G-	beri	iec	t
non	line	ari	ty

Laurent Poinsot

Outline

G-perfect nonlinearity

Laurent Poinsot

Université du Sud Toulon-Var (France)

Organized by Professor J. Davis University of Richmond

(日)

G-perfect nonlinearity

Laurent Poinsot

Outline

Cryptographic properties of Boolean functions :

Balance :

Non correlation ;

High algebraic degree ;

Perfect nonlinearity (bentness).

G-perfect nonlinearity

Laurent Poinsot

Outline

Cryptographic properties of Boolean functions : Balance ;

(日)

Non correlation ;

High algebraic degree ;

Perfect nonlinearity (bentness).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Laurent Poinsot

Outline

Cryptographic properties of Boolean functions :

(日)

Balance;

Non correlation ;

High algebraic degree ;

Perfect nonlinearity (bentness).

G-perfect nonlinearity

Laurent Poinsot

Outline

Cryptographic properties of Boolean functions :

- Balance;
- Non correlation ;
- High algebraic degree ;
- Perfect nonlinearity (bentness).

G-perfect nonlinearity

Laurent Poinsot

Outline

Let *G* and *H* be two finite groups. A mapping $f : G \to H$ is called perfect nonlinear (or *planar*) if for each nonzero α in *G* and each $\beta \in H$,

$$|\{x \in G | f(\alpha + x) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

Let define σ_{α} : $G \rightarrow G$ as $x \mapsto \alpha + x$. The previous equation can naturally be re-written as :

$$|\{x \in G | f(\sigma_{\alpha}(x)) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

G-perfect nonlinearity

Laurent Poinsot

Outline

Let *G* and *H* be two finite groups. A mapping $f : G \rightarrow H$ is called perfect nonlinear (or *planar*) if for each nonzero α in *G* and each $\beta \in H$,

$$|\{x \in G | f(\alpha + x) - f(x) = \beta\}| = \frac{|G|}{|H|}.$$

Let define σ_{α} : $G \rightarrow G$ as $x \mapsto \alpha + x$. The previous equation can naturally be re-written as :

$$|\{x \in G | f(\sigma_{\alpha}(x)) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

G-perfect nonlinearity

Laurent Poinsot

Outline

Let *G* and *H* be two finite groups. A mapping $f : G \rightarrow H$ is called perfect nonlinear (or *planar*) if for each nonzero α in *G* and each $\beta \in H$,

$$|\{x \in G | f(\alpha + x) - f(x) = \beta\}| = \frac{|G|}{|H|}.$$

Let define σ_{α} : $G \rightarrow G$ as $x \mapsto \alpha + x$. The previous equation can naturally be re-written as :

$$|\{x \in G | f(\sigma_{\alpha}(x)) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

G-perfect nonlinearity

Laurent Poinsot

Outline

Now let *G* and *H* be two finite groups and *X* be a finite nonempty set on which *G* acts. A function $f : X \rightarrow H$ is *G*-perfect nonlinear if for each nonzero *g* in *G* and for each $\beta \in H$,

$$|\{x \in X | f(\underline{g}.\underline{x}) - f(\underline{x}) = \beta\}| = \frac{|X|}{|H|}.$$

1

G-perfect nonlinearity

> Laurent Poinsot

Outline

- Basics on cryptography
 - Basics on cryptanalysis

- - - ◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ●

G-perfect nonlinearity

> Laurent Poinsot

Outline

1 Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
- **G**-difference sets
 - Definition and Combinatorial characterization
 - Constructions

G-perfect nonlinearity

> Laurent Poinsot

Outline

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity

G-perfect nonlinearity

> Laurent Poinsot

Outline

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- Dual notion of G-bentness 4
 - Abelian case
 - Nonabelian case

G-perfect nonlinearity

> Laurent Poinsot

Outline

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- 4 Dual notion of G-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization
 - Constructions

1

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Differential and Linear Attacks

Basics on cryptography

Basics on cryptanalysis

Traditional Approach

- Perfect nonlinearity
- Bent functions
- Difference sets
- Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - *G*-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization

Constructions

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness

G-difference sets

Alice wants to send a confidential message *m* to *Bob* over a public channel.

n this situation they need a cryptosystem that consists in :

An encryption algorithm *E* ;

- A decryption algorithm D;
- A set of encryption keys and a set of decryption keys (they can be different);

For each encryption key k there is a decryption key k⁻¹ (not necessary unique) such that for each plaintext m

 $D(E(m,k),k^{-1})=m.$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets *Alice* wants to send a confidential message *m* to *Bob* over a public channel. In this situation they need a cryptosystem that consists in :

An encryption algorithm *E* ;

- A decryption algorithm D;
- A set of encryption keys and a set of decryption keys (they can be different);

For each encryption key k there is a decryption key k⁻¹ (not necessary unique) such that for each plaintext m

 $D(E(m,k),k^{-1})=m.$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of *G*-bentness

G-difference sets *Alice* wants to send a confidential message *m* to *Bob* over a public channel.

In this situation they need a cryptosystem that consists in :

An encryption algorithm *E*;

• A decryption algorithm *D*;

 A set of encryption keys and a set of decryption keys (they can be different);

For each encryption key k there is a decryption key k⁻¹ (not necessary unique) such that for each plaintext m

 $D(E(m,k),k^{-1})=m.$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of *G*-bentness
- G-difference sets

Alice wants to send a confidential message *m* to *Bob* over a public channel.

In this situation they need a cryptosystem that consists in :

- An encryption algorithm *E*;
- A decryption algorithm D;
- A set of encryption keys and a set of decryption keys (they can be different);

For each encryption key k there is a decryption key k⁻¹ (not necessary unique) such that for each plaintext m

 $D(E(m,k),k^{-1})=m.$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets *Alice* wants to send a confidential message *m* to *Bob* over a public channel.

In this situation they need a cryptosystem that consists in :

- An encryption algorithm *E*;
- A decryption algorithm D;
- A set of encryption keys and a set of decryption keys (they can be different);

■ For each encryption key *k* there is a decryption key *k*⁻⁷ (not necessary unique) such that for each plaintext *m*

 $D(E(m,k),k^{-1})=m.$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets *Alice* wants to send a confidential message *m* to *Bob* over a public channel.

In this situation they need a cryptosystem that consists in :

- An encryption algorithm E;
- A decryption algorithm D;
- A set of encryption keys and a set of decryption keys (they can be different);
- For each encryption key k there is a decryption key k⁻¹ (not necessary unique) such that for each plaintext m

 $D(E(m,k),k^{-1})=m.$

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Alice computes the ciphertext c corresponding to the plaintext m and the encryption key k by

c=E(m,k).

Alice sends c to Bob on the public channel;
 Bob recovers the plaintext m by

$$m=D(c,k^{-1}).$$

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Alice computes the ciphertext c corresponding to the plaintext m and the encryption key k by

c = E(m, k).

Alice sends c to Bob on the public channel;
Bob recovers the plaintext m by

 $m=D(c,k^{-1}).$

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Alice computes the ciphertext c corresponding to the plaintext m and the encryption key k by

c = E(m, k).

Alice sends c to Bob on the public channel;
 Bob recovers the plaintext m by

 $m=D(c,k^{-1}).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Alice computes the ciphertext c corresponding to the plaintext m and the encryption key k by

c = E(m, k).

Alice sends c to Bob on the public channel;
Bob recovers the plaintext m by

$$m=D(c,k^{-1}).$$

(日)

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Alice computes the ciphertext c corresponding to the plaintext m and the encryption key k by

c = E(m, k).

Alice sends c to Bob on the public channel;
Bob recovers the plaintext m by

$$m=D(c,k^{-1}).$$

Two main kinds of cryptosystems

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- Secret-key (or symmetric) schemes : k and k^{-1} are identical and only known by Alice and Bob ;
- Public-key (or asymmetric) schemes : the encryption key k is public (known by everybody), the decryption key k⁻¹ is a secret quantity only known by Bob.

Two main kinds of cryptosystems

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Secret-key (or symmetric) schemes : k and k⁻¹ are identical and only known by Alice and Bob;

Public-key (or asymmetric) schemes : the encryption key k is public (known by everybody), the decryption key k^{-1} is a secret quantity only known by Bob.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Two main kinds of cryptosystems

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

- Secret-key (or symmetric) schemes : k and k⁻¹ are identical and only known by Alice and Bob;
- Public-key (or asymmetric) schemes : the encryption key k is public (known by everybody), the decryption key k⁻¹ is a secret quantity only known by Bob.

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets A block cipher is a (secret-key) cryptosystem in which the plaintexts are divided into several blocks of bits of same length.

An iterated block cipher consists in an iterative application of a (keyed) round function *f* to a plaintext. In an *r*-round iterated cipher we have

 $\kappa_i = f(k_i, x_{i-1})$ for $1 \le i \le r$,

where x_0 is the plaintext, x_r is the ciphertext and k_1, \ldots, k_r are the subkeys of each round (obtained from a main secret-key).

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

A block cipher is a (secret-key) cryptosystem in which the plaintexts are divided into several blocks of bits of same length.

