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Abstract. The notions of perfect nonlinearity and bent functions are
closely dependent on the action of the group of translations over IFm

2 .
Extending the idea to more generalized groups of involutions without
fixed points gives a larger framework to the previous notions. In this
paper we largely develop this concept to define G-perfect nonlinearity
and G-bent functions, where G is an Abelian group of involutions, and
to show their equivalence as in the classical case.

1 Introduction

The security of secret-key cryptosystems is essentially based on the resistance
to two famous attacks, differential [1] and linear cryptanalysis [2].

On the one hand the functions that exhibit the best resistance to differential
cryptanalysis, called perfect nonlinear, satisfy to the following conditions

∀α ∈ IFm
2 \ {0IFm

2
},∀β ∈ IFn

2 , |{x ∈ IFm
2 |f(x ⊕ α) ⊕ f(x) = β}| = 2m−n (1)

where f : IFm
2 −→ IFn

2 and ⊕ is the sum over IFm
2 and IFn

2 (the component-wise
modulo-two sum). Then for all α ∈ IFm

2 \ {0IFm
2

}, the derivative of f in the
direction α, dαf : x ∈ IFm

2 �→ f(x ⊕ α) ⊕ f(x), is uniformly distributed over IFn
2 .

On the other hand the linear resistant functions, called bent functions, are defined
with respect to their (discrete) Fourier transform,

∀β ∈ IFn
2 \ {0IFn

2
},∀α ∈ IFm

2 ,
̂

χβ
IFn

2
◦ f(α) = ±2

m
2 (2)

where χβ
IFn

2
: y ∈ IFn

2 �→ (−1)β.y ∈ {±1} is a character, the symbol “.” denotes

the (canonical) dot-product over IFn
2 , F̂ is the Fourier transform of a function

F : IFm
2 −→ C and ◦ is the composition of functions.

Actually these two notions are equivalent as pointed out by Nyberg in [3]
since

a function is perfect nonlinear if and only if it is bent.

The two corresponding attacks are dual one from the other by the Fourier
transform.
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Now let σα be the translation by α over IFm
2 . We can naturally rewrite the

formula (1)

∀α ∈ IFm
2 \ {0IFm

2
},∀β ∈ IFn

2 , |{x ∈ IFm
2 |f(σα(x)) ⊕ f(x) = β}| = 2m−n . (3)

Thus the concept of perfect nonlinearity is closely linked with the action of
the translations over IFm

2 .
There is a natural way to extend at the same time the notions of perfect

nonlinearity and, by duality, that of bent functions. Suppose G is an Abelian
group of involutions without fixed points of IFm

2 , then we can introduce the
notion of G-perfect nonlinearity of f by considering the action of G over IFm

2 as
follows

∀σ ∈ G \ {Id},∀β ∈ IFn
2 , |{x ∈ IFm

2 |f(σ(x)) ⊕ f(x) = β}| = 2m−n (4)

where Id is the identity function of IFm
2 .

1.1 Our Contributions

In this paper we extend the notion of perfect nonlinearity by using involutions
instead of simple translations. We also establish a dual version of G-perfect
nonlinearity, as in the classical case, in terms of Fourier transform, that allows
us to generalize the notion of bent functions. We exhibit some relations between
the original and new concepts. In order to summarize we offer a larger framework
to the concepts of perfect nonlinearity and bent functions.

1.2 Organization of the Paper

The continuation of this paper is organized as follows. In the next section, we
give the basic definitions from dual groups to Abelian groups of involutions that
are used along the paper. In Sect. 3, we introduce our new notion of G-perfect
nonlinearity based on involutions. Then we study its duality through the Fourier
transform in order to extend the concept of boolean bent functions. In addition,
a construction of a generalized bent function is proposed. The Sect. 4 is devoted
to the links between classical and new notions. Finally in Sect. 5, we show as
in the classical case that our perfect nonlinear functions reach the maximum
distance to a certain kind of affine functions.

