Boolean bent functions in impossible cases: odd and plane dimensions

Laurent Poinsot

Université du Sud Toulon-Var

SAR/SSI 2006

Outline

(1) Boolean bent functions : traditional approach

- What is a Boolean bent function?
- Applications for such functions

Outline

(1) Boolean bent functions : traditional approach

- What is a Boolean bent function?
- Applications for such functions
(2) Boolean bent functions: Group actions based approach
- Basics on group actions
- Group actions "bent" functions
- "Bent" functions in impossible cases
- Application

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Outline

(1) Boolean bent functions : traditional approach

- What is a Boolean bent function?
- Applications for such functions

2 Boolean bent functions: Group actions based approach

- Basics on group actions
- Group actions "bent" functions
- "Bent" functions in impossible cases
- Application

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Some notations

Let $G F(2)=\{0,1\}$ be the finite field with two elements. We denote by V_{m} any m-dimensional vector space over $G F(2)$.

Some notations

Let $G F(2)=\{0,1\}$ be the finite field with two elements. We denote by V_{m} any m-dimensional vector space over $G F(2)$. V_{m} will be interpreted as $G F(2)^{m}$, the vector space of m-tuples, or as $G F\left(2^{m}\right)$ the finite field with 2^{m} elements.

Let G be a finite Abelian group. For instance $G=V_{m}$, $G=\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$ or $G=G F\left(2^{m}\right)^{*}$.

> Definition
> A Boolean function is a (mathematical) mapping from G to V_{n}. A Boolean function $f: G \rightarrow V_{n}$ is called bent if its Fourier spectrum contains all the possible frequencies.

Let G be a finite Abelian group. For instance $G=V_{m}$, $G=\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$ or $G=G F\left(2^{m}\right)^{*}$.

Definition

A Boolean function is a (mathematical) mapping f from G to V_{n}.

Let G be a finite Abelian group. For instance $G=V_{m}$, $G=\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$ or $G=G F\left(2^{m}\right)^{*}$.

Definition

A Boolean function is a (mathematical) mapping f from G to V_{n}. A Boolean function $f: G \rightarrow V_{n}$ is called bent if its Fourier spectrum contains all the possible frequencies.

Alternative definition : perfect nonlinearity

Definition

A function $f: G \rightarrow V_{n}$ is called perfect nonlinear if for each nonzero α in G and for each $\beta \in V_{n}$,

$$
|\{x \in G \mid f(\alpha+x) \oplus f(x)=\beta\}|=\frac{|G|}{2^{n}}
$$

[^0]$$
f \text { is perfect nonlinear. }
$$

Alternative definition : perfect nonlinearity

Definition

A function $f: G \rightarrow V_{n}$ is called perfect nonlinear if for each nonzero α in G and for each $\beta \in V_{n}$,

$$
|\{x \in G \mid f(\alpha+x) \oplus f(x)=\beta\}|=\frac{|G|}{2^{n}}
$$

Theorem (Dillon 1976, Rothaus 1974, Carlet \& Ding 2004)
A function f is bent if and only if f is perfect nonlinear.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Example

The function $f: G F(2)^{4} \rightarrow G F(2)$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}\right) \cdot\left(x_{3}, x_{4}\right)=x_{1} x_{3} \oplus x_{2} x_{4}
$$

is bent.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

What is a bent functions?
Applications for such functions

Nonexistence results : impossible cases

Odd dimension : If m is an odd integer, there is no bent fiunction f from $/ / m$ to V / n (for anv n).
 Plane dimension : For any integer m, there is no bent function f from V_{m} to itself

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Nonexistence results : impossible cases

- Odd dimension : If m is an odd integer, there is no bent function f from V_{m} to V_{n} (for any n);

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Nonexistence results : impossible cases

- Odd dimension : If m is an odd integer, there is no bent function f from V_{m} to V_{n} (for any n);
- Plane dimension : For any integer m, there is no bent function f from V_{m} to itself ;

Nevertheless in this contribution are constructed "bent'
functions in these cases !

