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Introduction

Let G and H be two finite groups. A mapping f : G → H is
called perfect nonlinear (or planar) if for each nonzero α in
G and each β ∈ H,

|{x ∈ G|f (α + x)− f (x) = β}| = |G|
|H|

.

Let define σα : G → G as x 7→ α + x . The previous equation
can naturally be re-written as :

|{x ∈ G|f (σα(x))− f (x) = β}| = |G|
|H|

.
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Introduction

Now let G and H be two finite groups and X be a finite
nonempty set on which G acts. A function f : X → H is
G-perfect nonlinear if for each nonzero g in G and for each
β ∈ H,

|{x ∈ X |f (g.x)− f (x) = β}| = |X |
|H|

.
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Principle of an encryption

Alice wants to send a confidential message m to Bob over a
public channel.
In this situation they need a cryptosystem that consists in :

An encryption algorithm E ;
A decryption algorithm D ;
A set of encryption keys and a set of decryption keys
(they can be different) ;
For each encryption key k there is a decryption key k−1

(not necessary unique) such that for each plaintext m

D(E(m, k), k−1) = m .
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Principle of an encryption (cont’d)

Alice computes the ciphertext c corresponding to the
plaintext m and the encryption key k by

c = E(m, k) .

Alice sends c to Bob on the public channel ;
Bob recovers the plaintext m by

m = D(c, k−1) .

Note that Bob must know the decryption key corresponding
to k .
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Two main kinds of cryptosystems

Secret-key (or symmetric) schemes : k and k−1 are
identical and only known by Alice and Bob ;
Public-key (or asymmetric) schemes : the encryption
key k is public (known by everybody), the decryption
key k−1 is a secret quantity only known by Bob.
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Iterated Block Ciphers

A block cipher is a (secret-key) cryptosystem in which the
plaintexts are divided into several blocks of bits of same
length.
An iterated block cipher consists in an iterative application of
a (keyed) round function f to a plaintext.
In an r -round iterated cipher we have

xi = f (ki , xi−1) for 1 ≤ i ≤ r ,

where x0 is the plaintext, xr is the ciphertext and k1, . . . , kr
are the subkeys of each round (obtained from a main
secret-key).
In such cryptosystems for any round key k the function
fk : x 7→ f (x , k) is a permutation.
Examples : DES, AES, . . .
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Brute force attack (or exhaustive search)

Algorithm

Given a ciphertext c, try all the possible secret-keys k such
that D(c, k) gives a ”correct” plaintext.

If the key length is l then this attack needs an average of
2l−1 tries. (If l = 128 bits a cryptosystem is supposed to be
secure against such an attack.)
A cryptosystem is secure if it is not vulnerable to a
cryptanalysis which is more efficient than the exhaustive
search.
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Last-round attacks on iterated block ciphers

Objective

Recover the last round key kr from the knowledge of some
pairs of plaintexts and corresponding ciphertexts.
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Last-round attacks on iterated block ciphers
(cont’d)

Principle

Distinguish the reduced cipher, G = fkr−1 ◦ . . . ◦ fk1 , from
a random permutation for all round keys k1, . . . , kr .
If such a discriminator can be found, some information
on kr can be recovered by checking wheter, for a given
value kr , the function

x0 7→ f−1
kr

(xr )

satisfies this property or not, where x0 (resp. xr )
denotes the plaintext (resp. the ciphertext).
The values of kr for which the expected statistical bias
is observed are candidates for the correct last-round
key.
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Last-round attacks on iterated block ciphers
(cont’d)

Different discriminators

Different discriminators can be exploited :
The reduced cipher G has a derivative,
dαG : x 7→ G(x ⊕ α)⊕G(x), which is not uniformly
distributed. This discriminator leads to a differential
attack ;
There exists a linear combination of the n output bits of
the reduced cipher which is close to an affine function.
This leads to a linear attack ;
The reduced cipher, seen as a univariate polynomial in
GF (2m)[X ], is close to a low-degree polynomial. This
leads to an interpolation attack.
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Differential cryptanalysis (Biham & Shamir)

Find a differential (α, β) so that

Pr(G(x)⊕G(x ⊕ α) = β)

is far from the uniform distribution ;
Choose at random a plaintext x0 and encrypt both x0
and x0 ⊕ α. We obtain two pairs of plaintexts and
ciphertexts (x0, xr ) and (x0 ⊕ α, x ′r ) ;