2 Notations and Preliminaries

In this part we recall some essential concepts and results on dual groups, Fourier
transform and bent functions. We also introduce several properties of involutions
without fixed points.
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2.1 Dual Group, (Discrete) Fourier Transform and Bent Functions

The definitions and results of this paragraph come from [4] and [5].
Let G be a finite Abelian group. We denote by eG its neutral element and

by E its exponent i.e. the maximum order of its elements. A character of G is
any homomorphism from G to the multiplicative group of Eth roots of unity.
The set of all characters Ĝ is an Abelian group, called the dual group of G,
isomorphic to G. We fix some isomorphism from G to Ĝ and we denote by χα

G

the image of α ∈ G by this isomorphism. Then χeG

G is the trivial character i.e.
χeG

G (x) = 1∀x ∈ G. For instance if G = IFm
2 , χα

IFm
2

: x ∈ IFm
2 �→ (−1)α.x. Until

the end of this paper, any time we refer to a finite Abelian group, we suppose
that an isomorphism from it to its dual group has been fixed.

The Fourier transform of any complex-valued function f on G is defined by

f̂(α) =
∑
x∈G

f(x)χα
G(x) for α ∈ G .

We have the following and important lemma for the Fourier transform.

Lemma 1. Let f : G −→ C.

1. f(x) = 0 for every x �= eG in G if and only if f̂ is constant.
2. f̂(α) = 0 for every α �= eG in G if and only if f is constant.

Let us introduce some notions needed to define the concept of bent functions.
Let G1 and G2 be two finite Abelian groups. Let f : G1 −→ G2. f is said balanced
if ∀β ∈ G2, |{x ∈ G1|f(x) = β}| = |G1|

|G2| .
The derivative of f in direction α ∈ G1 is defined by

dαf : x ∈ G1 �→ f(α + x) − f(x) ∈ G2 (5)

where “+” is the symbol for the law of G1 and “y − z” is an abbreviation for
“y ∗ z−1” with (y, z) ∈ G2

2, ∗ the law of G2 and z−1 the inverse of z in G2.
The function f is said perfect nonlinear if

∀α ∈ G1 \ {eG1},∀β ∈ G2, |{x ∈ G1|dαf(x) = β}| =
|G1|
|G2| . (6)

Then f is perfect nonlinear if and only if for all α ∈ G1 \ {eG1}, dαf is
balanced.

Proposition 1. Let f be any function from G1 to G2. Then f is balanced if
and only if, for every β ∈ G2 \ {eG2}, we have

̂

χβ
G2

◦ f(eG1) = 0 . (7)

We can recall the notion of bent functions : f is bent if ∀α ∈ G1, ∀β ∈
G2 \ {eG2}, | ̂

χβ
G2

◦ f(α)| =
√|G1| where |z| is the norm for z ∈ C.

Finally we have the following theorem due to Nyberg.
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Theorem 1. f : G1 −→ G2 is perfect nonlinear if and only if it is bent.

In this paper we refer to these notions as original, classical or traditional, as it
has been already done, so as to differentiate them from ours which are qualified
as new, extended or generalized.

2.2 Involutions Without Fixed Points

Let S(IFm
2 ) be the symmetric group of IFm

2 . Let σ ∈ S(IFm
2 ). σ is an involution

if σ2 = σ ◦ σ = Id or in other terms σ−1 = σ. Moreover σ is without fixed points
if ∀x ∈ IFm

2 , σx �= x. We denote by Inv(IFm
2 ) the set of involutions without fixed

points. By definition, we can easily see that an element of Inv(IFm
2 ) is the product

of 2m−1 transpositions with disjoint supports. So Inv(IFm
2 ) is a conjugacy class

of S(IFm
2 ). Its cardinality is given by the formula 2m!

2m−1!22m−1 .
Let T (IFm

2 ) be the (Abelian) group of translations of IFm
2 (subgroup of S(IFm

2 )).
Then we can easily check that T (IFm

2 ) \ {Id} ⊂ Inv(IFm
2 ) and since for m > 2,

|Inv(IFm
2 )| > |T (IFm

2 )| = 2m there exists (lots of) nonlinear involutions without
fixed points.

In the sequel we adopt the following usual notations, for (σ, τ) ∈ S(IFm
2 )2, στ

and σx denote respectively σ ◦ τ and σ(x). The small Greek letters are kept to
name the permutations and we use the small Roman letters to denote the points
of IFm

2 .
We have these interesting and useful properties concerning involutions with-

out fixed points.

