq 0\right\}$ for $v \neq 0$ and $\nu(0)=\infty$.

With respect to the topology induced by this valuation, we can describe the completion \widehat{V} of V as the infinite direct product $\prod_{n \geq 0} \operatorname{span}_{\mathbb{K}}\left(e_{n}\right)$.

Its elements are infinite linear combinations:

$$
\sum_{n \geq 0} \alpha_{n} e_{n}
$$

where all coefficients α_{n} are allowed to be different from zero.

Duality

Actually V and \widehat{V} may be paired by

$$
\langle S \mid P\rangle=\sum_{n \geq 0}\left\langle S \mid e_{n}\right\rangle\left\langle P \mid e_{n}\right\rangle
$$

where $S \in \widehat{V}$ and $P \in V$ (similarly to $\mathbb{K}\langle\langle X\rangle\rangle$ and $\mathbb{K}\langle X\rangle$).

Duality

Actually V and \widehat{V} may be paired by

$$
\langle S \mid P\rangle=\sum_{n \geq 0}\left\langle S \mid e_{n}\right\rangle\left\langle P \mid e_{n}\right\rangle
$$

where $S \in \widehat{V}$ and $P \in V$ (similarly to $\mathbb{K}\langle\langle X\rangle\rangle$ and $\mathbb{K}\langle X\rangle$).
Using this (non-degenerate) pairing,

$$
V^{*} \cong \widehat{V}
$$

and

$$
\widehat{V}^{\prime} \cong V
$$

Transpose

Duality allows us to define transpose operators.

Transpose

Duality allows us to define transpose operators.

Transpose

Duality allows us to define transpose operators.
Let $\phi \in \operatorname{End}_{\mathbb{K}-V_{e c t}}(V)$ and $\psi \in \operatorname{End}_{\mathbb{K}-\mathcal{T o p}^{\prime} V_{e c t}}(\widehat{V})$.
Then we define ${ }^{\dagger} \phi \in \operatorname{End}_{\mathbb{K} \text {-VectIop }}(\widehat{V})$ by

$$
\left\langle^{\dagger} \phi(S) \mid P\right\rangle=\langle S \mid \phi(P)\rangle
$$

and

Transpose

Duality allows us to define transpose operators.
Let $\phi \in \operatorname{End}_{\mathbb{K}-V_{e c t}}(V)$ and $\psi \in \operatorname{End}_{\mathbb{K}-\mathcal{T o p}^{\prime} V_{e c t}}(\widehat{V})$.
Then we define ${ }^{\dagger} \phi \in \operatorname{End}_{\mathbb{K} \text {-VectIop }}(\widehat{V})$ by

$$
\left\langle^{\dagger} \phi(S) \mid P\right\rangle=\langle S \mid \phi(P)\rangle
$$

and $\psi^{\dagger} \in \operatorname{End}_{\mathbb{K}-V_{e c t}}(V)$ by

$$
\left\langle S \mid \psi^{\dagger}(P)\right\rangle=\langle\psi(S) \mid P\rangle
$$

Decomposition of continuous endomorphisms

Using this duality and transpose, we can prove that any continuous operator ψ on \widehat{V} admits a decomposition as the sum of a summable family

$$
\psi=\sum_{n \geq 0} R^{n} P_{n}(L)
$$

Decomposition of continuous endomorphisms

Using this duality and transpose, we can prove that any continuous operator ψ on \widehat{V} admits a decomposition as the sum of a summable family

$$
\psi=\sum_{n \geq 0} R^{n} P_{n}(L)
$$

If follows in particular that we have a linear isomorphism

$$
\operatorname{End}_{\mathbb{K}-V_{e c t}}(V) \cong \operatorname{End}_{\mathbb{K}-\mathcal{T o p}_{\text {op }} V_{e c t}}(\widehat{V})
$$

