Transformée de Laplace

Exercice 1

L'objectif de cet exercice est de calculer la transformée de Laplace de la fonction $t \mapsto t^{\alpha}\mathcal{U}(t)$ pour un réel $\alpha > -1$.

- 1. Considérons la fonction Gamma $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ pour un réel x tel que x > 0. Vérifier que Γ est bien définie.
- 2. Montrer que pour tout réel x > 0, on a la relation $\Gamma(x+1) = x\Gamma(x)$.
- 3. Calculer $\Gamma(1)$ et en déduire $\Gamma(n)$ pour tout entier $n \geq 1$.
- 4. Déterminer la transformée de Laplace de la fonction $t \mapsto t^{\alpha}\mathcal{U}(t)$ pour $\alpha > -1$ réel (en fonction de Γ). En déduire la transformée de Laplace de $t \mapsto t^{n}\mathcal{U}(t)$ pour $n \in \mathbb{N}$.

Exercice 2

Déterminer par un calcul direct la transformée de Laplace de la fonction $f(t) = e^{\alpha t} \mathcal{U}(t)$ pour $\alpha \in \mathbb{C}$.

Exercice 3

- 1. Déterminer la transformée de Laplace de $f_n: t \mapsto t^n \mathcal{U}(t)$ pour tout entier naturel n de deux façons : tout d'abord par un calcul direct et puis en utilisant une propriété de la transformée de Laplace.
- 2. En déduire la transformée de Laplace d'une fonction polynomiale (d'une variable réelle) $P\mathcal{U} \colon \mapsto P(t)\mathcal{U}(t)$ où $P \colon t \mapsto P(t) = \sum_{i=0}^{n} \alpha_i t^i, \ \alpha_i \in \mathbb{C}$ pour tout $0 \le i \le n$.
- 3. Calculer l'inverse de la transformée de Laplace de $z\mapsto \sum_{i=0}^n \frac{\beta_i}{z^i},\ \beta_i\in\mathbb{C},\ \Re(z)>0,$ avec $\beta_0=0.$

Exercice 4

Trouver la fonction objet continue f dont la transformée de Laplace est

$$F(z) = \frac{1}{(z-a)(z-b)}$$

avec $a \neq b$.

Exercice 5

Trouver la transformée de Laplace de $f(t) = e^{-2t}(3\cos 6t - 5\sin 6t)\mathcal{U}(t)$.

Exercice 6

Le problème consiste à trouver une solution y = y(t) à l'équation différentielle $a_2y''(t) + a_1y'(t) + a_0y(t) = f(t)$ pour t > 0 et avec les conditions initiales $y(0) = y_0$, $y'(0) = y_1$, où a_0, a_1, a_2, y_0, y_1 sont des constantes réelles, $a_2 \neq 0$ et $f: \mathbb{R}_+ \to \mathbb{R}$ est donnée (on suppose en fait que $f \equiv 0$ pour tout t < 0).

1. Appliquer la transformée de Laplace sur l'équation différentielle (on suppose que les hypothèses d'existence des transformées de Laplace sont satisfaites).

2. Résoudre l'équation dans le cas particulier où $a_0 = a_2 = 1$, $a_1 = 0$, $f(t) = \sin(t)\mathcal{U}(t)$, $y_0 = y_1 = 1$.

Exercice 7

À l'aide d'intégrations par parties, déterminer la transformée de Laplace de $f_n(t) = \cos(nt)$ pour $n \in \mathbb{N}$. En déduire la transformée de Laplace inverse de $F(z) = \frac{4z}{z^2 + 64}$.

Exercice 8

Soient T > 0 et f une fonction T-périodique telle que $g: t \mapsto f(t)\mathcal{U}(t)$ soit une fonction objet. Définissons $\phi(t) = f(t)(\mathcal{U}(t) - \mathcal{U}(t-T))$ de sorte que $\phi(t) = f(t)$ pour $0 \le t < T$ et $\phi(t) = 0$ sinon (i.e., pour $t \in]-\infty; 0[\cup[T; +\infty[)$). Calculer $\mathcal{L}(g)$ en fonction de $\mathcal{L}(\phi)$. En déduire la transformée de Laplace de la fonction g associée à la fonction périodique f de période 1 telle que f(t) = t pour $t \in [0; 1]$.

Exercice 9

Soient a et b deux nombres réels tels que b < 0. Calculer la transformée de Laplace inverse de $F(z) = \frac{1}{(z-a)(z^2-b)}$. (Écrire F(z) sous la forme $\frac{c}{z-a} + \frac{dz+e}{z^2-b}$ puis utiliser les transformées de Laplace de $\mathcal U$ et de sin.)