Find all possible values of the last round key k̂r such
that

f−1bkr
(xr )⊕ f−1bkr

(x ′r ) = β ;

Iterate the third and fourth steps until one of the values
of k̂r occurs more than the others. It will be considered
as the last round subkey.
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Linear cryptanalysis (Matsui)

Find a mask (α, β) so that the equation

α.x0 ⊕ β.G(x0) = 0

is satisfied for most plaintexts x0 and round keys
k1, . . . , kr−1 ;
Choose at random a plaintext x0 and compute its
ciphertext xr ;
Find all possible values of the last round key k̂r such
that

α.x0 ⊕ β.f−1bkr
(xr ) = 0 ;

Iterate the third and fourth steps until one of the values
of k̂r occcurs more than the others. It will be considered
as the last round subkey.
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Resistances against differential and linear
attacks

In most cases, differential and/or linear weaknesses of the
reduced cipher can be detected only if the round function f
presents a similar default. Then the round function should
satisfy the following property for any round key k :

For any nonzero block α, the distribution of differences
fk (x ⊕ α)⊕ fk (x) should be close to the uniform
distribution (Boolean perfect nonlinear functions) ;
For any nonzero block β, the Boolean function
x 7→ β.fk (x) should be far away from all affine functions
(Boolean bent functions).
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History

Definition (Nyberg, 1991)

A function f : Zm
2 −→ Zn

2 is perfect nonlinear if for each
nonzero α in Zm

2 and for each β ∈ Zn
2,

|{x ∈ Zm
2 |f (α⊕ x)⊕ f (x) = β}| = 2m−n .

Ensure the maximal resistance against the differential
attack.
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In the finite abelian groups setting (1)

For a group G, 0G is its identity element and G∗ = G \ {0G}.

Definition

Let G and H be two finite abelian groups and f : G → H.
f is balanced if for each β ∈ H,

|{x ∈ G|f (x) = β}| = |G|
|H|

;

The derivative of f with respect to α ∈ G is defined by

dαf : G → H
x 7→ f (α + x)− f (x) .
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In the finite abelian groups setting (2)

Definition

A function f : G → H is (classical) perfect nonlinear if
∀α ∈ G∗, dαf is balanced, i.e. ∀α ∈ G∗ and ∀β ∈ H,

|{x ∈ G|f (α + x)− f (x) = β}| = |G|
|H|

.

Remark

If G is a nonabelian group, such a function is called
left-perfect nonlinear.
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Equivalent characterizations

(Traditional) perfect nonlinearity ⇔
By the Fourier transform : notion of bentness ;
Combinatorial characterization by difference sets.
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History

Definition (Dillon 1974, Rothaus 1976)

A function f : Zm
2 → Z2 is bent if for each α ∈ Zm

2 ,∑
x∈Zm

2

(−1)f (x)⊕α.x = ±2
m
2 .

Ensure the maximal resistance against the linear attack.
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Example

The following mapping

f : Zm
2 × Zm

2 → Z2

(x , y) 7→ x .y =
m⊕

i=1

xiyi .

is a bent function.
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In the finite abelian groups setting (1)

The dual group of G, denoted Ĝ, is the set of all group
homomorphisms from G to U together with the pointwise
multiplication.
It is isomorphic to G itself. Its elements are called
characters : for α ∈ G, the character corresponding to α
(under the isomorphism) is denoted χα

G.
For instance if G is Zm

2 and α ∈ Zm
2 , then χα

G(x) = (−1)α.x .
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homomorphisms from G to U together with the pointwise
multiplication.
It is isomorphic to G itself. Its elements are called
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In the finite abelian groups setting (2)

Definition

Let G be a finite abelian group and ϕ : G −→ C. The
(discrete) Fourier transform of ϕ is the function ϕ̂ defined as

ϕ̂ : G → C
α 7→

∑
x∈G

ϕ(x)χα
G(x) .
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Dual characterization

Theorem (Carlet & Ding and Pott, 2004)

Let G and H be two finite abelian groups. Let f : G → H.
The function f is perfect nonlinear if and only if ∀α ∈ G,
∀β ∈ H∗,

|χ̂β
H ◦ f (α)|2 = |G| .

When G = Zm
2 and H = Z2, this is the classical notion of

bentness introduced by Dillon.
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Impossible cases

Due to implementation constraints we are interested in
Boolean functions f : Zm

2 → Zn
2 but Boolean bent functions

only exist when m is an even integer and m ≥ 2n.
Impossible cases : odd dimension (m is an odd integer) and
plane dimension (m = n).
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Definition

Let G be a finite group. Let D ⊂ G. D is a (v , k , λ) difference
set of G if

v = |G| ;
k = |D| ;
For each α ∈ G∗, the equation x − y = α has λ
solutions (x , y) in D2.