Table of contents

(1) Weyl algebra
(2) Jacobson's density theorem
(3) Generalized ladder operators

4 Generalization to operators on « infinite» linear combinations
(5) Concluding remarks

Links with other well-known combinatorial structures

Any sequence of polynomials

$$
\left(P_{n}(x)\right)_{n \in \mathbb{N}} \in \mathbb{K}[x]^{\mathbb{N}}
$$

is bi-univocally transformed into a doubly-infinite matrix with coefficients in \mathbb{K}

$$
\left(\left\langle P_{i}(x) \mid x^{j}\right\rangle\right)_{i, j \geq 0}
$$

where $\left\langle P \mid x^{i}\right\rangle$ is the coefficient of the monomial x^{i} in the polynomial P
(the so-called Dirac-Schützenberger bracket) in such a way that

$$
P=\sum_{i \geq 0}\left\langle P \mid x^{i}\right\rangle x^{i}
$$

(sum with only finitely many non-zero terms).

Links with other well-known combinatorial structures

Note that any such matrix satisfies the following:

Links with other well-known combinatorial structures

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\left\langle P_{i}(x) \mid x^{j}\right\rangle \neq 0$.

Links with other well-known combinatorial structures

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\left\langle P_{i}(x) \mid x^{j}\right\rangle \neq 0$.

More generally, let $M=\left(M_{i, j}\right)_{i, j \geq 0}$ be an infinite matrix.

Links with other well-known combinatorial structures

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\left\langle P_{i}(x) \mid x^{j}\right\rangle \neq 0$.

More generally, let $M=\left(M_{i, j}\right)_{i, j \geq 0}$ be an infinite matrix. We say that M is row-finite if for each i, there are only finitely many j such that $M_{i, j} \neq 0$.

Links with other well-known combinatorial structures

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\left\langle P_{i}(x) \mid x^{j}\right\rangle \neq 0$.

More generally, let $M=\left(M_{i, j}\right)_{i, j \geq 0}$ be an infinite matrix. We say that M is row-finite if for each i, there are only finitely many j such that $M_{i, j} \neq 0$.

So it follows that the set $\mathbb{K}[x]^{\mathbb{N}}$ of sequences of polynomials and the set $\mathbb{K}^{\mathbb{N} \times(\mathbb{N})}$ are equipotent by $\left(P_{n}\right)_{n} \mapsto\left(\left\langle P_{i}(x) \mid x^{j}\right\rangle\right)_{i, j}$.

Links with other well-known combinatorial structures

Note that any such matrix satisfies the following: for each $i \in \mathbb{N}$, there are only finitely many j such that the coefficient $\left\langle P_{i}(x) \mid x^{j}\right\rangle \neq 0$.

More generally, let $M=\left(M_{i, j}\right)_{i, j \geq 0}$ be an infinite matrix. We say that M is row-finite if for each i, there are only finitely many j such that $M_{i, j} \neq 0$.

So it follows that the set $\mathbb{K}[x]^{\mathbb{N}}$ of sequences of polynomials and the set $\mathbb{K}^{\mathbb{N} \times(\mathbb{N})}$ are equipotent by $\left(P_{n}\right)_{n} \mapsto\left(\left\langle P_{i}(x) \mid x^{j}\right\rangle\right)_{i, j}$.

Actually there are isomorphic as \mathbb{K}-vector spaces.

Links with other well-known combinatorial structures

We have

$$
\left.\operatorname{End}_{\mathbb{K}-V_{e c t}}(V) \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}\langle x, y\rangle\right\rangle \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}^{\mathbb{N} \times(\mathbb{N})}
$$

Links with other well-known combinatorial structures

We have

$$
\left.\operatorname{End}_{\mathbb{K}-V_{e c t}}(V) \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}\langle x, y\rangle\right\rangle \cong_{\mathbb{K}-V e c t} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K}-V e c t} \mathbb{K}^{\mathbb{N} \times(\mathbb{N})}
$$

Moreover, both spaces $\operatorname{End}_{\mathbb{K} \text { - } v_{e c t}}(V)$ and $\mathbb{K}^{\mathbb{N} \times(\mathbb{N})}$ are \mathbb{K}-algebras.