Boolean bent functions : Traditional Approach

Nonexistence results : impossible cases

- Odd dimension : If m is an odd integer, there is no bent function f from V_{m} to V_{n} (for any n);
- Plane dimension : For any integer m, there is no bent function f from V_{m} to itself;
- Nevertheless in this contribution are constructed "bent" functions in these cases!

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Outline

(1) Boolean bent functions: traditional approach

- What is a Boolean bent function?
- Applications for such functions
(2) Boolean bent functions: Group actions based approach
- Basics on group actions
- Group actions "bent" functions
- "Bent" functions in impossible cases
- Application
- Cryptography ;
- Cryptography;
- Mobile communications.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Cryptography (I/IV) : DES-like cryptosystem

Cryptography (I/IV) : DES-like cryptosystem

Let M be the plaintext and f be a mapping.

By definition the ciphertext is C

Cryptography (I/IV) : DES-like cryptosystem

Let M be the plaintext and f be a mapping. An encryption using a DES-like cryptosystem consists in the iterative process

- $X_{0}:=M$;
- $X_{i}:=f\left(K_{i}+X_{i-1}\right)$ for $n \geq i>0$.

By definition the ciphertext is $C:=X_{n}$.

Cryptography (II/II) : Differential and linear attacks

Boolean bent functions : Traditional Approach

Cryptography (II/II) : Differential and linear attacks

- Biham \& Shamir's Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;

function

mapping f used

Cryptography (II/II) : Differential and linear attacks

- Biham \& Shamir's Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;
- Matsui's linear attack exploits the possible existence of an approximation of the entire cryptosystem by a linear function;

The resistance of DES-like cryptosystem relies on the
mapping f used
The mapuings finat ofier the best resistance against the
differential and linear attacks are exactly the bent functions.

Cryptography (II/I) : Differential and linear attacks

- Biham \& Shamir's Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;
- Matsui's linear attack exploits the possible existence of an approximation of the entire cryptosystem by a linear function;
- The resistance of DES-like cryptosystem relies on the mapping f used.

Cryptography (II/II) : Differential and linear attacks

- Biham \& Shamir's Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;
- Matsui's linear attack exploits the possible existence of an approximation of the entire cryptosystem by a linear function;
- The resistance of DES-like cryptosystem relies on the mapping f used.

The mappings f that offer the best resistance against the differential and linear attacks are exactly the bent functions.

Mobile communications (I/V) : Code Division Multiple Access (CDMA)

Definition

Two vectors $u=\left(u_{1}, \ldots, u_{m}\right)$ and $v=\left(v_{1}, \ldots, v_{m}\right)$ are called orthogonal if

$$
u . v=\sum_{i=1}^{m} u_{i} v_{i}=0
$$

For instance $u=(1,1,1,-1)$ and $v=(1,-1,1,1)$ are othogonal.

Mobile communications (II/V) : CDMA

Mobile communications (II/V) : CDMA

- V : set of mutually orthogonal vectors;

Each sender S_{x} has a different, unique vector $x \in V$ called For instance S_{u} has $u=(1,1,1,-1)$ and S_{v} has $v=(1,-1,1,1)$ Objective : Simultaneous transmission of messages by several senders on the same channel (multiplexing).

Mobile communications (II/V) : CDMA

- V : set of mutually orthogonal vectors;
- Each sender S_{x} has a different, unique vector $x \in V$ called chip code.
For instance S_{u} has $u=(1,1,1,-1)$ and S_{v} has $v=(1,-1,1,1)$;
several senders on the same channel

Mobile communications (II/V) : CDMA

- V : set of mutually orthogonal vectors;
- Each sender S_{x} has a different, unique vector $x \in V$ called chip code.
For instance S_{u} has $u=(1,1,1,-1)$ and S_{v} has
$v=(1,-1,1,1)$;
- Objective : Simultaneous transmission of messages by several senders on the same channel (multiplexing).