G-perfect
nonlinearity

Laurent
Poinsot

Differential
and Linear
Attacks

Traditional
Approach

Group action
based
perfect
nonlinearity

Dual notion
of
G-bentness

G-difference
sets

Definition

Let G be a finite group. Let D ⊂ G. D is a (v , k , λ) difference
set of G if

v = |G| ;
k = |D| ;
For each α ∈ G∗, the equation x − y = α has λ
solutions (x , y) in D2.



G-perfect
nonlinearity

Laurent
Poinsot

Differential
and Linear
Attacks

Traditional
Approach

Group action
based
perfect
nonlinearity

Dual notion
of
G-bentness

G-difference
sets

Definition

Let G be a finite group. Let D ⊂ G. D is a (v , k , λ) difference
set of G if

v = |G| ;
k = |D| ;
For each α ∈ G∗, the equation x − y = α has λ
solutions (x , y) in D2.



G-perfect
nonlinearity

Laurent
Poinsot

Differential
and Linear
Attacks

Traditional
Approach

Group action
based
perfect
nonlinearity

Dual notion
of
G-bentness

G-difference
sets

Definition

Let G be a finite group. Let D ⊂ G. D is a (v , k , λ) difference
set of G if

v = |G| ;
k = |D| ;
For each α ∈ G∗, the equation x − y = α has λ
solutions (x , y) in D2.



G-perfect
nonlinearity

Laurent
Poinsot

Differential
and Linear
Attacks

Traditional
Approach

Group action
based
perfect
nonlinearity

Dual notion
of
G-bentness

G-difference
sets

Hadamard difference set

Definition

A (v , k , λ) difference set D of G is a Hadamard difference
set if

(v , k , λ) = (4n2, 2n2 ± n, n(n ± 1)) .
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Combinatorial characterization

Theorem (Carlet & Ding, 2004)

Let G be a finite abelian group such that |G| = 4n2. A
function f : G −→ Z2 is perfect nonlinear if and only if its
support Sf = {x ∈ G|f (x) = 1} is a Hadamard difference set
of G.

This is a generalization of a result of Dillon (1974)
concerning Boolean functions.
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Combinatorial characterization (cont’d)

Theorem (Plott, 2004)

If G and H are two finite groups then a function f : G → H is
(left-)perfect nonlinear if and only if
{(x , f (x))|x ∈ G} ⊂ G × H is a splitting semiregular
(|G|, |H|, |G|, |G|

|H|) difference set of G × H relative to
{0G} × H.
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Mobile communications (1) : Code Division
Multiple Access (CDMA)

Definition

Two vectors u = (u1, . . . , um) and v = (v1, . . . , vm) are called
orthogonal if

u.v =
m∑

i=1

uivi = 0 .

For instance u = (1, 1, 1,−1) and v = (1,−1, 1, 1) are
othogonal.
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Mobile communications (2) : CDMA

V : set of mutually orthogonal vectors ;
Each sender Sx has a different, unique vector x ∈ V
called chip code.
For instance Su has u = (1, 1, 1,−1) and Sv has
v = (1,−1, 1, 1) ;
Objective : Simultaneous transmission of messages by
several senders on the same channel (multiplexing).
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Mobile communications (3) : CDMA

Su wants to send du = (1, 0, 1) and Sv wants to send
dv = (0, 0, 1) ;
Su computes its transmitted vector by coding du with
the rules 0 ↔ −u, 1 ↔ u. He obtains (u,−u, u) ;
Sv computes (−v ,−v , v) ;
The message sent on the channel is
(u − v ,−u − v , u + v).
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Mobile communications (4) : CDMA

A receiver gets the message M = (u− v ,−u− v , u + v)
and he needs to recover du and/or dv ;
How to recover du ?

Take the first component of M, u − v and compute the
dot-product with u : (u − v).u = u.u − v .u = 4. Since
this is positive, we can deduce that a one digit was sent ;
Take the second component of M, −u − v and
(−u − v).u = −u.u − v .u = −4. Since this is negative,
we can deduce that a zero digit was sent ;
Continuing in this fashion with the third component, the
receiver successfully decodes du ;

Likewise, applying the same process with chip code v ,
the receiver finds the message of Sv .
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Mobile communication (5) : CDMA

Let f : Zm → {0, 1} be a bent function.
For each α ∈ Zm, we define a vector :

uα = (f (α), f (α + 1), . . . , f (α + m − 1)) .