An iterated block cipher consists in an iterative application of a (keyed) round function f to a plaintext. In an r-round iterated cipher we have

$$\kappa_i = f(k_i, x_{i-1})$$
 for $1 \le i \le r$,

where x_0 is the plaintext, x_r is the ciphertext and k_1, \ldots, k_r are the subkeys of each round (obtained from a main secret-key).

(日) (日) (日) (日) (日) (日) (日)

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets A block cipher is a (secret-key) cryptosystem in which the plaintexts are divided into several blocks of bits of same length.

An iterated block cipher consists in an iterative application of a (keyed) round function *f* to a plaintext.

n an *r*-round iterated cipher we have

$$\mathbf{x}_i = f(k_i, \mathbf{x}_{i-1})$$
 for $1 \le i \le r$,

where x_0 is the plaintext, x_r is the ciphertext and k_1, \ldots, k_r are the subkeys of each round (obtained from a main secret-key).

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets A block cipher is a (secret-key) cryptosystem in which the plaintexts are divided into several blocks of bits of same length.

An iterated block cipher consists in an iterative application of a (keyed) round function f to a plaintext.

In an *r*-round iterated cipher we have

$$\mathbf{x}_i = f(\mathbf{k}_i, \mathbf{x}_{i-1})$$
 for $1 \le i \le r$,

where x_0 is the plaintext, x_r is the ciphertext and k_1, \ldots, k_r are the subkeys of each round (obtained from a main secret-key).

In such cryptosystems for any round key *k* the function $f_k : x \mapsto f(x, k)$ is a permutation. Examples : DES, AES, ...

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets A block cipher is a (secret-key) cryptosystem in which the plaintexts are divided into several blocks of bits of same length.

An iterated block cipher consists in an iterative application of a (keyed) round function f to a plaintext.

In an *r*-round iterated cipher we have

$$x_i = f(k_i, x_{i-1})$$
 for $1 \le i \le r$,

where x_0 is the plaintext, x_r is the ciphertext and k_1, \ldots, k_r are the subkeys of each round (obtained from a main secret-key).

In such cryptosystems for any round key *k* the function $f_k : x \mapsto f(x, k)$ is a permutation.

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets A block cipher is a (secret-key) cryptosystem in which the plaintexts are divided into several blocks of bits of same length.

An iterated block cipher consists in an iterative application of a (keyed) round function f to a plaintext.

In an *r*-round iterated cipher we have

$$x_i = f(k_i, x_{i-1})$$
 for $1 \le i \le r$,

where x_0 is the plaintext, x_r is the ciphertext and k_1, \ldots, k_r are the subkeys of each round (obtained from a main secret-key).
Outline

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Differential and Linear Attacks Basics on cryptography

- Basics on cryptanalysis
- Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization

Constructions

Brute force attack (or exhaustive search)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Algorithm

Given a ciphertext c, try all the possible secret-keys k such that D(c, k) gives a "correct" plaintext.

If the key length is *I* then this attack needs an average of 2^{l-1} tries. (If l = 128 bits a cryptosystem is supposed to be secure against such an attack.) A cryptosystem is secure if it is not vulnerable to a cryptosystem is more efficient than the exhaustive

(日) (日) (日) (日) (日) (日) (日)

Brute force attack (or exhaustive search)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Algorithm

Given a ciphertext c, try all the possible secret-keys k such that D(c, k) gives a "correct" plaintext.

If the key length is *I* then this attack needs an average of 2^{l-1} tries. (If l = 128 bits a cryptosystem is supposed to be secure against such an attack.)

A cryptosystem is secure if it is not vulnerable to a cryptanalysis which is more efficient than the exhaustive search.

(日) (日) (日) (日) (日) (日) (日)

Brute force attack (or exhaustive search)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Algorithm

Given a ciphertext c, try all the possible secret-keys k such that D(c, k) gives a "correct" plaintext.

If the key length is *l* then this attack needs an average of 2^{l-1} tries. (If l = 128 bits a cryptosystem is supposed to be secure against such an attack.)

A cryptosystem is secure if it is not vulnerable to a cryptanalysis which is more efficient than the exhaustive search.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Objective

Recover the last round key k_r from the knowledge of some pairs of plaintexts and corresponding ciphertexts.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Principle

- Distinguish the reduced cipher, $G = f_{k_{r-1}} \circ \ldots \circ f_{k_1}$, from a random permutation for all round keys k_1, \ldots, k_r .
- If such a discriminator can be found, some information on k_r can be recovered by checking wheter, for a given value k_r , the function

$$x_0 \mapsto f_{k_r}^{-1}(x_r)$$

satisfies this property or not, where x_0 (resp. x_r) denotes the plaintext (resp. the ciphertext). The values of k_r for which the expected statistical bias is observed are candidates for the correct last-round key.

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Principle

- Distinguish the reduced cipher, $G = f_{k_{r-1}} \circ \ldots \circ f_{k_1}$, from a random permutation for all round keys k_1, \ldots, k_r .
- If such a discriminator can be found, some information on k_r can be recovered by checking wheter, for a given value k_r , the function

$$x_0\mapsto f_{k_r}^{-1}(x_r)$$

satisfies this property or not, where x_0 (resp. x_r) denotes the plaintext (resp. the ciphertext). The values of k_r for which the expected statistical bias is observed are candidates for the correct last-round key.

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Principle

- Distinguish the reduced cipher, $G = f_{k_{r-1}} \circ \ldots \circ f_{k_1}$, from a random permutation for all round keys k_1, \ldots, k_r .
- If such a discriminator can be found, some information on k_r can be recovered by checking wheter, for a given value k_r, the function

$$x_0 \mapsto f_{k_r}^{-1}(x_r)$$

satisfies this property or not, where x_0 (resp. x_r) denotes the plaintext (resp. the ciphertext). The values of k_r for which the expected statistical bias is observed are candidates for the correct last-round key.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Different discriminators

- The reduced cipher *G* has a derivative, $d_{\alpha}G: x \mapsto G(x \oplus \alpha) \oplus G(x)$, which is not uniformly distributed. This discriminator leads to a differential attack;
- There exists a linear combination of the n output bits of the reduced cipher which is close to an affine function. This leads to a linear attack;
- The reduced cipher, seen as a univariate polynomial in GF(2^m)[X], is close to a low-degree polynomial. This leads to an interpolation attack.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Different discriminators

- The reduced cipher G has a derivative, d_αG : x → G(x ⊕ α) ⊕ G(x), which is not uniformly distributed. This discriminator leads to a differential attack;
- There exists a linear combination of the n output bits of the reduced cipher which is close to an affine function. This leads to a linear attack;
- The reduced cipher, seen as a univariate polynomial in GF(2^m)[X], is close to a low-degree polynomial. This leads to an interpolation attack.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness

G-difference sets

Different discriminators

- The reduced cipher *G* has a derivative, $d_{\alpha}G: x \mapsto G(x \oplus \alpha) \oplus G(x)$, which is not uniformly distributed. This discriminator leads to a differential attack;
- There exists a linear combination of the *n* output bits of the reduced cipher which is close to an affine function. This leads to a linear attack;
 - The reduced cipher, seen as a univariate polynomial in GF(2^m)[X], is close to a low-degree polynomial. This leads to an interpolation attack.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

- Traditional Approach
- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Different discriminators

- The reduced cipher G has a derivative, d_αG : x → G(x ⊕ α) ⊕ G(x), which is not uniformly distributed. This discriminator leads to a differential attack;
- There exists a linear combination of the *n* output bits of the reduced cipher which is close to an affine function. This leads to a linear attack;
- The reduced cipher, seen as a univariate polynomial in GF(2^m)[X], is close to a low-degree polynomial. This leads to an interpolation attack.

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group actior based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a differential (α, β) so that

 $\Pr(G(x) \oplus G(x \oplus \alpha) = \beta)$

is far from the uniform distribution;

Choose at random a plaintext x_0 and encrypt both x_0 and $x_0 \oplus \alpha$. We obtain two pairs of plaintexts and ciphertexts (x_0, x_r) and $(x_0 \oplus \alpha, x'_r)$;

Find all possible values of the last round key k_r such that

$$f_{\widehat{k}_r}^{-1}(x_r)\oplus f_{\widehat{k}_r}^{-1}(x_r')=eta$$
 ;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a differential (α, β) so that

 $\Pr(G(x) \oplus G(x \oplus \alpha) = \beta)$

is far from the uniform distribution;

Choose at random a plaintext x₀ and encrypt both x₀ and x₀ ⊕ α. We obtain two pairs of plaintexts and ciphertexts (x₀, x_r) and (x₀ ⊕ α, x'_r);

Find all possible values of the last round key k_r such that

$$f_{\widehat{k}_r}^{-1}(x_r)\oplus f_{\widehat{k}_r}^{-1}(x_r')=eta$$
 ;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a differential (α, β) so that

```
\Pr(G(x) \oplus G(x \oplus \alpha) = \beta)
```

is far from the uniform distribution;

