Generalized Boolean Bent Functions

Laurent Poinsot and Sami Harari

Laboratoire S.I.S. Institut des Sciences de l'Ingénieur Université Sud Toulon-Var France

INDOCRYPT 2004 5th International Conference on Cryptology in India December 20-22, 2004 Chennai (Madras), India

Outline of this talk

- Back to Basics
- On Fixed-Point Free Involutions of \mathbb{F}_2^m
- Generalized Perfect NonLinearity
- Fourier Characterization
- Construction of a Generalized Boolean Bent Function
- Conclusion

Back to Basics (I/IV) Dual Group and Characters

Let G be a finite Abelian group of exponent E. The *dual group* of G is

 $\hat{G} = Hom(G, U_E)$

where U_E is the multiplicative group of E^{th} roots of the unity in \mathbb{C} .

Property

 \widehat{G} is isomorphic to G .

Notation

 χ^{α}_{G} is the image of $\alpha \in G$ by such an isomorphism.

Example

If $G = \mathbb{F}_2^m$, we have $\chi_G^{\alpha}(x) = (-1)^{\alpha \cdot x}$

Back to Basics (II/IV) Fourier Transform

Let $f: G \longrightarrow \mathbb{C}$. The *Fourier transform* of f defined by

$$\widehat{f}(\alpha) = \sum_{x \in G} f(x) \chi_G^{\alpha}(x)$$

Parseval Equation

$$\frac{1}{|G|} \sum_{\alpha \in G} |\widehat{f}(\alpha)|^2 = \sum_{x \in G} |f(x)|^2 .$$

Back to Basics (III/IV) Perfect NonLinearity

Let $f: G_1 \longrightarrow G_2$.

• The *derivative* of f in direction $\alpha \in G_1$ is

$$d_{\alpha}f: x \in G_1 \mapsto f(x+\alpha) - f(x)$$
.

• f is balanced if for each $\beta \in G_2$

$$|\{x \in G_1 | f(x) = \beta\}| = \frac{|G_1|}{|G_2|}$$
.

• f is perfect nonlinear (*pnl*) if for each nonzero $\alpha \in G_1$

 $d_{\alpha}f$ is balanced.

Back to Basics (IV/IV)

Fourier Characterization

Theorem

 $f: G_1 \longrightarrow G_2$ is *pnl* if and only if for each nonezero $\beta \in G_2$ the Fourier transform of the complex-valued function $f^{(\beta)} = \chi^{\beta}_{G_2} \circ f$ has constant magnitude $\sqrt{|G_1|}$.

On Fixed-Point Free Involutions of \mathbb{F}_2^m **(I/III)** *Definitions and First Results*

Let $\sigma \in S(\mathbb{F}_2^m)$. σ is a fixed-point free involution (*fpfi*) if

for all
$$x \in \mathbb{F}_2^m$$
, $\sigma x \neq x$ and $\sigma^2 x = x$.

The set of all *fpfi* is a conjugacy class of $S(\mathbb{F}_2^m)$. Its cardinality is then

$$rac{2^m!}{2^{m-1}!2^{2^{m-1}}}$$
 .

Example

Let α be a nonzero element of \mathbb{F}_2^m . The translation $\sigma_{\alpha} : x \in \mathbb{F}_2^m \mapsto x \oplus \alpha \in \mathbb{F}_2^m$ is an *fpfi*.

On Fixed-Point Free Involutions of \mathbb{F}_2^m **(II/III)** *Maximal Group of fpfi*

Let $G \subset S(\mathbb{F}_2^m)$ be a subgroup such that all nonidentity element of G is a *fpfi*. G is called a *maximal group of involutions* (*mgi*) of \mathbb{F}_2^m if $|G| = 2^m$.

Such a mgi is Abelian.

Examples

• The group of all translations $T(\mathbb{F}_2^m) = \{\sigma_\alpha\}_{\alpha \in \mathbb{F}_2^m}$ is a *mgi*.

• Let
$$\pi \in S(\mathbb{F}_2^m)$$
. $G_{\pi} = \pi T(\mathbb{F}_2^m)\pi^{-1}$ is a mgi.

On Fixed-Point Free Involutions of \mathbb{F}_2^m **(III/III)** *Maximal Group of fpfi*

Property A *mgi G* acts regularly on \mathbb{F}_2^m .

In other terms, for each $x \in \mathbb{F}_2^m$, the orbital function

$$\phi_x: \sigma \in G \longrightarrow \sigma x \in \mathbb{F}_2^m$$

is one-to-one.

Generalized Perfect NonLinearity

Let $f : \mathbb{F}_2^m \longrightarrow \mathbb{F}_2^n$ and G be a mgi of \mathbb{F}_2^m . The *derivative* of f in direction $\sigma \in G$ is the function

 $D_{\sigma}f: x \in \mathbb{F}_2^m \mapsto f(\sigma x) \oplus f(x) \in \mathbb{F}_2^n$.