Property 1. Let G be a subgroup of S(IFm
2 ) such that G\{Id} ⊂ Inv(IFm

2 ) (such
a group is called a group of involutions of IFm

2 ). Then G is Abelian.

Proof. Let (σ, τ) ∈ G2. Since στ ∈ G then either στ = Id or στ ∈ Inv(IFm
2 ). In

the first case, σ = τ−1 = τ then στ = τσ. In the second case, (στ)2 = Id ⇔
στστ = Id ⇔ τστ = σ−1 = σ ⇔ στ = τ−1σ = τσ.
The property follows. ��

Property 2. Let G be a group of involutions of IFm
2 . Then |G| ≤ 2m.

Proof. Suppose on the contrary that |G| > 2m. Then there exists (σ, τ) ∈ G2

such that σ �= τ and σ0IFm
2

= τ0IFm
2

. If not then f0IFm
2

: σ ∈ G �→ f0IFm
2

(σ) =
σ0IFm

2
∈ IFm

2 is injective and |{f0IFm
2

(σ)|σ ∈ G}| = |G| ≤ |IFm
2 | = 2m which is

impossible by hypothesis. So let (σ, τ) ∈ G2 such that σ �= τ and σ0IFm
2

= τ0IFm
2

.
Then στ0IFm

2
= σσ0IFm

2
= σ20IFm

2
= 0IFm

2
. Consequently 0IFm

2
is a fixed point

for στ . Since σ �= τ then στ �= Id and στ has no fixed point. Thus we have a
contradiction with the assumption that |G| > 2m. ��

Property 3. For m > 2, there exists G a group of involutions of IFm
2 such that

|G| = 2m and G �= T (IFm
2 ).

Proof. Let α ∈ IFm
2 \ {0IFm

2
} and σα ∈ T (IFm

2 ) the corresponding translation.
Let τ ∈ Inv(IFm

2 ) \ T (IFm
2 ) (such a nonlinear involution exists since m > 2).
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Since τ and σα are conjugate, there exists π ∈ S(IFm
2 ) such that τ = πσαπ−1.

It is easy to see that πT (IFm
2 )π−1 is a group of involutions (a conjugate group

of T (IFm
2 )) such that |πT (IFm

2 )π−1| = 2m and πT (IFm
2 )π−1 �= T (IFm

2 ) (since
τ ∈ πT (IFm

2 )π−1 and τ �∈ T (IFm
2 )). ��

Remark 1. In the previous property, the fact “m > 2” is needed to obtain a
group of involutions G such that |G| = 2m and G �= T (IFm

2 ). If m = 1 or m = 2
we have only one group of involutions of maximal size G = T (IF2) or G = T (IF2

2).

We call maximal group of involutions of IFm
2 a group of involutions G of IFm

2
such that |G| = 2m.

Property 4. Let G be a maximal group of involutions of IFm
2 . Then the action

φ : G −→ S(IFm
2 ) such that φ(σ) : x �→ σx is simply transitive.

Proof. Let us define for x ∈ IFm
2 the orbital function fx : σ ∈ G �→ fx(σ) =

φ(σ)(x) = σx ∈ IFm
2 . Then for all x ∈ IFm

2 , fx is injective. Indeed let (σ, τ) ∈ G2

such that σ �= τ . If fx(σ) = fx(τ) then we have the following chain of equivalences
σx = τx ⇔ τσx = x ⇔ x is a fixed point of τσ which is impossible since τσ �= Id .
In addition we have |G| = |IFm

2 | then fx is bijective. That concludes the proof.
��

Finally for a group of involutions G of IFm
2 , since the exponent of G is 2 (all

the elements distinct from the identity have an order two) and it is an Abelian
group, the dual group Ĝ is the set of homomorphisms from G to {±1} and is
isomorphic to G.

3 Generalized Boolean Bent Functions

In this section we introduce a new notion of perfect nonlinearity that extends
and offers a larger framework for the classical one. We also study its dual ver-
sion through the Fourier transform which leads us to introduce a generalized
definition for the concept of bent functions.