Choose at random a plaintext x₀ and encrypt both x₀ and x₀ ⊕ α. We obtain two pairs of plaintexts and ciphertexts (x₀, x_r) and (x₀ ⊕ α, x'_r);

Find all possible values of the last round key k_r such that

$$f_{\widehat{k}_r}^{-1}(x_r)\oplus f_{\widehat{k}_r}^{-1}(x_r')=eta$$
 ;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a differential (α, β) so that

$$\Pr(G(x) \oplus G(x \oplus \alpha) = \beta)$$

is far from the uniform distribution;

Choose at random a plaintext x₀ and encrypt both x₀ and x₀ ⊕ α. We obtain two pairs of plaintexts and ciphertexts (x₀, x_r) and (x₀ ⊕ α, x'_r);

Find all possible values of the last round key \hat{k}_r such that

$$f_{\widehat{k}_r}^{-1}(x_r)\oplus f_{\widehat{k}_r}^{-1}(x_r')=eta$$
;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group actior based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Find a differential (α, β) so that

$$\Pr(G(x) \oplus G(x \oplus \alpha) = \beta)$$

is far from the uniform distribution;

Choose at random a plaintext x₀ and encrypt both x₀ and x₀ ⊕ α. We obtain two pairs of plaintexts and ciphertexts (x₀, x_r) and (x₀ ⊕ α, x'_r);

Find all possible values of the last round key \hat{k}_r such that

$$f_{\widehat{k}_r}^{-1}(x_r)\oplus f_{\widehat{k}_r}^{-1}(x_r')=eta$$
;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a mask (α, β) so that the equation

 $\alpha.x_0\oplus\beta.G(x_0)=0$

is satisfied for most plaintexts x_0 and round keys k_1, \ldots, k_{r-1} ;

Choose at random a plaintext x₀ and compute its ciphertext x_r;

Find all possible values of the last round key \hat{k}_r such that

$$lpha. x_{f 0} \oplus eta. f_{\widehat{k}_r}^{-1}(x_r) = f 0$$
 ;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a mask (α, β) so that the equation

$$\alpha.x_0\oplus\beta.G(x_0)=0$$

is satisfied for most plaintexts x_0 and round keys k_1, \ldots, k_{r-1} ;

Choose at random a plaintext x₀ and compute its ciphertext x_r;

Find all possible values of the last round key \hat{k}_r such that

$$lpha. x_{\mathbf{0}} \oplus eta. f_{\widehat{k}_r}^{-1}(x_r) = \mathbf{0}$$
 ;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a mask (α, β) so that the equation

$$\alpha.x_0\oplus\beta.G(x_0)=0$$

is satisfied for most plaintexts x_0 and round keys k_1, \ldots, k_{r-1} ;

Choose at random a plaintext x₀ and compute its ciphertext x_r;

Find all possible values of the last round key k_r such that

$$lpha. x_{f 0} \oplus eta. f_{\widehat{k}_r}^{-1}(x_r) = {f 0}$$
 ;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a mask (α, β) so that the equation

$$\alpha.x_0\oplus\beta.G(x_0)=0$$

is satisfied for most plaintexts x_0 and round keys k_1, \ldots, k_{r-1} ;

- Choose at random a plaintext x₀ and compute its ciphertext x_r;
- Find all possible values of the last round key \hat{k}_r such that

$$lpha.x_0\opluseta.f_{\widehat{k}_r}^{-1}(x_r)=0$$
;

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Find a mask (α, β) so that the equation

$$\alpha.x_0\oplus\beta.G(x_0)=0$$

is satisfied for most plaintexts x_0 and round keys k_1, \ldots, k_{r-1} ;

- Choose at random a plaintext x₀ and compute its ciphertext x_r;
- Find all possible values of the last round key \hat{k}_r such that

$$lpha.x_0\opluseta.f_{\widehat{k}_r}^{-1}(x_r)=0$$
 ;

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness

G-difference sets In most cases, differential and/or linear weaknesses of the reduced cipher can be detected only if the round function f presents a similar default. Then the round function should satisfy the following property for any round key k:

For any nonzero block α , the distribution of differences $f_k(x \oplus \alpha) \oplus f_k(x)$ should be close to the uniform distribution (Boolean perfect nonlinear functions);

For any nonzero block β , the Boolean function $x \mapsto \beta f_k(x)$ should be far away from all affine functions (Boolean bent functions).

(日) (日) (日) (日) (日) (日) (日)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets In most cases, differential and/or linear weaknesses of the reduced cipher can be detected only if the round function f presents a similar default. Then the round function should satisfy the following property for any round key k:

For any nonzero block α, the distribution of differences f_k(x ⊕ α) ⊕ f_k(x) should be close to the uniform distribution (Boolean perfect nonlinear functions);

For any nonzero block β , the Boolean function $x \mapsto \beta f_k(x)$ should be far away from all affine functions (Boolean bent functions).

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness

G-difference sets In most cases, differential and/or linear weaknesses of the reduced cipher can be detected only if the round function f presents a similar default. Then the round function should satisfy the following property for any round key k:

For any nonzero block α , the distribution of differences $f_k(x \oplus \alpha) \oplus f_k(x)$ should be close to the uniform distribution (Boolean perfect nonlinear functions);

For any nonzero block β , the Boolean function $x \mapsto \beta f_k(x)$ should be far away from all affine functions (Boolean bent functions).

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness

G-difference sets In most cases, differential and/or linear weaknesses of the reduced cipher can be detected only if the round function f presents a similar default. Then the round function should satisfy the following property for any round key k:

For any nonzero block α , the distribution of differences $f_k(x \oplus \alpha) \oplus f_k(x)$ should be close to the uniform distribution (Boolean perfect nonlinear functions);

For any nonzero block β , the Boolean function

 $x \mapsto \beta f_k(x)$ should be far away from all affine functions (Boolean bent functions).

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness

G-difference sets In most cases, differential and/or linear weaknesses of the reduced cipher can be detected only if the round function f presents a similar default. Then the round function should satisfy the following property for any round key k:

For any nonzero block α , the distribution of differences $f_k(x \oplus \alpha) \oplus f_k(x)$ should be close to the uniform distribution (Boolean perfect nonlinear functions);

For any nonzero block β , the Boolean function $x \mapsto \beta f_k(x)$ should be far away from all affine functions (Boolean bent functions).

Outline

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Differential and Linear Attacks

- Basics on cryptography
 Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization
 - Constructions

・ロト・4日・4日・4日・ 日 のへで

History

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition (Nyberg, 1991)

A function $f : \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2^n$ is perfect nonlinear if for each nonzero α in \mathbb{Z}_2^m and for each $\beta \in \mathbb{Z}_2^n$,

$$|\{x \in \mathbb{Z}_2^m | f(\alpha \oplus x) \oplus f(x) = \beta\}| = 2^{m-n}$$

(日)

Ensure the maximal resistance against the differential attack.

In the finite abelian groups setting (1)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets For a group G, 0_G is its identity element and $G^* = G \setminus \{0_G\}$.

Definition

Let *G* and *H* be two finite abelian groups and $f : G \rightarrow H$.

■ *f* is balanced if for each $\beta \in H$, $|\{x \in G | f(x) = \beta\}| = \frac{|G|}{|H|};$

The derivative of f with respect to $\alpha \in G$ is defined by

$$egin{array}{rcl} & {\mathcal G} & o & {\mathcal H} \ & x & \mapsto & f(lpha + x) - f(x) \ . \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

In the finite abelian groups setting (2)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition

A function $f : G \to H$ is (classical) perfect nonlinear if $\forall \alpha \in G^*, d_{\alpha}f$ is balanced, *i.e.* $\forall \alpha \in G^*$ and $\forall \beta \in H$,

$$|\{x \in G | f(\alpha + x) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

(日) (日) (日) (日) (日) (日) (日)

Remark

If *G* is a nonabelian group, such a function is called left-perfect nonlinear.

In the finite abelian groups setting (2)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

A function $f : G \to H$ is (classical) perfect nonlinear if $\forall \alpha \in G^*$, $d_{\alpha}f$ is balanced, *i.e.* $\forall \alpha \in G^*$ and $\forall \beta \in H$,

$$|\{x \in G | f(\alpha + x) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

(日) (日) (日) (日) (日) (日) (日)

Remark

If *G* is a nonabelian group, such a function is called **left-perfect nonlinear**.

In the finite abelian groups setting (2)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

A function $f : G \to H$ is (classical) perfect nonlinear if $\forall \alpha \in G^*$, $d_{\alpha}f$ is balanced, *i.e.* $\forall \alpha \in G^*$ and $\forall \beta \in H$,

$$|\{x \in G | f(\alpha + x) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

Remark

If *G* is a nonabelian group, such a function is called left-perfect nonlinear.

Equivalent characterizations

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

(Traditional) perfect nonlinearity \Leftrightarrow

By the Fourier transform : notion of bentness ; Combinatorial characterization by difference sets.

Equivalent characterizations

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

(Traditional) perfect nonlinearity \Leftrightarrow

By the Fourier transform : notion of bentness ;

Combinatorial characterization by difference sets.