Mobile communications (III/V) : CDMA

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Mobile communications (III/V) : CDMA

- S_{u} wants to send $d_{u}=(1,0,1)$ and S_{v} wants to send $d_{v}=(0,0,1) ;$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Mobile communications (III/V) : CDMA

- S_{u} wants to send $d_{u}=(1,0,1)$ and S_{v} wants to send $d_{v}=(0,0,1)$;
- S_{u} computes its transmitted vector by coding d_{u} with the rules $0 \leftrightarrow-u, 1 \leftrightarrow u$. He obtains $(u,-u, u)$;

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Mobile communications (III/V) : CDMA

- S_{u} wants to send $d_{u}=(1,0,1)$ and S_{v} wants to send $d_{v}=(0,0,1)$;
- S_{u} computes its transmitted vector by coding d_{u} with the rules $0 \leftrightarrow-u, 1 \leftrightarrow u$. He obtains $(u,-u, u)$;
- S_{v} computes $(-v,-v, v)$;

Mobile communications (III/V) : CDMA

- S_{u} wants to send $d_{u}=(1,0,1)$ and S_{v} wants to send $d_{v}=(0,0,1)$;
- S_{u} computes its transmitted vector by coding d_{u} with the rules $0 \leftrightarrow-u, 1 \leftrightarrow u$. He obtains $(u,-u, u)$;
- S_{v} computes $(-v,-v, v)$;
- The message sent on the channel is $(u-v,-u-v, u+v)$.

Mobile communications (IV/V) : CDMA

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Mobile communications (IV/V) : CDMA

- A receiver gets the message $M=(u-v,-u-v, u+v)$ and he needs to recover d_{u} and/or d_{v};

Mobile communications (IV/V) : CDMA

- A receiver gets the message $M=(u-v,-u-v, u+v)$ and he needs to recover d_{u} and/or d_{v};
- How to recover d_{u} ?

Mobile communications (IV/V) : CDMA

- A receiver gets the message $M=(u-v,-u-v, u+v)$ and he needs to recover d_{u} and/or d_{v};
- How to recover d_{u} ?
- Take the first component of $M, u-v$
positive, we can deduce that a one digit was sent

Mobile communications (IV/V) : CDMA

- A receiver gets the message $M=(u-v,-u-v, u+v)$ and he needs to recover d_{u} and/or d_{v};
- How to recover d_{u} ?
- Take the first component of $M, u-v$ and compute the dot-product with $u:(u-v) \cdot u=u \cdot u-v \cdot u=4$.

Mobile communications (IV/V) : CDMA

- A receiver gets the message $M=(u-v,-u-v, u+v)$ and he needs to recover d_{u} and/or d_{v};
- How to recover d_{u} ?
- Take the first component of $M, u-v$ and compute the dot-product with $u:(u-v) \cdot u=u \cdot u-v \cdot u=4$. Since this is positive, we can deduce that a one digit was sent ;

Mobile communications (IV/V) : CDMA

- A receiver gets the message $M=(u-v,-u-v, u+v)$ and he needs to recover d_{u} and/or d_{v};
- How to recover d_{u} ?
- Take the first component of $M, u-v$ and compute the dot-product with $u:(u-v) . u=u \cdot u-v . u=4$. Since this is positive, we can deduce that a one digit was sent ;
- Take the second component of $M,-u-v$ and $(-u-v) \cdot u=-u \cdot u-v . u=-4$. Since this is negative, we can deduce that a zero digit was sent ;

Mobile communications (IV/V) : CDMA

- A receiver gets the message $M=(u-v,-u-v, u+v)$ and he needs to recover d_{u} and/or d_{v};
- How to recover d_{u} ?
- Take the first component of $M, u-v$ and compute the dot-product with $u:(u-v) . u=u \cdot u-v . u=4$. Since this is positive, we can deduce that a one digit was sent ;
- Take the second component of $M,-u-v$ and $(-u-v) \cdot u=-u \cdot u-v . u=-4$. Since this is negative, we can deduce that a zero digit was sent ;
- Continuing in this fashion with the third component, the receiver successfully decodes d_{u};

Mobile communications (IV/V) : CDMA

- A receiver gets the message $M=(u-v,-u-v, u+v)$ and he needs to recover d_{u} and/or d_{v};
- How to recover d_{u} ?
- Take the first component of $M, u-v$ and compute the dot-product with $u:(u-v) . u=u \cdot u-v . u=4$. Since this is positive, we can deduce that a one digit was sent ;
- Take the second component of $M,-u-v$ and $(-u-v) \cdot u=-u \cdot u-v . u=-4$. Since this is negative, we can deduce that a zero digit was sent;
- Continuing in this fashion with the third component, the receiver successfully decodes d_{u};
- Likewise, applying the same process with chip code v, the receiver finds the message of S_{v}.