3.1 Definitions and Properties

Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→ IFn
2 . We define

the derivative of f in direction σ ∈ G by

Dσf : IFm
2 −→ IFn

2

x �→ Dσf(x) = f(σx) ⊕ f(x) . (8)

We define ∆f = sup
σ �=Id,β

|{x ∈ IFm
2 |Dσf(x) = β}|.

We have the following bound for ∆f .

Theorem 2. For any function f : IFm
2 −→ IFn

2 , ∆f ≥ 2m−n.
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Proof. For each fixed σ ∈ G \ {Id}, the collection of sets {{x ∈ IFm
2 |Dσf(x) =

β}}β∈IFn
2

is a partition of IFm
2 . Then

∑
β∈IFn

2

|{x ∈ IFm
2 |Dσf(x) = β}| = 2m, which

implies the result. ��
Definition 1. A function f : IFm

2 −→ IFn
2 is G-perfect nonlinear if ∆f = 2m−n.

According to the previous theorem, for a G-perfect nonlinear function f , we
have

∆f = inf
g:IFm

2 −→IFn
2

∆g . (9)

We can state a first result similar to the traditional case.

Theorem 3. f : IFm
2 −→ IFn

2 is G-perfect nonlinear if and only if for all σ ∈
G \ {Id}, the derivative Dσf is balanced.

Proof. f is G-perfect nonlinear if and only if the maximum of the sequence of
integers {|{x ∈ IFm

2 |Dσf(x) = β}|}σ∈G\{Id},β∈IFn
2

is equal to its mean. This is
possible if and only if the sequence is constant. Then the constant must be 2m−n

which ensures the result. ��
From the theorem above we obtain the following immediate results which

embeds classical notions in our framework.

Proposition 2. Let f : IFm
2 −→ IFn

2 . f is T (IFm
2 )-perfect nonlinear if and only

if f is perfect nonlinear in the classical way.

Proof. f is T (IFm
2 )-perfect nonlinear if and only if Dσα

f is balanced for every
σα ∈ T (IFm

2 ) \ {Id} if and only if Dσαf is balanced for every α ∈ IFm
2 \ {0IFm

2
}.

We conclude the proof since Dσα
f(x) = dαf(x) for all x ∈ IFm

2 . ��
We now develop the dual description of G-perfect nonlinear functions through

the study of their Fourier transform.
Let f and g be two functions from IFm

2 to IR. We define

Φf,g : G −→ IR

σ �→ Φf,g(σ) =
∑

x∈IFm
2

f(x)g(σx) (10)

which can be seen as a kind of convolution product with respect to the action
of G over IFm

2 . Let us compute its Fourier transform. Let σ ∈ G.

Φ̂f,g(σ) =
∑
τ∈G

Φf,g(τ)χσ
G(τ)

=
∑
τ∈G

∑
x∈IFm

2

f(x)g(τx)χσ
G(τ)

=
∑

x∈IFm
2

f(x)
∑
τ∈G

g(τx)χσ
G(τ) . (11)
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Moreover the sum “
∑
τ∈G

g(τx)χσ
G(τ)” is invariant by translations 1 over G i.e.

∀π ∈ G,
∑
τ∈G

g(τx)χσ
G(τ) =

∑
τ∈G

g(τπx)χσ
G(τπ) =

∑
τ∈G

g(τπx)χσ
G(τ)χσ

G(π). Then

we have

(11) =
∑

x∈IFm
2

f(x)χσ
G(π)

∑
τ∈G

g(τπx)χσ
G(τ)

=
∑

x∈IFm
2

f(πx)χσ
G(π)

∑
τ∈G

g(τx)χσ
G(τ) (since π−1 = π)

=
∑

x∈IFm
2

f(πx)χσ
G(π)ĝx(σ) (12)

where gx : G −→ IR such that gx(σ) = g(σx). Since (12) is true for all π ∈ G,
by integration over G, we obtain

∑
π∈G

Φ̂f,g(σ) = |G|Φ̂f,g(σ) = 2mΦ̂f,g(σ)

=
∑

x∈IFm
2

∑
π∈G

f(πx)χσ
G(π)ĝx(σ)

=
∑

x∈IFm
2

f̂x(σ)ĝx(σ) . (13)

And finally this gives us

∀σ ∈ G, Φ̂f,g(σ) =
1

2m

∑
x∈IFm

2

f̂x(σ)ĝx(σ) (14)

which is equivalent, in our context, to the trivialization of the convolution prod-
uct by the Fourier transform.