Equivalent characterizations

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

(Traditional) perfect nonlinearity \Leftrightarrow

- By the Fourier transform : notion of bentness ;
- Combinatorial characterization by difference sets.
Outline

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity

Bent functions

- Difference sets
- Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization
 - Constructions

・ロト・4日・4日・4日・ 日 のへで

History

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition (Dillon 1974, Rothaus 1976)

A function $f : \mathbb{Z}_2^m \to \mathbb{Z}_2$ is bent if for each $\alpha \in \mathbb{Z}_2^m$,

$$\sum_{x\in\mathbb{Z}_2^m}(-1)^{f(x)\oplus\alpha.x}=\pm 2^{\frac{m}{2}}.$$

Ensure the maximal resistance against the linear attack.

(日)

Example

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

The following mapping

$$f: \quad \mathbb{Z}_2^m \times \mathbb{Z}_2^m \quad \to \quad \mathbb{Z}_2$$
$$(x, y) \qquad \mapsto \quad x.y = \bigoplus_{i=1}^m x_i y_i .$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

is a bent function.

In the finite abelian groups setting (1)

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets The dual group of G, denoted \widehat{G} , is the set of all group homomorphisms from G to \mathbb{U} together with the pointwise multiplication.

It is isomorphic to *G* itself. Its elements are called characters : for $\alpha \in G$, the character corresponding to α (under the isomorphism) is denoted χ_G^{α} .

For instance if G is \mathbb{Z}_2^m and $\alpha \in \mathbb{Z}_2^m$, then $\chi_G^{\alpha}(x) = (-1)^{\alpha \cdot x}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

In the finite abelian groups setting (1)

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets The dual group of G, denoted \widehat{G} , is the set of all group homomorphisms from G to \mathbb{U} together with the pointwise multiplication.

It is isomorphic to *G* itself. Its elements are called characters : for $\alpha \in G$, the character corresponding to α (under the isomorphism) is denoted χ_{G}^{α} . For instance if *G* is \mathbb{Z}_{G}^{m} and $\alpha \in \mathbb{Z}_{G}^{m}$.

For instance if *G* is \mathbb{Z}_2^m and $\alpha \in \mathbb{Z}_2^m$, then $\chi_G^{\alpha}(x) = (-1)^{\alpha \cdot x}$.

In the finite abelian groups setting (2)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

Let *G* be a finite abelian group and $\varphi : G \longrightarrow \mathbb{C}$. The (discrete) Fourier transform of φ is the function $\widehat{\varphi}$ defined as

$$\widehat{\varphi}: \quad {oldsymbol G} \quad o \quad {\mathbb C} \ lpha \quad \mapsto \quad \sum_{{oldsymbol x}\in {oldsymbol G}} \varphi({oldsymbol x}) \chi^{lpha}_{{oldsymbol G}}({oldsymbol x}) \; .$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Dual characterization

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem (Carlet & Ding and Pott, 2004)

Let *G* and *H* be two finite abelian groups. Let $f : G \to H$. The function *f* is perfect nonlinear if and only if $\forall \alpha \in G$, $\forall \beta \in H^*$,

$$\widehat{\chi^{\beta}_{H} \circ f}(\alpha)|^{2} = |G|$$
.

(日) (日) (日) (日) (日) (日) (日)

When $G = \mathbb{Z}_2^m$ and $H = \mathbb{Z}_2$, this is the classical notion of bentness introduced by Dillon.

Dual characterization

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Theorem (Carlet & Ding and Pott, 2004)

Let *G* and *H* be two finite abelian groups. Let $f : G \to H$. The function *f* is perfect nonlinear if and only if $\forall \alpha \in G$, $\forall \beta \in H^*$,

$$\widehat{\chi^{\beta}_{H} \circ f}(\alpha)|^{2} = |G|$$
.

(日) (日) (日) (日) (日) (日) (日)

When $G = \mathbb{Z}_2^m$ and $H = \mathbb{Z}_2$, this is the classical notion of bentness introduced by Dillon.

Impossible cases

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Due to implementation constraints we are interested in Boolean functions $f : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ but Boolean bent functions only exist when *m* is an even integer and $m \ge 2n$. Impossible cases : odd dimension (*m* is an odd integer) and

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Impossible cases

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Due to implementation constraints we are interested in Boolean functions $f : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ but Boolean bent functions only exist when *m* is an even integer and $m \ge 2n$. Impossible cases : odd dimension (*m* is an odd integer) and plane dimension (*m* = *n*).

Outline

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis

2 Traditional Approach

- Perfect nonlinearity
 - Bent functions

Difference sets

- Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization
 - Constructions

・ロト・4日・4日・4日・ 日 のへで

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Let G be a finite group. Let $D \subset G$. D is a (v, k, λ) difference set of G if

(日)

 $\bullet v = |G|;$

k = |D|;

For each α ∈ G*, the equation x − y = α has λ solutions (x, y) in D².

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Let G be a finite group. Let $D \subset G$. D is a (v, k, λ) difference set of G if

(日)

- v = |G|;
- k = |D|;

For each α ∈ G*, the equation x − y = α has λ solutions (x, y) in D².

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Let *G* be a finite group. Let $D \subset G$. *D* is a (v, k, λ) difference set of *G* if

(日)

- v = |G|;
- k = |D|;

For each α ∈ G*, the equation x − y = α has λ solutions (x, y) in D².

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Let *G* be a finite group. Let $D \subset G$. *D* is a (v, k, λ) difference set of *G* if

(日)

- v = |G|;
- k = |D|;
- For each α ∈ G^{*}, the equation x − y = α has λ solutions (x, y) in D².

Hadamard difference set

$\begin{array}{c} G\text{-perfect}\\ \text{nonlinearity}\\ \text{Laurent}\\ \text{Poinsot} \end{array}$ $\begin{array}{c} \text{Differential}\\ \text{and Linear}\\ \text{Attacks} \end{array}$ $\begin{array}{c} \text{Definition}\\ \text{A}\left(v,k,\lambda\right) \text{ difference set } D \text{ of } G \text{ is a Hadamard difference}\\ \text{set if} \end{array}$

Dual notion of G-bentness

G-difference sets

$$(v, k, \lambda) = (4n^2, 2n^2 \pm n, n(n \pm 1))$$

(日)

Combinatorial characterization

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem (Carlet & Ding, 2004)

Let *G* be a finite abelian group such that $|G| = 4n^2$. A function $f : G \longrightarrow \mathbb{Z}_2$ is perfect nonlinear if and only if its support $S_f = \{x \in G | f(x) = 1\}$ is a Hadamard difference set of *G*.

(日) (日) (日) (日) (日) (日) (日)

This is a generalization of a result of Dillon (1974) concerning Boolean functions.

Combinatorial characterization (cont'd)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem (Plott, 2004)

If *G* and *H* are two finite groups then a function $f : G \to H$ is (left-)perfect nonlinear if and only if $\{(x, f(x)) | x \in G\} \subset G \times H$ is a splitting semiregular $(|G|, |H|, |G|, \frac{|G|}{|H|})$ difference set of $G \times H$ relative to $\{0_G\} \times H$.

Outline

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis

2 Traditional Approach

- Perfect nonlinearity
- Bent functions
- Difference sets

Application of bent functions

- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization
 - Constructions

・ロト・4日・4日・4日・ 日 のへで

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Cryptography ;

Mobile communications.

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Cryptography;

Mobile communications.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Cryptography;

Mobile communications.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Mobile communications (1) : Code Division Multiple Access (CDMA)

G-perfect nonlinearity

Laurent Poinsot

Definition

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Two vectors $u = (u_1, ..., u_m)$ and $v = (v_1, ..., v_m)$ are called orthogonal if

$$u.v=\sum_{i=1}^m u_iv_i=0.$$

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

For instance u = (1, 1, 1, -1) and v = (1, -1, 1, 1) are othogonal.

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets V : set of mutually orthogonal vectors ;

Each sender S_x has a different, unique vector $x \in V$ called chip code.

For instance S_u has u = (1, 1, 1, -1) and S_v has v = (1, -1, 1, 1);

 Objective : Simultaneous transmission of messages by several senders on the same channel (multiplexing).

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

■ V : set of mutually orthogonal vectors ;

Each sender S_x has a different, unique vector $x \in V$ called chip code.

For instance S_u has u = (1, 1, 1, -1) and S_v has v = (1, -1, 1, 1);

 Objective : Simultaneous transmission of messages by several senders on the same channel (multiplexing).

(日)

G-perfect nonlinearity

- Laurent Poinsot
- Differentia and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

- V : set of mutually orthogonal vectors ;
- Each sender S_x has a different, unique vector $x \in V$ called chip code.
 - For instance S_u has u = (1, 1, 1, -1) and S_v has v = (1, -1, 1, 1);
- Objective : Simultaneous transmission of messages by several senders on the same channel (multiplexing).

(日) (日) (日) (日) (日) (日) (日)

G-perfect nonlinearity

- Laurent Poinsot
- Differentia and Linear Attacks

Traditional Approach

- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

- V : set of mutually orthogonal vectors ;
- Each sender S_x has a different, unique vector $x \in V$ called chip code.
 - For instance S_u has u = (1, 1, 1, -1) and S_v has v = (1, -1, 1, 1);
- Objective : Simultaneous transmission of messages by several senders on the same channel (multiplexing).