Mobile communication (V/V) : CDMA

Let $f: \mathbb{Z}_{m} \rightarrow\{0,1\}$ be a bent function.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Mobile communication (V/V) : CDMA

Let $f: \mathbb{Z}_{m} \rightarrow\{0,1\}$ be a bent function.
For each $\alpha \in \mathbb{Z}_{m}$, we define a vector :

$$
u_{\alpha}=(f(\alpha), f(\alpha+1), \ldots, f(\alpha+m-1)) .
$$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Mobile communication (V/V) : CDMA

Let $f: \mathbb{Z}_{m} \rightarrow\{0,1\}$ be a bent function.
For each $\alpha \in \mathbb{Z}_{m}$, we define a vector :

$$
u_{\alpha}=(f(\alpha), f(\alpha+1), \ldots, f(\alpha+m-1)) .
$$

In particular $u_{0}=(f(0), f(1), \ldots, f(m-1))$.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Mobile communication (V/V) : CDMA

Let $f: \mathbb{Z}_{m} \rightarrow\{0,1\}$ be a bent function.
For each $\alpha \in \mathbb{Z}_{m}$, we define a vector :

$$
u_{\alpha}=(f(\alpha), f(\alpha+1), \ldots, f(\alpha+m-1)) .
$$

In particular $u_{0}=(f(0), f(1), \ldots, f(m-1))$.
Then $\left\{u_{\alpha} \mid \alpha \in \mathbb{Z}_{m}\right\}$ is a set of mutually orthogonal vectors.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Outline

(1) Boolean bent functions : traditional approach

- What is a Boolean bent function?
- Applications for such functions

2) Boolean bent functions: Group actions based approach

- Basics on group actions
- Group actions "bent" functions
- "Bent" functions in impossible cases
- Application

Boolean bent functions : Traditional Approach
Boolean bent functions : Group actions based approach

Group actions "bent" functions
"Bent" functions in impossible cases Application

Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

\square
Definition
Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$. Write $g . x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$ - Let G and H be two groups. G acts on $G \times H$ by $\alpha .(x, y)=(\alpha+x, y)$;

- Let W be a sub-vector space of V. W acts on V by translation

Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g . x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$

Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g . x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Boolean bent functions : Traditional Approach
Boolean bent functions : Group actions based approach

Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write g.x instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation : $\alpha . x=\alpha+x$;

translation

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write g.x instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation : $\alpha . x=\alpha+x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha .(x, y)=(\alpha+x, y)$;
translation

Boolean bent functions : Traditional Approach

Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write g.x instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation : $\alpha . x=\alpha+x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha .(x, y)=(\alpha+x, y) ;$
- Let W be a sub-vector space of V. W acts on V by translation : $\alpha . \boldsymbol{x}=\alpha+\boldsymbol{x}$;

Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write g.x instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation : $\alpha . x=\alpha+x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha .(x, y)=(\alpha+x, y) ;$
- Let W be a sub-vector space of V. W acts on V by translation : $\alpha \cdot \boldsymbol{X}=\alpha+\boldsymbol{x}$;
- Let \mathbb{K} be any field. Then \mathbb{K}^{*} acts on \mathbb{K} by $\alpha . X=\alpha x$.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Outline

(1) Boolean bent functions : traditional approach - What is a Boolean bent function?