Links with other well-known combinatorial structures

We have

$$
\left.\operatorname{End}_{\mathbb{K}-V_{e c t}}(V) \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}\langle x, y\rangle\right\rangle \cong_{\mathbb{K}-V_{e c t}} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}^{\mathbb{N} \times(\mathbb{N})}
$$

Moreover, both spaces $\operatorname{End}_{\mathbb{K}-V_{e c t}}(V)$ and $\mathbb{K}^{\mathbb{N} \times(\mathbb{N})}$ are \mathbb{K}-algebras. But the linear isomorphism that maps a linear operator $\phi=\sum_{i \geq 0} P_{i}\left(R_{E}\right) L_{F}^{i}$ to the row-finite matrix $\left(\left\langle P_{i}(x)\right| x^{j}\right)_{i, j \geq 0}$ is not a ring map.

Links with other well-known combinatorial structures

We have

$$
\left.\operatorname{End}_{\mathbb{K}-V_{e c t}}(V) \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}\langle x, y\rangle\right\rangle \cong_{\mathbb{K}-V_{e c t}} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}^{\mathbb{N} \times(\mathbb{N})}
$$

Moreover, both spaces $\operatorname{End}_{\mathbb{K}-V_{e c t}}(V)$ and $\mathbb{K}^{\mathbb{N} \times(\mathbb{N})}$ are \mathbb{K}-algebras. But the linear isomorphism that maps a linear operator $\phi=\sum_{i \geq 0} P_{i}\left(R_{E}\right) L_{F}^{i}$ to the row-finite matrix $\left(\left\langle P_{i}(x)\right| x^{j}\right)_{i, j \geq 0}$ is not a ring map.

However, we can transport the matrix product on $\operatorname{End}_{\mathbb{K} \text { - } V_{e c t}}(V)$ (by isomorphism):

Links with other well-known combinatorial structures

We have

$$
\left.\operatorname{End}_{\mathbb{K}-V_{e c t}}(V) \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}\langle x, y\rangle\right\rangle \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}[x]^{\mathbb{N}} \cong_{\mathbb{K} \text {-Vect }} \mathbb{K}^{\mathbb{N} \times(\mathbb{N})}
$$

Moreover, both spaces $\operatorname{End}_{\mathbb{K}-V_{e c t}}(V)$ and $\mathbb{K}^{\mathbb{N} \times(\mathbb{N})}$ are \mathbb{K}-algebras. But the linear isomorphism that maps a linear operator $\phi=\sum_{i \geq 0} P_{i}\left(R_{E}\right) L_{F}^{i}$ to the row-finite matrix $\left(\left\langle P_{i}(x)\right| x^{j}\right)_{i, j \geq 0}$ is not a ring map.
 isomorphism):
$\left(\sum_{i \geq 0} P_{i}\left(R_{E}\right) L_{F}^{i}\right) \#\left(\sum_{i \geq 0} Q_{i}\left(R_{E}\right) L_{F}^{i}\right)=\sum_{i \geq 0}\left(\sum_{j \geq 0}\left\langle P_{i}(x) \mid x^{j}\right\rangle Q_{j}\left(R_{E}\right)\right) L_{F}^{i}$.

Links with other well-known combinatorial structures

This « new » product $\#$ on $E^{\operatorname{En}}{ }_{\mathbb{K}-V_{e c t}}(V)$ is a generalization of the umbral composition of polynomial sequences (i.e., sequences of polynomials $\left(P_{n}(x)\right)_{n}$ such that for all $n, \operatorname{deg} P_{n}=n$, or, equivalently, the associated matrix is lower triangular):

Links with other well-known combinatorial structures

This « new » product $\#$ on $\operatorname{End}_{\mathbb{K}-V_{e c t}}(V)$ is a generalization of the umbral composition of polynomial sequences (i.e., sequences of polynomials $\left(P_{n}(x)\right)_{n}$ such that for all $n, \operatorname{deg} P_{n}=n$, or, equivalently, the associated matrix is lower triangular):

$$
\left(p_{n}(x)\right)_{n} \#\left(q_{n}(x)\right)_{n}=\left(\sum_{k \geq 0}\left\langle p_{n}(x) \mid x^{k}\right\rangle q_{k}(x)\right)_{n}
$$