(日)

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets S_u wants to send $d_u = (1, 0, 1)$ and S_v wants to send $d_v = (0, 0, 1)$;

■ S_u computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains (u, -u, u);

(日)

$$\blacksquare S_v \text{ computes } (-v, -v, v);$$

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets • S_u wants to send $d_u = (1, 0, 1)$ and S_v wants to send $d_v = (0, 0, 1)$;

■ S_u computes its transmitted vector by coding d_u with the rules 0 $\leftrightarrow -u$, 1 $\leftrightarrow u$. He obtains (u, -u, u);

(日) (日) (日) (日) (日) (日) (日)

• S_v computes (-v, -v, v);

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- S_u wants to send $d_u = (1, 0, 1)$ and S_v wants to send $d_v = (0, 0, 1)$;
- S_u computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains (u, -u, u);

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• S_v computes (-v, -v, v);

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

- S_u wants to send $d_u = (1, 0, 1)$ and S_v wants to send $d_v = (0, 0, 1)$;
- S_u computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains (u, -u, u);

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

S_v computes
$$(-v, -v, v)$$
;

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- S_u wants to send $d_u = (1, 0, 1)$ and S_v wants to send $d_v = (0, 0, 1)$;
- S_u computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains (u, -u, u);

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- S_v computes (-v, -v, v);
- The message sent on the channel is (u v, -u v, u + v).

G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets A receiver gets the message M = (u - v, -u - v, u + v) and he needs to recover d_u and/or d_v;
 How to recover d_u?

Take the first component of M, u - v and compute the dot-product with u : (u - v).u = u.u - v.u = 4. Since this is positive, we can deduce that a one digit was sent;
 Take the second component of M - u - v and

(-u - v).u = -u.u - v.u = -4. Since this is negative, we can deduce that a zero digit was sent;

Continuing in this fashion with the third component, the receiver successfully decodes d_u;

■ Likewise, applying the same process with chip code *v*, the receiver finds the message of *S_v*.

G-perfect nonlinearity

> Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets A receiver gets the message M = (u - v, -u - v, u + v)and he needs to recover d_u and/or d_v ;

How to recover d_u ?

Take the first component of M, u - v and compute the dot-product with u: (u - v).u = u.u - v.u = 4. Since this is positive, we can deduce that a one digit was sent;
 Take the second component of M, -u - v and

(-u - v).u = -u.u - v.u = -4. Since this is negative, we can deduce that a zero digit was sent;

Continuing in this fashion with the third component, the receiver successfully decodes d_u;

Likewise, applying the same process with chip code v, the receiver finds the message of S_v.

G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- A receiver gets the message M = (u v, -u v, u + v)and he needs to recover d_u and/or d_v ;
- How to recover d_u ?

Take the first component of M, u - v and compute the dot-product with u : (u - v).u = u.u - v.u = 4. Since this is positive, we can deduce that a one digit was sent;
 Take the second component of M, -u - v and (-u - v).u = -u.u - v.u = -4. Since this is negative, we can deduce that a zero digit was sent :

Continuing in this fashion with the third component, the receiver successfully decodes *d_u*;

■ Likewise, applying the same process with chip code *v*, the receiver finds the message of *S_v*.

G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- A receiver gets the message M = (u v, -u v, u + v)and he needs to recover d_u and/or d_v ;
- How to recover d_u ?
 - Take the first component of M, u v and compute the dot-product with u : (u v).u = u.u v.u = 4. Since this is positive, we can deduce that a one digit was sent ;
 Take the second component of M, –u v and (–u v).u = –u.u v.u = –4. Since this is negative, we can deduce that a zero digit was sent ;
 - Continuing in this fashion with the third component, the receiver successfully decodes d_u;
- Likewise, applying the same process with chip code v, the receiver finds the message of S_v .
G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets • A receiver gets the message M = (u - v, -u - v, u + v)and he needs to recover d_u and/or d_v ;

• How to recover d_u ?

Take the first component of M, u - v and compute the dot-product with u : (u - v).u = u.u - v.u = 4. Since

this is positive, we can deduce that a one digit was sent;
Take the second component of M, −u − v and (−u − v).u = −u.u − v.u = −4. Since this is negative, we can deduce that a zero digit was sent:

Continuing in this fashion with the third component, the receiver successfully decodes *d_u*;

Likewise, applying the same process with chip code v, the receiver finds the message of S_v .

G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- A receiver gets the message M = (u v, -u v, u + v)and he needs to recover d_u and/or d_v ;
- How to recover d_u ?
 - Take the first component of M, u v and compute the dot-product with u : (u v).u = u.u v.u = 4. Since this is positive, we can deduce that a one digit was sent;
 - Take the second component of M, -u v and (-u v).u = -u.u v.u = -4. Since this is negative, we can deduce that a zero digit was sent;
 - Continuing in this fashion with the third component, the receiver successfully decodes *d*_u;
- Likewise, applying the same process with chip code v, the receiver finds the message of S_v .

G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- A receiver gets the message M = (u v, -u v, u + v)and he needs to recover d_u and/or d_v ;
- How to recover d_u ?
 - Take the first component of *M*, *u* − *v* and compute the dot-product with *u* : (*u* − *v*).*u* = *u*.*u* − *v*.*u* = 4. Since this is positive, we can deduce that a one digit was sent ;
 - Take the second component of M, -u v and (-u v). u = -u. u v. u = -4. Since this is negative, we can deduce that a zero digit was sent;
 - Continuing in this fashion with the third component, the receiver successfully decodes d_u;
- Likewise, applying the same process with chip code v, the receiver finds the message of S_v.

G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- A receiver gets the message M = (u v, -u v, u + v)and he needs to recover d_u and/or d_v ;
- How to recover d_u ?
 - Take the first component of *M*, *u* − *v* and compute the dot-product with *u* : (*u* − *v*).*u* = *u*.*u* − *v*.*u* = 4. Since this is positive, we can deduce that a one digit was sent ;
 - Take the second component of M, -u v and (-u v). u = -u. u v. u = -4. Since this is negative, we can deduce that a zero digit was sent;
 - Continuing in this fashion with the third component, the receiver successfully decodes d_u;

Likewise, applying the same process with chip code v, the receiver finds the message of S_v.

G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

- A receiver gets the message M = (u v, -u v, u + v)and he needs to recover d_u and/or d_v ;
- How to recover d_u ?
 - Take the first component of *M*, *u* − *v* and compute the dot-product with *u* : (*u* − *v*).*u* = *u*.*u* − *v*.*u* = 4. Since this is positive, we can deduce that a one digit was sent ;
 - Take the second component of M, -u v and (-u v). u = -u. u v. u = -4. Since this is negative, we can deduce that a zero digit was sent;
 - Continuing in this fashion with the third component, the receiver successfully decodes d_u;
- Likewise, applying the same process with chip code *v*, the receiver finds the message of *S*_{*v*}.

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Let $f : \mathbb{Z}_m \to \{0, 1\}$ be a bent function. For each $\alpha \in \mathbb{Z}_m$, we define a vector :

$$u_{\alpha} = (f(\alpha), f(\alpha+1), \dots, f(\alpha+m-1)) .$$

In particular $u_0 = (f(0), f(1), \dots, f(m-1))$. Then $\{u_{\alpha} | \alpha \in \mathbb{Z}_m\}$ is a set of mutually orthogonal vectors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Let $f : \mathbb{Z}_m \to \{0, 1\}$ be a bent function. For each $\alpha \in \mathbb{Z}_m$, we define a vector :

$$u_{\alpha} = (f(\alpha), f(\alpha+1), \ldots, f(\alpha+m-1)).$$

In particular $u_0 = (f(0), f(1), \dots, f(m-1))$. Then $\{u_{\alpha} | \alpha \in \mathbb{Z}_m\}$ is a set of mutually orthogonal vectors.

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Let $f : \mathbb{Z}_m \to \{0, 1\}$ be a bent function. For each $\alpha \in \mathbb{Z}_m$, we define a vector :

$$u_{\alpha} = (f(\alpha), f(\alpha+1), \ldots, f(\alpha+m-1)).$$

In particular $u_0 = (f(0), f(1), \dots, f(m-1))$. Then $\{u_{\alpha} | \alpha \in \mathbb{Z}_m\}$ is a set of mutually orthogonal vectors.

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Let $f : \mathbb{Z}_m \to \{0, 1\}$ be a bent function. For each $\alpha \in \mathbb{Z}_m$, we define a vector :

$$u_{\alpha} = (f(\alpha), f(\alpha+1), \ldots, f(\alpha+m-1)).$$

In particular $u_0 = (f(0), f(1), \dots, f(m-1))$. Then $\{u_{\alpha} | \alpha \in \mathbb{Z}_m\}$ is a set of mutually orthogonal vectors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Recall on group actions;

Group action based perfect nonlinearity.