In particular u0 = (f (0), f (1), . . . , f (m − 1)).
Then {uα|α ∈ Zm} is a set of mutually orthogonal vectors.
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Recall on group actions ;
Group action based perfect nonlinearity.
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Group actions (1)

Let (G, ∗) be any group and X be a nonempty set.
A (left) group action of G on X is a group homomorphism φ
from G to the symmetric group S(X ) of X (the group of
permutations over X ).
In particular,

φ(0G) = IdX ;
∀(g1, g2) ∈ G2, φ(g1 ∗ g2) = φ(g1) ◦ φ(g2).
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Group actions (2)

Notation

For x ∈ X and g ∈ G, we write

g.x = φ(g)(x) .
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Group actions (3)

Let G be a group that acts on a nonempty set X .
For x ∈ X , the orbital function of x is defined as

φx : G → X
g 7→ g.x
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Group actions (4)

Definition

The action φ of G on X is
faithful if φ is one-to-one ;
regular if for each x ∈ X , φx is a bijective function.

Examples

The natural action of S(X ) on X is faithful : for π ∈ S(X )
and x ∈ X , π.x = π(x) ;
The action of G on itself by (left) translation is regular :
for α and x in G, α.x = α + x .
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Definitions (1)

Let G be a finite group (not necessary abelian) that (left)
acts at least faithfully on a finite nonempty set X and let H
be a finite abelian group (in an additive representation). Let
f : X → H.
The (left) derivative of f with respect to g ∈ G is defined as

Dg f : X → H
x 7→ f (g.x)− f (x) .

This is exactly the classical notion of derivative where the
addition α + x is replaced by the group action α.x .
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Definitions (2)

Definition

The function f : X → H is called G-perfect nonlinear if
∀g ∈ G∗, Dg f is balanced, i.e. ∀g ∈ G∗ et ∀β ∈ H,

|{x ∈ X |f (g.x)− f (x) = β}| = |X |
|H|

.



G-perfect
nonlinearity

Laurent
Poinsot

Differential
and Linear
Attacks

Traditional
Approach

Group action
based
perfect
nonlinearity

Dual notion
of
G-bentness

G-difference
sets

Definitions (2)

Definition

The function f : X → H is called G-perfect nonlinear if
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Definitions (3)

Remark

Since the action of G on X is faithful, there is no g ∈ G∗

such that the map

Dg : HX → HX

f 7→ Dg f

is identically null (i.e. for each f : X → H and for each x ∈ X ,
Dg f (x) = 0H ).
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First results

Proposition

Let T (G) be the group of translations of G.
A function f : G → H is T (G)-perfect nonlinear if and only if
f is classical (left) perfect nonlinear.

Proposition

Let f : X → H.
If f is G-perfect nonlinear then for each subgroup G′ of G, f
is also G′-perfect nonlinear.
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Assumptions and Notation

Let given (G, H, X ) such that
G and H are both finite abelian group ;
X is a finite nonempty set ;
G acts (at least) faithfully on X (by φ).

For f : X → Y and x ∈ X , we define fx : G → Y by

fx = f ◦ φx .
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Dual characterization

Theorem

A function f : X → H is G-perfect nonlinear if and only if for
each β ∈ H∗ and for each g ∈ G,

1
|X |

∑
x∈X

| ̂
(χβ

H ◦ fx)(g)|2 = |G| .

Informally speaking, f is G-perfect nonlinear if and only if fx
is bent on average over all x ∈ X .
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Assumptions

Let given (G, H, X ) such that
G is a finite nonabelian group ;
H is a finite abelian group ;
X is a finite nonempty set on which G left acts at least
faithfully.
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Recall on linear representations (1)

Definition

Let V be a C-vector space of finite dimension dimC(V ).
The unitary group U(V ) is the group of bijective linear
functions U such that U−1 = U∗.
A (unitary) linear representation of G on V is a group
homorphism ρ : G → U(V ).
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Recall on linear representations (2)

Let ρ : G → U(V ) be a linear representation.
A subvector space W of V is said stable with respect to ρ if
for each g ∈ G, the image by ρ(g) of each element of W
belongs to W .
A representation ρ : G → U(V ) is called irreducible if V and
{0V} are the ony stable subvector spaces of V (with respect
to ρ).
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Recall on linear representations (3)