- Applications for such functions
(2) Boolean bent functions: Group actions based approach
- Basics on group actions
- Group actions "bent" functions
- "Bent" functions in impossible cases
- Application

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Alternative definition (recall)

A function $f: G \rightarrow V_{n}$ is bent if for each nonzero α in G and for each $\beta \in V_{n}$,

$$
|\{x \in G \mid f(\alpha+x) \oplus f(x)=\beta\}|=\frac{|G|}{2^{n}}
$$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Definition

Let G be a finite Abelian group acting on a finite nonempty set X. A function $f: X \rightarrow V_{n}$ is G-bent if for each nonzero $\alpha \in G$ and for each $\beta \in V_{n}$,

$$
|\{x \in X \mid f(\alpha \cdot x) \oplus f(x)=\beta\}|=\frac{|X|}{2^{n}}
$$

In particular a classical bent function $f: G \rightarrow V_{n}$ should be called a G-bent function in this new framework, where the considered group action is the action of G on itself by translation.

Definition

Let G be a finite Abelian group acting on a finite nonempty set X. A function $f: X \rightarrow V_{n}$ is G-bent if for each nonzero $\alpha \in G$ and for each $\beta \in V_{n}$,

$$
|\{x \in X \mid f(\alpha \cdot x) \oplus f(x)=\beta\}|=\frac{|X|}{2^{n}}
$$

In particular a classical bent function $f: G \rightarrow V_{n}$ should be called a G-bent function in this new framework, where the considered group action is the action of G on itself by translation.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Outline

(1) Boolean bent functions : traditional approach - What is a Boolean bent function?

- Applications for such functions

2 Boolean bent functions: Group actions based approach

- Basics on group actions
- Group actions "bent" functions
- "Bent" functions in impossible cases
- Application

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Odd dimension

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Odd dimension

Theorem

Let m and n be two odd integers. Then it is possible to construct a function $f: V_{2 m+n} \rightarrow\{0,1\}$ which is V_{n}-bent.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Odd dimension

Theorem

Let m and n be two odd integers. Then it is possible to construct a function $f: V_{2 m+n} \rightarrow\{0,1\}$ which is V_{n}-bent.

Remark

Because m and n are odd integers there is no classical bent function from $V_{2 m+n}$ to $\{0,1\}$ or also from V_{n} to $\{0,1\}$.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Plane dimension

Theorem
 Let $f: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right)$ be a field automorphism. Then f is $G F\left(2^{m}\right)^{*}$-bent.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Plane dimension

Theorem

Let $f: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right)$ be a field automorphism. Then f is $G F\left(2^{m}\right)^{*}$-bent.

Proof

Let $x \in G F\left(2^{m}\right)$ and $\alpha \in G F\left(2^{m}\right)^{*}, \alpha \neq 1$. Let $\beta \in G F\left(2^{m}\right)$.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Plane dimension

Theorem

Let $f: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right)$ be a field automorphism. Then f is $G F\left(2^{m}\right)^{*}$-bent.

Proof

Let $x \in G F\left(2^{m}\right)$ and $\alpha \in G F\left(2^{m}\right)^{*}, \alpha \neq 1$. Let $\beta \in G F\left(2^{m}\right)$.

$$
f(\alpha . x) \oplus f(x)=\beta
$$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Plane dimension

Theorem

Let $f: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right)$ be a field automorphism. Then f is $G F\left(2^{m}\right)^{*}$-bent.

Proof

Let $x \in G F\left(2^{m}\right)$ and $\alpha \in G F\left(2^{m}\right)^{*}, \alpha \neq 1$. Let $\beta \in G F\left(2^{m}\right)$.

$$
\begin{aligned}
\quad f(\alpha \cdot x) \oplus f(x) & =\beta \\
\Leftrightarrow \quad f(\alpha x \oplus x) & =\beta
\end{aligned}
$$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Plane dimension

Theorem

Let $f: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right)$ be a field automorphism. Then f is $G F\left(2^{m}\right)^{*}$-bent.

Proof

Let $x \in G F\left(2^{m}\right)$ and $\alpha \in G F\left(2^{m}\right)^{*}, \alpha \neq 1$. Let $\beta \in G F\left(2^{m}\right)$.

$$
\begin{aligned}
& f(\alpha . x) \oplus f(x)
\end{aligned}=\beta=\beta \quad \begin{array}{ll}
& =\beta \\
\Leftrightarrow \quad f(\alpha x \oplus x) & =f^{-1}(\beta) \\
\Leftrightarrow \quad(\alpha \oplus 1) x &
\end{array}
$$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Plane dimension

Theorem

Let $f: G F\left(2^{m}\right) \rightarrow G F\left(2^{m}\right)$ be a field automorphism. Then f is GF($\left.2^{m}\right)^{*}$-bent.