Outline

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
 - Dual notion of G-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization
 - Constructions

・ロト・4日・4日・4日・ 日 のへで

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Let (G, *) be any group and X be a nonempty set. A (left) group action of G on X is a group homomorphism ϕ from G to the symmetric group S(X) of X (the group of permutations over X).

(日) (日) (日) (日) (日) (日) (日)

n particular,

 $egin{aligned} \phi({f 0}_G) &= {\it Id}_X\,; \ orall (g_1,g_2) \in G^2, \, \phi(g_1*g_2) &= \phi(g_1)\circ\phi(g_2). \end{aligned}$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets Let (G, *) be any group and X be a nonempty set. A (left) group action of G on X is a group homomorphism ϕ from G to the symmetric group S(X) of X (the group of permutations over X).

In particular,

$$\phi(\mathsf{0}_G) = \mathsf{Id}_X;$$

$$\forall (g_1,g_2) \in G^2, \, \phi(g_1*g_2) = \phi(g_1) \circ \phi(g_2).$$

of G-bentness

G-difference sets

G-perfect nonlinearity

- Laurent Poinsot
- Differentia and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Let *G* be a group that acts on a nonempty set *X*. For $x \in X$, the orbital function of *x* is defined as

$$\phi_{x}: egin{array}{ccc} G &
ightarrow & X \ g & \mapsto & g. \end{array}$$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition

The action ϕ of G on X is

faithful if ϕ is one-to-one ;

regular if for each $x \in X$, ϕ_x is a bijective function.

xamples

- The natural action of S(X) on X is faithful : for $\pi \in S(X)$ and $x \in X$, $\pi . x = \pi(x)$;
- The action of *G* on itself by (left) translation is regular : for α and *x* in *G*, $\alpha . x = \alpha + x$.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

The action ϕ of G on X is

faithful if ϕ is one-to-one;

regular if for each $x \in X$, ϕ_x is a bijective function.

Examples

- The natural action of S(X) on X is faithful : for $\pi \in S(X)$ and $x \in X$, $\pi . x = \pi(x)$;
- The action of *G* on itself by (left) translation is regular : for α and *x* in *G*, $\alpha . x = \alpha + x$.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition

The action ϕ of G on X is

- **faithful** if ϕ is one-to-one;
- **regular** if for each $x \in X$, ϕ_x is a bijective function.

xamples

- The natural action of S(X) on X is faithful : for $\pi \in S(X)$ and $x \in X$, $\pi . x = \pi(x)$;
- The action of *G* on itself by (left) translation is regular : for α and *x* in *G*, $\alpha . x = \alpha + x$.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

The action ϕ of G on X is

- **faithful** if ϕ is one-to-one;
- **regular** if for each $x \in X$, ϕ_x is a bijective function.

Examples

- The natural action of S(X) on X is faithful : for $\pi \in S(X)$ and $x \in X$, $\pi . x = \pi(x)$;
- The action of *G* on itself by (left) translation is regular : for α and *x* in *G*, $\alpha . x = \alpha + x$.

Outline

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets 4

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis
- Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
 - Dual notion of G-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization

Constructions

Definitions (1)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Let *G* be a finite group (not necessary abelian) that (left) acts at least **faithfully** on a finite nonempty set *X* and let *H* be a finite abelian group (in an additive representation). Let $f: X \rightarrow H$.

The (left) derivative of f with respect to $g \in G$ is defined as

$$D_g f: X \to H$$

 $x \mapsto f(g.x) - f(x).$

(日) (日) (日) (日) (日) (日) (日)

This is exactly the classical notion of derivative where the addition $\alpha + x$ is replaced by the group action $\alpha.x$.

Definitions (1)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Let *G* be a finite group (not necessary abelian) that (left) acts at least **faithfully** on a finite nonempty set *X* and let *H* be a finite abelian group (in an additive representation). Let $f: X \rightarrow H$.

The (left) derivative of *f* with respect to $g \in G$ is defined as

$$\mathcal{D}_g f: X \to H$$

 $x \mapsto f(g.x) - f(x).$

(日) (日) (日) (日) (日) (日) (日)

This is exactly the classical notion of derivative where the addition $\alpha + x$ is replaced by the group action $\alpha.x$.

Definitions (1)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Let *G* be a finite group (not necessary abelian) that (left) acts at least **faithfully** on a finite nonempty set *X* and let *H* be a finite abelian group (in an additive representation). Let $f: X \rightarrow H$.

The (left) derivative of *f* with respect to $g \in G$ is defined as

$$\mathcal{D}_g f: X \to H$$

 $x \mapsto f(g.x) - f(x).$

(日) (日) (日) (日) (日) (日) (日)

This is exactly the classical notion of derivative where the addition $\alpha + x$ is replaced by the group action $\alpha . x$.

Definitions (2)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition

The function $f : X \to H$ is called *G*-perfect nonlinear if $\forall g \in G^*$, $D_g f$ is balanced, *i.e.* $\forall g \in G^*$ et $\forall \beta \in H$,

 $|\{x \in X | f(g.x) - f(x) = \beta\}| = \frac{|X|}{|H|}$

Definitions (2)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition

The function $f : X \to H$ is called *G*-perfect nonlinear if $\forall g \in G^*$, $D_g f$ is balanced, *i.e.* $\forall g \in G^*$ et $\forall \beta \in H$,

$$|\{x \in X | f(\underline{g}.x) - f(x) = \beta\}| = \frac{|X|}{|H|}.$$

Definitions (3)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Remark

Since the action of *G* on *X* is faithful, there is no $g \in G^*$ such that the map

$$egin{array}{rcl} D_g:&H^X& o&H^X\ &f&\mapsto&D_gf \end{array}$$

is identically null (*i.e.* for each $f : X \to H$ and for each $x \in X$, $D_g f(x) = 0_H$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

First results

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Proposition

Let T(G) be the group of translations of G. A function $f : G \to H$ is T(G)-perfect nonlinear if and only if f is classical (left) perfect nonlinear.

Proposition

 $et f: X \to H.$

If f is G-perfect nonlinear then for each subgroup G' of G, it is also G'-perfect nonlinear.

First results

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Proposition

Let T(G) be the group of translations of G. A function $f : G \to H$ is T(G)-perfect nonlinear if and only if f is classical (left) perfect nonlinear.

Proposition

Let $f: X \to H$.

If *f* is *G*-perfect nonlinear then for each subgroup G' of *G*, *f* is also G'-perfect nonlinear.

Objective

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Traditional duality : Perfect nonlinearity ⇔ Bentness (Carlet & Ding). Generalized duality :

(日)

G-perfect nonlinearity \Leftrightarrow ??

Objective

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

- Traditional duality :
 - Perfect nonlinearity \Leftrightarrow Bentness (Carlet & Ding).

- Generalized duality :
 - *G*-perfect nonlinearity \Leftrightarrow ??

Outline

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets **1** *G* is an abelian group ;

2 *G* is a nonabelian group.

Outline

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - *G*-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
 - 5 *G*-difference sets
 - Definition and Combinatorial characterization

Constructions

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Let given (G, H, X) such that

G and H are both finite abelian group;

X is a finite nonempty set ;

• G acts (at least) faithfully on X (by ϕ).

or f:X o Y and $x\in X$, we define $f_X:G o Y$ by

 $f_X = f \circ \phi_X$.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Let given (G, H, X) such that G and H are both finite abelian group; X is a finite nonempty set; G acts (at least) faithfully on X (by φ).

or f:X o Y and $x\in X,$ we define $f_x:G o Y$ by

 $f_X = f \circ \phi_X \; .$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Let given (G, H, X) such that

■ *G* and *H* are both finite abelian group ;

■ X is a finite nonempty set;

• G acts (at least) faithfully on X (by ϕ).

for $f: X \to Y$ and $x \in X$, we define $f_X: G \to Y$ by

 $f_X = f \circ \phi_X$.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Let given (G, H, X) such that

■ *G* and *H* are both finite abelian group ;

■ X is a finite nonempty set;

• G acts (at least) faithfully on X (by ϕ).

or $f: X \to Y$ and $x \in X$, we define $f_X: G \to Y$ by

 $f_X = f \circ \phi_X \; .$
Assumptions and Notation

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Let given (G, H, X) such that

- *G* and *H* are both finite abelian group ;
- X is a finite nonempty set;
- *G* acts (at least) faithfully on *X* (by ϕ).

For $f: X \to Y$ and $x \in X$, we define $f_X : G \to Y$ by

$$f_X = f \circ \phi_X$$
.

Dual characterization

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Theorem

A function $f : X \to H$ is *G*-perfect nonlinear if and only if for each $\beta \in H^*$ and for each $g \in G$,

$$\frac{1}{|X|}\sum_{x\in X}|\widehat{(\chi_H^\beta\circ f_x)}(g)|^2=|G|\;.$$

Informally speaking, *f* is *G*-perfect nonlinear if and only if f_x is bent on average over all $x \in X$.