Proposition 3. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 , β ∈ IFn
2 and Fβ,f : G −→ IR such that Fβ,f (σ) = ̂

χβ
IFn

2
◦ Dσf(0IFm

2
). Then

we have
∀σ ∈ G, F̂β,f (σ) =

1
2m

∑
x∈IFm

2

( ̂

χβ
IFn

2
◦ fx(σ))2.

Proof. First of all, Fβ,f is real-valued since the characters of IFm
2 and IFn

2 are
{±1}-valued.

1 τ ∈ G �→ τπ ∈ G is the translation by π ∈ G.
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Let us compute the Fourier transform of Fβ,f .

F̂β,f (σ) =
∑
τ∈G

Fβ,f (τ)χσ
G(τ)

=
∑
τ∈G

∑
x∈IFm

2

(χβ
IFn

2
◦ Dτf)(x)χσ

G(τ)

=
∑
τ∈G

∑
x∈IFm

2

χβ
IFn

2
(f(x) ⊕ f(τx))χσ

G(τ)

=
∑
τ∈G

∑
x∈IFm

2

(χβ
IFn

2
◦ f)(x)(χβ

IFn
2

◦ f)(τx)χσ
G(τ)

=
∑
τ∈G

Φχβ
IFn

2
◦f,χβ

IFn
2

◦f (τ)χσ
G(τ)

= ̂Φχβ
IFn

2
◦f,χβ

IFn
2

◦f (σ)

=
1

2m

∑
x∈IFm

2

̂(χβ
IFn

2
◦ f)x(σ) ̂(χβ

IFn
2

◦ f)x(σ) (according to (14))

=
1

2m

∑
x∈IFm

2

( ̂(χβ
IFn

2
◦ f)x(σ))2

=
1

2m

∑
x∈IFm

2

( ̂

χβ
IFn

2
◦ fx(σ))2 .

��
Then we have one of the most important theorem which allows us to define

an extended notion of bent functions.

Theorem 4. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 . f is G-perfect nonlinear if and only if ∀σ ∈ G, ∀β ∈ IFn
2 \ {0IFn

2
},

∑
x∈IFm

2

( ̂

χβ
IFn

2
◦ fx(σ))2 = 22m .

Proof. f is G-perfect non linear ⇔ ∀σ ∈ G \ {Id}, Dσf is balanced over IFm
2

⇔ ∀σ ∈ G \ {Id}, ∀β ∈ IFn
2 \ {0IFn

2
}, ̂

χβ
IFn

2
◦ Dσf(0IFm

2
) = 0 (by proposition 1)

⇔ ∀β ∈ IFn
2 \ {0IFn

2
}, ∀σ ∈ G \ {Id}, Fβ,f (σ) = 0

⇔ ∀β ∈ IFn
2 \ {0IFn

2
}, F̂β,f is constant over G (according to lemma 1).

By Parseval equation we have
1

2m

∑
σ∈G

(F̂β,f (σ))2 =
∑
σ∈G

(Fβ,f (σ))2 =(Fβ,f (Id))2.

Thus since F̂β,f is constant, (F̂β,f (σ))2 = (Fβ,f (Id))2 for all σ ∈ G. More-

over Fβ,f (Id) = ̂

χβ
IFn

2
◦ DIdf(0IFm

2
) =

∑
x∈IFm

2

χβ
IFm

2
(0IFm

2
) = 2m. Then according to

proposition 3 we deduce the result. ��
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We can then define the new boolean bent functions by the duality through
the Fourier transform previously exhibited as follows.

Definition 2. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 . f is called G-bent if ∀σ ∈ G, ∀β ∈ IFn
2 \ {0IFn

2
},

∑
x∈IFm

2

( ̂

χβ
IFn

2
◦ fx(σ))2 = 22m.