Definition

Two representations ρ1 and ρ2 of G respectively on the
vector spaces V1 and V2 are isomorphic if there is a vector
space isomorphism Ψ : V1 → V2 such that for all g ∈ G,

Ψ ◦ ρ1(g) = ρ2(g) ◦Ψ .
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Recall on linear representations (4)

One denotes Ĝ a system of representatives of equivalence
classes of irreducible representations of a given group G.
If G is commutative then Ĝ is the dual group of G.
Unfortunatly if G is nonabelian then Ĝ is no more a group !
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Recall on linear representations (5)

Definition

Let ϕ : G → C and ρ ∈ Ĝ (associated with the vector space
V ). The Fourier transform of ϕ in ρ is given by

ϕ̂(ρ) =
∑
x∈G

ϕ(x)ρ(x) ∈ End(V ) .
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Dual characterisation of left-perfect nonlinearity

Recall

Let G be a finite nonabelian group and H a finite abelian
group. Let f : G → H.
The function f is (left) perfect nonlinear if ∀α ∈ G∗,
dαf : x 7→ f (α + x)− f (x) is balanced.

Theorem

A function f : G → H is (left) perfect nonlinear if and only if
∀β ∈ H∗ and ∀ρ ∈ Ĝ (ρ : G → U(V )),

(χ̂β
H ◦ f (ρ)) ◦ (χ̂β

H ◦ f (ρ))∗ = |G|IdV .
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Dual characterisation of left-perfect nonlinear
(cont’d)

Using the trace of endomorphisms, we obtain

‖ χ̂β
H ◦ f (ρ) ‖2= |G|dimC(V ) .

Question

Is it a sufficient condition for (left) perfect nonlinearity ?
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Dual characterisation of left-perfect nonlinear
(cont’d)

Using the trace of endomorphisms, we obtain
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Question

Is it a sufficient condition for (left) perfect nonlinearity ?
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Dual characterisation of G-perfect nonlinearity

Recall

Let G be a finite nonabelian group that acts (at least
faithfully) on a finite nonempty set X and let H be a finite
abelian group. Let f : X → H.
The function f is G-perfect nonlinear if ∀g ∈ G∗,
Dg f : x 7→ f (g.x)− f (x) is balanced.

Objective

Find the dual characterization of such G-perfect nonlinear
functions.
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Dual characterisation of G-perfect nonlinearity
(cont’d)

Dual characterization

A function f : X → H is G-perfect nonlinear if and only if
∀β ∈ H∗ and ∀ρ ∈ Ĝ,

1
|X |

∑
x∈X

(χ̂β
H ◦ fx(ρ)) ◦ (χ̂β

H ◦ fx(ρ))∗ = |G|IdV .

As in the abelian case, this is also a notion of bentness in
average but this time we use the dual characterization of left
perfect nonlinear functions rather than the classical one.
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Definition and Combinatorial characterization

Definition

Let G be a finite group (not necessarly abelian) that (left)
acts (at least) faithfully on a finite nonempty set X . Let
D ⊂ X .
D is a G-(v , k , λ)-difference set of X if

v = |X | ;
k = |D| ;
For each g ∈ G∗, the equation x = g.y has λ solutions
(x , y) in D2.
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Definition and Combinatorial characterization
(cont’d)

Proposition

Let G be a finite group (not necessarly abelian) that (left)
acts (at least) faithfully on a finite nonempty set X . We also
suppose that |X | ≡ 0 (mod 4). Let f : X → Z2.
The function f is G-perfect nonlinear if and only if its support
Sf is a G-(v , k , λ)-difference set of X such that

v = 4(k − λ) .
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Odd dimension

Theorem

Let m and n be two odd integers. Then it is possible to
construct a function f : Z2m+n → {0, 1} which is Zn-bent.

Remark

Because m and n are odd integers there is no classical bent
function from Z2m+n to {0, 1} or also from Zn to {0, 1}.
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Plane dimension

Theorem

Let f : GF (2m) → GF (2m) be a field automorphism. Then f
is GF (2m)∗-perfect nonlinear.

Proof

Let x ∈ GF (2m) and α ∈ GF (2m)∗, α 6= 1. Let β ∈ GF (2m).

f (α.x)⊕ f (x) = β
⇔ f (αx ⊕ x) = β

⇔ (α⊕ 1)x = f−1(β)

⇔ x =
f−1(β)

(α⊕ 1)

�
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