Dual characterization

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Theorem

A function $f : X \to H$ is *G*-perfect nonlinear if and only if for each $\beta \in H^*$ and for each $g \in G$,

$$rac{1}{|X|}\sum_{x\in X}|\widehat{(\chi_H^eta\circ f_x)}(g)|^2=|G|\;.$$

Informally speaking, *f* is *G*-perfect nonlinear if and only if f_x is bent on average over all $x \in X$.

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - *G*-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case

Nonabelian case

- 5 G-diff
 - Definition and Combinatorial characterization

Constructions

G-perfect nonlinearity

Laurent Poinsot

- Differentia and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Assumptions ;

- Recall on the theory of linear representations of groups;
- Dual characterization of left-perfect nolinearity ;
- Dual characterization of G-perfect nonlinearity.

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Assumptions ;

 Recall on the theory of linear representations of groups;

Dual characterization of left-perfect nolinearity ;

Dual characterization of G-perfect nonlinearity.

G-perfect nonlinearity

Laurent Poinsot

- Differentia and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Assumptions ;

 Recall on the theory of linear representations of groups;

Dual characterization of left-perfect nolinearity;

Dual characterization of G-perfect nonlinearity.

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Assumptions ;

- Recall on the theory of linear representations of groups;
- Dual characterization of left-perfect nolinearity ;

Dual characterization of G-perfect nonlinearity.

(日)

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity
- Dual notion of *G*-bentness
- G-difference sets

- Assumptions ;
- Recall on the theory of linear representations of groups;
- Dual characterization of left-perfect nolinearity;
- Dual characterization of G-perfect nonlinearity.

(日)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Let given (G, H, X) such that

G is a finite nonabelian group ;

■ *H* is a finite abelian group ;

X is a finite nonempty set on which G left acts at least faithfully.

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Let given (G, H, X) such that

■ *G* is a finite nonabelian group ;

H is a finite abelian group ;

X is a finite nonempty set on which G left acts at least faithfully.

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Let given (G, H, X) such that

■ *G* is a finite nonabelian group ;

 \blacksquare *H* is a finite abelian group;

X is a finite nonempty set on which G left acts at least faithfully.

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity
- Dual notion of *G*-bentness
- G-difference sets

Let given (G, H, X) such that

- *G* is a finite nonabelian group ;
- \blacksquare *H* is a finite abelian group;
- X is a finite nonempty set on which G left acts at least faithfully.

(日)

Recall on linear representations (1)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition

Let *V* be a \mathbb{C} -vector space of finite dimension dim_{\mathbb{C}}(*V*). The unitary group $\mathbb{U}(V)$ is the group of bijective linear functions *U* such that $U^{-1} = U^*$. A (unitary) linear representation of *G* on *V* is a group homorphism $\rho : G \to \mathbb{U}(V)$.

Recall on linear representations (1)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition Let *V* be a \mathbb{C} -vector space of finite dimension dim_{\mathbb{C}}(*V*). The unitary group $\mathbb{U}(V)$ is the group of bijective linear functions *U* such that $U^{-1} = U^*$.

A (unitary) linear representation of G on V is a group nomorphism $ho : G \rightarrow \mathbb{U}(V)$.

Recall on linear representations (1)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Definition

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Let *V* be a \mathbb{C} -vector space of finite dimension dim_{\mathbb{C}}(*V*). The unitary group $\mathbb{U}(V)$ is the group of bijective linear functions *U* such that $U^{-1} = U^*$. A (unitary) linear representation of *G* on *V* is a group homorphism $\rho : G \to \mathbb{U}(V)$.

Recall on linear representations (2)

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Let $\rho : G \to \mathbb{U}(V)$ be a linear representation. A subvector space W of V is said stable with respect to ρ if for each $g \in G$, the image by $\rho(g)$ of each element of Wbelongs to W.

A representation $\rho : G \to \mathbb{U}(V)$ is called irreducible if V and $\{0_V\}$ are the ony stable subvector spaces of V (with respect o ρ).

Recall on linear representations (2)

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets Let $\rho : G \to \mathbb{U}(V)$ be a linear representation. A subvector space W of V is said stable with respect to ρ if for each $g \in G$, the image by $\rho(g)$ of each element of Wbelongs to W.

A representation $\rho : G \to \mathbb{U}(V)$ is called irreducible if V and $\{0_V\}$ are the ony stable subvector spaces of V (with respect to ρ).

Recall on linear representations (3)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition

Two representations ρ_1 and ρ_2 of *G* respectively on the vector spaces V_1 and V_2 are isomorphic if there is a vector space isomorphism $\Psi : V_1 \rightarrow V_2$ such that for all $g \in G$,

$$\Psi\circ
ho_1(g)=
ho_2(g)\circ\Psi$$
 .

Recall on linear representations (4)

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets One denotes \widehat{G} a system of representatives of equivalence classes of irreducible representations of a given group G. If G is commutative then \widehat{G} is the dual group of G. Unfortunatly if G is nonabelian then \widehat{G} is no more a group [

< 日 > < 同 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall on linear representations (4)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets One denotes \widehat{G} a system of representatives of equivalence classes of irreducible representations of a given group G. If G is commutative then \widehat{G} is the dual group of G.

Unfortunatly if G is nonabelian then G is no more a group !

Recall on linear representations (4)

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets One denotes \widehat{G} a system of representatives of equivalence classes of irreducible representations of a given group *G*. If *G* is commutative then \widehat{G} is the dual group of *G*. Unfortunatly if *G* is nonabelian then \widehat{G} is no more a group !

Recall on linear representations (5)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Definition

Let $\varphi : G \to \mathbb{C}$ and $\rho \in \widehat{G}$ (associated with the vector space *V*). The Fourier transform of φ in ρ is given by

$$\widehat{arphi}(
ho) = \sum_{oldsymbol{x}\in oldsymbol{G}} arphi(oldsymbol{x})
ho(oldsymbol{x}) \in \mathit{End}(V) \;.$$

(日)

Dual characterisation of left-perfect nonlinearity

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Recall

Let *G* be a finite nonabelian group and *H* a finite abelian group. Let $f : G \to H$. The function *f* is (left) perfect nonlinear if $\forall \alpha \in G^*$, $d_{\alpha}f : x \mapsto f(\alpha + x) - f(x)$ is balanced.

heorem

A function $f : G \to H$ is (left) perfect nonlinear if and only if $\forall \beta \in H^*$ and $\forall \rho \in \widehat{G} \ (\rho : G \to \mathbb{U}(V))$,

 $\widehat{(\chi_H^\beta \circ f(\rho))} \circ \widehat{(\chi_H^\beta \circ f(\rho))^*} = |G| Id_V$

Dual characterisation of left-perfect nonlinearity

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Recall

Let *G* be a finite nonabelian group and *H* a finite abelian group. Let $f : G \to H$. The function *f* is (left) perfect nonlinear if $\forall \alpha \in G^*$, $d_{\alpha}f : x \mapsto f(\alpha + x) - f(x)$ is balanced.

Theorem

A function $f : G \to H$ is (left) perfect nonlinear if and only if $\forall \beta \in H^*$ and $\forall \rho \in \widehat{G} \ (\rho : G \to \mathbb{U}(V))$,

$$\widehat{(\chi_H^\beta \circ f(\rho))} \circ \widehat{(\chi_H^\beta \circ f(\rho))^*} = |G| Id_V$$

Dual characterisation of left-perfect nonlinear (cont'd)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Using the trace of endomorphisms, we obtain

$$\|\widehat{\chi_{H}^{\beta}\circ f}(\rho)\|^{2} = |G|\dim_{\mathbb{C}}(V).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Question

Is it a sufficient condition for (left) perfect nonlinearity?

Dual characterisation of left-perfect nonlinear (cont'd)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Using the trace of endomorphisms, we obtain

$$\|\widehat{\chi_{H}^{\beta}\circ f}(\rho)\|^{2} = |G|\dim_{\mathbb{C}}(V).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Question

Is it a sufficient condition for (left) perfect nonlinearity?

Dual characterisation of G-perfect nonlinearity

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Recall

Let *G* be a finite nonabelian group that acts (at least faithfully) on a finite nonempty set *X* and let *H* be a finite abelian group. Let $f : X \to H$. The function *f* is *G*-perfect nonlinear if $\forall g \in G^*$, $D_g f : x \mapsto f(g.x) - f(x)$ is balanced.

Objective

Find the dual characterization of such *G*-perfect nonlinear functions.

Dual characterisation of G-perfect nonlinearity

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Recall

Let *G* be a finite nonabelian group that acts (at least faithfully) on a finite nonempty set *X* and let *H* be a finite abelian group. Let $f : X \to H$. The function *f* is *G*-perfect nonlinear if $\forall g \in G^*$, $D_g f : x \mapsto f(g.x) - f(x)$ is balanced.

Objective

Find the dual characterization of such *G*-perfect nonlinear functions.