Definition

f is said G-pnl if for each nonidentity $\sigma \in G$

 $D_{\sigma}f$ is balanced.

Proposition

f is $T(\mathbb{F}_2^m)$ -pnl if and only if f is pnl in the traditional way.

Fourier Characterization (I/IV)

G-"Convolutional product" of two real-valued functions f and g defined on \mathbb{F}_2^m (where G is a mgi of \mathbb{F}_2^m)

$$f \boxtimes g(\sigma) = \sum_{x \in \mathbb{F}_2^m} f(x)g(\sigma x)$$

Fourier Characterization (II/IV)

The Fourier Transform of the G-convolutional product is

$$\widehat{f \boxtimes g}(\sigma) = \frac{1}{2^m} \sum_{x \in \mathbb{F}_2^m} \widehat{f_x}(\sigma) \widehat{g_x}(\sigma) \ .$$

where $f_x : G \longrightarrow \mathbb{R}$ defined by $f_x(\sigma) = f(\sigma x)$.

Fourier Characterization (III/IV)

New Theorem

Let G be a mgi of \mathbb{F}_2^m and $f: \mathbb{F}_2^m \longrightarrow \mathbb{F}_2^n$.

f is G-pnI if and only if for each $\sigma\in G$ and for each nonzero $\beta\in\mathbb{F}_2^n$

$$\sum_{x\in\mathbb{F}_2^m} (\widehat{f_x^{(\beta)}}(\sigma))^2 = 2^{2m} .$$

Fourier Characterization (IV/IV)

New Theorem

Let G be a mgi of \mathbb{F}_2^m and $f: \mathbb{F}_2^m \longrightarrow \mathbb{F}_2^n$.

f is G-pnl if and only if for each $x \in \mathbb{F}_2^m$, $f_x : \sigma \in G \mapsto f(\sigma x) \in \mathbb{F}_2^n$ is pnl in traditional way which is equivalent to the fact that for each $x \in \mathbb{F}_2^m$, for each nonzero $\beta \in \mathbb{F}_2^n$ and for all $\sigma \in G$

$$\widehat{|f_x^{(\beta)}(\sigma)|} = 2^{\frac{m}{2}}.$$

Construction of a Generalized Boolean Bent Function (I/II)

Let $\pi \in S(\mathbb{F}_2^m)$ and $G_{\pi} = \pi T(\mathbb{F}_2^m)\pi^{-1}$. Let $g : \mathbb{F}_2^m \longrightarrow \mathbb{F}_2^n$ be a (classical) perfect nonlinear function.

We define

$$f: x \in \mathbb{F}_2^m \mapsto f(x) = g(\pi^{-1}x) \in \mathbb{F}_2^n$$
.

Proposition

The function f previously defined is G_{π} -perfect nonlinear.

Construction of a Generalized Boolean Bent Function (II/II)

Proof

Let σ be a nonidentity element of G_{π} and $\beta \in \mathbb{F}_2^n$.

 $|\{x \in \mathbb{F}_2^m | f(\sigma x) \oplus f(x) = \beta\}| = |\{x \in \mathbb{F}_2^m | f(\pi \sigma_\alpha \pi^{-1} x) \oplus f(x) = \beta\}|$

$$= |\{y \in \mathbb{F}_2^m | f(\pi \sigma_\alpha y) \oplus f(\pi y) = \beta\}|$$

(by the change of variable $y = \pi^{-1} x$)

$$= |\{y \in \mathbb{F}_2^m | g(\sigma_\alpha y) \oplus g(y) = \beta\}|$$

$$= |\{y \in \mathbb{F}_2^m | g(\alpha \oplus y) \oplus g(y) = \beta\}|$$

= 2^{m-n} (by perfect nonlinearity of g).

Conclusion (I/II) Summary

- Generalization of the notion of Perfect Nonlinearity in the boolean case by considering groups of involutions rather than simple translations.
- Characterization with the Fourier transform that leads to generalized boolean bent functions.
- Characterization by the distance to a set of "affine" functions.
- Construction of a *G*-Perfect NonLinear function in the case where *G* is a conjugate group of $T(\mathbb{F}_2^m)$.

Conclusion (II/II) *Further Works*

- Let G be a mgi of \mathbb{F}_2^m . Is G be conjugate to $T(\mathbb{F}_2^m)$?
- If it is not the case we should construct a G-perfect nonlinear function for G non conjugate to $T(\mathbb{F}_2^m)$.
- Study of links with hyper-bent functions. Indeed $f : \mathbb{F}_{2^m} \longrightarrow \mathbb{F}_2$ is hyper-bent if for all d co-prime with $2^m - 1, x \mapsto f(x^d)$ is bent.