Proof

Let $x \in G F\left(2^{m}\right)$ and $\alpha \in G F\left(2^{m}\right)^{*}, \alpha \neq 1$. Let $\beta \in G F\left(2^{m}\right)$.

$$
\begin{aligned}
f(\alpha . x) \oplus f(x) & =\beta \\
\Leftrightarrow & f(\alpha x \oplus x) \\
\Leftrightarrow & =\beta \\
\Leftrightarrow(\alpha \oplus 1) x & =f^{-1}(\beta) \\
\Leftrightarrow x & =\frac{f^{-1}(\beta)}{(\alpha \oplus 1)}
\end{aligned}
$$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Outline

(1) Boolean bent functions : traditional approach - What is a Boolean bent function?

- Applications for such functions
(2) Boolean bent functions: Group actions based approach
- Basics on group actions
- Group actions "bent" functions
- "Bent" functions in impossible cases
- Application

We call a cylic bent function, a bent function $f: \mathbb{Z}_{m} \rightarrow\{0,1\}$.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

We call a cylic bent function, a bent function $f: \mathbb{Z}_{m} \rightarrow\{0,1\}$. The only known examples of such cyclic bent functions occur when $m=4$. It is widely conjectured that this is actually the only case.

Theorem
Let m be an even integer. Then it exists a $G F(2)^{m}$-bent func
$f: \mathbb{Z}_{2 m} \rightarrow\{0,1\}$.
If $m \neq 2$ then (it is conjectured that) f can not be a classical
bent function.

We call a cylic bent function, a bent function $f: \mathbb{Z}_{m} \rightarrow\{0,1\}$. The only known examples of such cyclic bent functions occur when $m=4$. It is widely conjectured that this is actually the only case.

Theorem

Let m be an even integer. Then it exists a $G F(2)^{m}$-bent function $f: \mathbb{Z}_{2^{m}} \rightarrow\{0,1\}$.

If $m \neq 2$ then (it is conjectured that) f can not be a classical bent function.

We call a cylic bent function, a bent function $f: \mathbb{Z}_{m} \rightarrow\{0,1\}$. The only known examples of such cyclic bent functions occur when $m=4$. It is widely conjectured that this is actually the only case.

Theorem

Let m be an even integer. Then it exists a $G F(2)^{m}$-bent function $f: \mathbb{Z}_{2^{m}} \rightarrow\{0,1\}$.

If $m \neq 2$ then (it is conjectured that) f can not be a classical bent function.

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Basics on group actions
Group actions "bent" functions
"Bent" functions in impossible cases
Application

Proof

Group actions "bent" functions
"Bent" functions in impossible cases Application

Proof

- Definition of the group action of $G F(2)^{m}$ on $\mathbb{Z}_{2^{m}}$:

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Proof

- Definition of the group action of $G F(2)^{m}$ on $\mathbb{Z}_{2^{m}}$: We transport the action by translation of $G F(2)^{m}$ on $\mathbb{Z}_{2^{m}}$:

$$
\alpha \cdot x=\Theta\left(\alpha \oplus \Theta^{-1}(x)\right)
$$

where Θ is the usual radix-two representation of an integer;
Let choose $g: G F(2)^{m} \rightarrow\{0,1\}$ be a (traditional) bent function (succh a function exists since m is an even integer). We define the function

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Proof

- Definition of the group action of $G F(2)^{m}$ on $\mathbb{Z}_{2^{m}}$: We transport the action by translation of $G F(2)^{m}$ on $\mathbb{Z}_{2^{m}}$:

$$
\alpha . x=\Theta\left(\alpha \oplus \Theta^{-1}(x)\right)
$$

where Θ is the usual radix-two representation of an integer;

- Let choose $g: \operatorname{GF}(2)^{m} \rightarrow\{0,1\}$ be a (traditional) bent function (succh a function exists since m is an even integer).