Dual characterisation of *G*-perfect nonlinearity (cont'd)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Dual characterization

A function $f: X \to H$ is *G*-perfect nonlinear if and only if $\forall \beta \in H^*$ and $\forall \rho \in \widehat{G}$,

$$\frac{1}{|X|}\sum_{x\in X} \widehat{(\chi_H^\beta\circ f_x(\rho))}\circ \widehat{(\chi_H^\beta\circ f_x(\rho))^*} = |G| Id_V.$$

As in the abelian case, this is also a notion of bentness in average but this time we use the dual characterization of left perfect nonlinear functions rather than the classical one.

Dual characterisation of *G*-perfect nonlinearity (cont'd)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Dual characterization

A function $f: X \to H$ is *G*-perfect nonlinear if and only if $\forall \beta \in H^*$ and $\forall \rho \in \widehat{G}$,

$$\frac{1}{|X|}\sum_{x\in X} \widehat{(\chi_H^\beta\circ f_x(\rho))}\circ \widehat{(\chi_H^\beta\circ f_x(\rho))^*} = |G| Id_V.$$

As in the abelian case, this is also a notion of bentness in average but this time we use the dual characterization of left perfect nonlinear functions rather than the classical one.

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
 - Dual notion of G-bentness
 - Abelian case
 - Nonabelian case
- 5 *G*-difference sets
 - Definition and Combinatorial characterization
 - Constructions

・ロト・4日・4日・4日・ 日 のへで

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

```
Let G be a finite group (not necessarly abelian) that (left)
acts (at least) faithfully on a finite nonempty set X. Let
D \subset X.
D is a G-(v, k, \lambda)-difference set of X if
v = |X|;
k = |D|;
For each g \in G^*, the equation x = g \cdot y has \lambda solution
(x, y) in D^2.
```

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

Let *G* be a finite group (not necessarly abelian) that (left) acts (at least) faithfully on a finite nonempty set *X*. Let $D \subset X$. *D* is a *G*-(*v*, *k*, λ)-difference set of *X* if v = |X|; k = |D|; For each $g \in G^*$, the equation x = g.y has λ solutions (x, y) in D^2

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

Let *G* be a finite group (not necessarly abelian) that (left) acts (at least) faithfully on a finite nonempty set *X*. Let $D \subset X$. *D* is a *G*-(*v*, *k*, λ)-difference set of *X* if v = |X|; k = |D|; For each $g \in G^*$, the equation x = g.y has λ solutions

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Definition

Let *G* be a finite group (not necessarly abelian) that (left) acts (at least) faithfully on a finite nonempty set *X*. Let $D \subset X$.

```
D is a G(v, k, \lambda)-difference set of X if
```

•
$$v = |X|;$$

 $\bullet k = |D|;$

■ For each g ∈ G*, the equation x = g.y has λ solutions (x, y) in D².
Definition and Combinatorial characterization (cont'd)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Proposition

Let *G* be a finite group (not necessarly abelian) that (left) acts (at least) faithfully on a finite nonempty set *X*. We also suppose that $|X| \equiv 0 \pmod{4}$. Let $f : X \to \mathbb{Z}_2$. The function *f* is *G*-perfect nonlinear if and only if its support *S*_f is a *G*-(*v*, *k*, λ)-difference set of *X* such that

$$\mathbf{v} = \mathbf{4}(\mathbf{k} - \lambda)$$
.

Outline

G-perfect nonlinearity

- Laurent Poinsot
- Differential and Linear Attacks
- Traditional Approach
- Group action based perfect nonlinearity
- Dual notion of G-bentness
- G-difference sets

Differential and Linear Attacks

- Basics on cryptography
- Basics on cryptanalysis
- 2 Traditional Approach
 - Perfect nonlinearity
 - Bent functions
 - Difference sets
 - Application of bent functions
- 3 Group action based perfect nonlinearity
 - Recall on group actions
 - G-perfect nonlinearity
- 4 Dual notion of *G*-bentness
 - Abelian case
 - Nonabelian case
- 5 G-difference sets
 - Definition and Combinatorial characterization

Constructions

Odd dimension

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of *G*-bentness

G-difference sets

Iheorem

Let *m* and *n* be two odd integers. Then it is possible to construct a function $f : \mathbb{Z}_{2m+n} \to \{0, 1\}$ which is \mathbb{Z}_n -bent.

lemark

Because *m* and *n* are odd integers there is no classical bent function from \mathbb{Z}_{2m+n} to $\{0,1\}$ or also from \mathbb{Z}_n to $\{0,1\}$.

(日) (日) (日) (日) (日) (日) (日)

Odd dimension

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem

Let *m* and *n* be two odd integers. Then it is possible to construct a function $f : \mathbb{Z}_{2m+n} \to \{0, 1\}$ which is \mathbb{Z}_n -bent.

emark

Because *m* and *n* are odd integers there is no classical bent function from \mathbb{Z}_{2m+n} to $\{0,1\}$ or also from \mathbb{Z}_n to $\{0,1\}$.

(日) (日) (日) (日) (日) (日) (日)

Odd dimension

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem

Let *m* and *n* be two odd integers. Then it is possible to construct a function $f : \mathbb{Z}_{2m+n} \to \{0, 1\}$ which is \mathbb{Z}_n -bent.

Remark

Because *m* and *n* are odd integers there is no classical bent function from \mathbb{Z}_{2m+n} to $\{0, 1\}$ or also from \mathbb{Z}_n to $\{0, 1\}$.

(日)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem

Let $f: GF(2^m) \to GF(2^m)$ be a field automorphism. Then f is $GF(2^m)^*$ -perfect nonlinear.

roof

Let $x \in GF(2^m)$ and $\alpha \in GF(2^m)^*$, $\alpha \neq 1$. Let $\beta \in GF(2^m)$

 $f(\alpha.x) \oplus f(x) =$ $\Leftrightarrow f(\alpha x \oplus x) =$ $\Leftrightarrow (\alpha \oplus 1)x =$

$$= \stackrel{'}{\beta} \\ = f^{-1}(\beta) \\ = \frac{f^{-1}(\beta)}{(\alpha \oplus 1)}$$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem

Let $f: GF(2^m) \to GF(2^m)$ be a field automorphism. Then f is $GF(2^m)^*$ -perfect nonlinear.

Proof

Let $x \in GF(2^m)$ and $\alpha \in GF(2^m)^*$, $\alpha \neq 1$. Let $\beta \in GF(2^m)$.

 $f(\alpha . x) \oplus f(x) = \beta$ $\Rightarrow f(\alpha x \oplus x) = \beta$ $\Rightarrow (\alpha \oplus 1)x = f^{-1}$ $\Rightarrow x = \frac{f^{-1}}{(\alpha \oplus 1)^{-1}}$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem

Let $f: GF(2^m) \to GF(2^m)$ be a field automorphism. Then f is $GF(2^m)^*$ -perfect nonlinear.

Proof

Let $x \in GF(2^m)$ and $\alpha \in GF(2^m)^*$, $\alpha \neq 1$. Let $\beta \in GF(2^m)$.

$$f(\alpha . x) \oplus f(x) = \beta$$

$$f(\alpha x \oplus x) = \beta$$

$$(\alpha \oplus 1)x = f$$

$$x = -\beta$$

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem

Let $f: GF(2^m) \to GF(2^m)$ be a field automorphism. Then f is $GF(2^m)^*$ -perfect nonlinear.

Proof

Let $x \in GF(2^m)$ and $\alpha \in GF(2^m)^*$, $\alpha \neq 1$. Let $\beta \in GF(2^m)$.

$$f(\alpha.x) \oplus f(x) =$$

$$\Rightarrow f(\alpha x \oplus x) =$$

$$\Rightarrow (\alpha \oplus 1)x =$$

$$\Rightarrow x =$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem

Let $f: GF(2^m) \to GF(2^m)$ be a field automorphism. Then f is $GF(2^m)^*$ -perfect nonlinear.

Proof

Let $x \in GF(2^m)$ and $\alpha \in GF(2^m)^*$, $\alpha \neq 1$. Let $\beta \in GF(2^m)$.

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Rightarrow f(\alpha x \oplus x) = \beta$$

$$\Rightarrow (\alpha \oplus 1)x = f^{-1}$$

$$\Rightarrow x = \frac{f^{-1}}{(\alpha \oplus 1)^2}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

 (β)

G-perfect nonlinearity

Laurent Poinsot

Differential and Linear Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

Theorem

Let $f: GF(2^m) \to GF(2^m)$ be a field automorphism. Then f is $GF(2^m)^*$ -perfect nonlinear.

Proof

Let $x \in GF(2^m)$ and $\alpha \in GF(2^m)^*$, $\alpha \neq 1$. Let $\beta \in GF(2^m)$.

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Rightarrow f(\alpha x \oplus x) = \beta$$

$$\Rightarrow (\alpha \oplus 1)x = f^{-1}(\alpha \oplus 1)x$$

$$\Rightarrow x = \frac{f^{-1}}{(\alpha \oplus 1)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

G-perfect nonlinearity

Laurent Poinsot

Differentia and Linea Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

MERCI ! Allez les Bleus !

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

G-perfect nonlinearity

> Laurent Poinsot

Differentia and Linea Attacks

Traditional Approach

Group action based perfect nonlinearity

Dual notion of G-bentness

G-difference sets

MERCI ! Allez les Bleus !

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