Links with other well-known combinatorial structures

A polynomial sequence $\left(p_{n}(x)\right)_{n}$ (thus $\operatorname{deg} p_{n}=n$) is said to be a Sheffer sequence if there are two formal power series g and ϕ such that $g(0) \neq 0$ and $\phi(0)=0, \phi^{\prime}(0) \neq 0$ such that

$$
\sum_{n \geq 0} p_{n}(x) y^{n}=g(y) e^{x \phi(y)} \in \mathbb{K}[[x, y]]
$$

Links with other well-known combinatorial structures

A polynomial sequence $\left(p_{n}(x)\right)_{n}$ (thus $\left.\operatorname{deg} p_{n}=n\right)$ is said to be a Sheffer sequence if there are two formal power series g and ϕ such that $g(0) \neq 0$ and $\phi(0)=0, \phi^{\prime}(0) \neq 0$ such that

$$
\sum_{n \geq 0} p_{n}(x) y^{n}=g(y) e^{x \phi(y)} \in \mathbb{K}[[x, y]]
$$

Sheffer sequences form a group under umbral composition which is isomorphic to the Riordan group (following Shapiro's terminology) $\mathbb{K}[x]^{*} \rtimes x \mathbb{K}[x]$, also called the group of substitutions with prefunction.

Links with other well-known combinatorial structures

A polynomial sequence $\left(p_{n}(x)\right)_{n}$ (thus $\operatorname{deg} p_{n}=n$) is said to be a Sheffer sequence if there are two formal power series g and ϕ such that $g(0) \neq 0$ and $\phi(0)=0, \phi^{\prime}(0) \neq 0$ such that

$$
\sum_{n \geq 0} p_{n}(x) y^{n}=g(y) e^{x \phi(y)} \in \mathbb{K}[[x, y]]
$$

Sheffer sequences form a group under umbral composition which is isomorphic to the Riordan group (following Shapiro's terminology) $\mathbb{K}[x]^{*} \rtimes x \mathbb{K}[x]$, also called the group of substitutions with prefunction.

As lower triangular matrices, Sheffer sequences form a sub-group of the group of invertible elements of the (completed) incidence algebra $I\left(\mathbb{N}^{\circ p}, \mathbb{K}\right)$ of the integers (with opposite ordering).

Links with other well-known combinatorial structures

A polynomial sequence $\left(p_{n}(x)\right)_{n}$ (thus $\operatorname{deg} p_{n}=n$) is said to be a Sheffer sequence if there are two formal power series g and ϕ such that $g(0) \neq 0$ and $\phi(0)=0, \phi^{\prime}(0) \neq 0$ such that

$$
\sum_{n \geq 0} p_{n}(x) y^{n}=g(y) e^{x \phi(y)} \in \mathbb{K}[[x, y]]
$$

Sheffer sequences form a group under umbral composition which is isomorphic to the Riordan group (following Shapiro's terminology) $\mathbb{K}[x]^{*} \rtimes x \mathbb{K}[x]$, also called the group of substitutions with prefunction.

As lower triangular matrices, Sheffer sequences form a sub-group of the group of invertible elements of the (completed) incidence algebra $I\left(\mathbb{N}^{\mathrm{Op}}, \mathbb{K}\right)$ of the integers (with opposite ordering).

Need to understand the relations between these combinatorial objects in the setting of decomposition of operators.

Infinite commutation formula

As any operator, the commutator $\left[L_{F}, R_{E}\right]$ admits a decomposition in the form $\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n}$.

Infinite commutation formula

As any operator, the commutator $\left[L_{F}, R_{E}\right]$ admits a decomposition in the form $\sum_{n \geq 0} P_{n}\left(R_{E}\right) L_{F}^{n}$.

We obtain an infinite commutation formula!

Dziękuję za uwagę.