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Proof

- Definition of the group action of $G F(2)^{m}$ on $\mathbb{Z}_{2^{m}}$: We transport the action by translation of $G F(2)^{m}$ on $\mathbb{Z}_{2^{m}}$:

$$
\alpha . x=\Theta\left(\alpha \oplus \Theta^{-1}(x)\right)
$$

where Θ is the usual radix-two representation of an integer;

- Let choose $g: \operatorname{GF}(2)^{m} \rightarrow\{0,1\}$ be a (traditional) bent function (succh a function exists since m is an even integer). We define the function

$$
\begin{array}{rll}
f: & \mathbb{Z}_{2^{m}} & \rightarrow\{0,1\} \\
x & \mapsto g\left(\Theta^{-1}(x)\right) .
\end{array}
$$

Basics on group actions
Group actions "bent" functions
"Bent" functions in impossible cases Application

Proof (cont'd)

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Group actions "bent" functions
"Bent" functions in impossible cases Application

Proof (cont'd)

- Let show that f is $G F(2)^{m}$-bent :

Proof (cont'd)

- Let show that f is $G F(2)^{m}$-bent :

$$
f(\alpha . x) \oplus f(x) \quad=\beta
$$

Proof (cont'd)

- Let show that f is $G F(2)^{m}$-bent :

$$
\begin{array}{lll}
& f(\alpha \cdot x) \oplus f(x) & =\beta \\
\Leftrightarrow \quad g\left(\Theta^{-1}(\alpha \cdot x)\right) \oplus g\left(\Theta^{-1}(x)\right) & =\beta
\end{array}
$$

Proof (cont'd)

- Let show that f is $G F(2)^{m}$-bent :

$$
\begin{array}{lll}
& f(\alpha . x) \oplus f(x) & =\beta \\
\Leftrightarrow & g\left(\Theta^{-1}(\alpha \cdot x)\right) \oplus g\left(\Theta^{-1}(x)\right) & =\beta \\
\Leftrightarrow & g\left(\Theta^{-1}\left(\Theta\left(\alpha \oplus \Theta^{-1}(x)\right)\right) \oplus g\left(\Theta^{-1}(x)\right)\right. & =\beta
\end{array}
$$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach

Group actions "bent" functions
"Bent" functions in impossible cases Application

Proof (cont'd)

- Let show that f is $G F(2)^{m}$-bent :

$$
\begin{array}{lll}
& f(\alpha . x) \oplus f(x) & =\beta \\
\Leftrightarrow & g\left(\Theta^{-1}(\alpha \cdot x)\right) \oplus g\left(\Theta^{-1}(x)\right) & =\beta \\
\Leftrightarrow g\left(\Theta^{-1}\left(\Theta\left(\alpha \oplus \Theta^{-1}(x)\right)\right) \oplus g\left(\Theta^{-1}(x)\right)\right. & =\beta \\
\Leftrightarrow g\left(\alpha \oplus \Theta^{-1}(x)\right) \oplus g\left(\Theta^{-1}(x)\right) & =\beta
\end{array}
$$

Boolean bent functions : Traditional Approach Boolean bent functions : Group actions based approach
"Bent" functions in impossible cases Application

Proof (cont'd)

- Let show that f is $G F(2)^{m}$-bent :

$$
\begin{array}{lll}
& f(\alpha \cdot x) \oplus f(x) & =\beta \\
\Leftrightarrow & g\left(\Theta^{-1}(\alpha \cdot x)\right) \oplus g\left(\Theta^{-1}(x)\right) & =\beta \\
\Leftrightarrow g\left(\Theta^{-1}\left(\Theta\left(\alpha \oplus \Theta^{-1}(x)\right)\right) \oplus g\left(\Theta^{-1}(x)\right)\right. & =\beta \\
\Leftrightarrow g\left(\alpha \oplus \Theta^{-1}(x)\right) \oplus g\left(\Theta^{-1}(x)\right) & =\beta \\
\Leftrightarrow g(\alpha \oplus y) \oplus g(y) & =\beta .
\end{array}
$$

[^0]: A function f is bent