By this way we keep the equivalence (by theorem 4) between the new no-
tions of perfect nonlinearity and bent functions as it is the case for the original
concepts.

3.2 Construction of a G-Perfect Nonlinear Function

Let π ∈ S(IFm
2 ) and Gπ = πT (IFm

2 )π−1 the conjugate group of T (IFm
2 ) by π (it is

a maximal group of involutions). Suppose that there exists g : IFm
2 −→ IFn

2 such
that g is perfect nonlinear in the classical way (so g is also bent in the classical
way). Let define f : IFm

2 −→ IFn
2 by f(x) = g(π−1x). We have then the following

proposition.

Proposition 4. The function f previously defined is Gπ-perfect nonlinear.

Proof. Let σ ∈ Gπ \ {Id} and β ∈ IFn
2 . We have

|{x ∈ IFm
2 |f(σx) ⊕ f(x) = β}| = |{x ∈ IFm

2 |f(πσαπ−1x) ⊕ f(x) = β}| (15)

since there exists one and only one α ∈ IFm
2 \ {0IFm

2
} such that the translation

σα is conjugated by π with σ. Then we have

(15) = |{y ∈ IFm
2 |f(πσαy) ⊕ f(πy) = β}| (change of variable : y = π−1x)

= |{y ∈ IFm
2 |g(σαy) ⊕ g(y) = β}|

= 2m−n (by perfect nonlinearity of g) .

That concludes the proof. ��

4 Links Between Classical and New Notions

In this section we present some relations between our new notions and the clas-
sical ones.

Theorem 5. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 .
f is G-perfect nonlinear if and only if ∀x ∈ IFm

2 , fx : G −→ IFn
2 such that

fx(σ) = f(σx) is perfect nonlinear in the traditional sense.

Proof.

⇒) Suppose that f is G-perfect nonlinear. We have to prove that ∀x ∈ IFm
2 ,

∀σ ∈ G \ {Id} and ∀β ∈ IFn
2 ,
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|{τ ∈ G|fx(στ) ⊕ fx(τ) = β}| = |G|
2n = 2m−n.

We have |{τ ∈ G|f(στx)⊕f(τx) = β}| = |{y ∈ IFm
2 |f(σy)⊕f(y) = β}| by

the change of variables τx = y (one must remember that τ �→ τx is bijective
since the action of G on IFm

2 is simply transitive). That concludes the first
implication.

⇐) Suppose that ∀x ∈ IFm
2 , fx is perfect nonlinear in the classical way. Then

fx is bent (also in the original sense) i.e. ∀β ∈ IFn
2 \ {0IFn

2
}, | ̂

χβ
IFn

2
◦ fx(σ)| =√|G| = 2

m
2 . Then we have

∑
x∈IFm

2

( ̂

χβ
IFn

2
◦ fx(σ))2 =

∑
x∈IFm

2

|G| = 22m. So f is

G-perfect nonlinear by theorem 4. ��

Then we have the immediate following corollary, similar to the traditional
case.

Corollary 1. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 .
f is G-perfect nonlinear if and only if ∀x ∈ IFm

2 , ∀β ∈ IFn
2 \ {0IFn

2
}, ∀σ ∈ G,

| ̂

χβ
IFn

2
◦ fx(σ)| = 2

m
2 .

5 Distance to “Affine” Functions

A well-known result is that bent functions have the maximum distance to the
set of affine functions defined by the canonical dot-product. In this section we
show a similar result. The bent functions with respect to the extended notion
reach the maximum distance between a certain kind of affine functions as in the
classical context.

Let f and b be functions from E1 to E2 (two sets and E1 is finite), we define
the Hamming distance between f and g by

d(f, g) = |{x ∈ E1|f(x) �= g(x)}| . (16)

If A is a (finite) set of functions from E1 to E2 we define the distance of a
function f : E1 −→ E2 to the set A by

d(f, A) = min
g∈A

d(f, g) . (17)

Let G be a maximal group of involutions of IFm
2 . We define the set of “affine

functions” over G as

AG = {f : G −→ {±1}|∃(λ, c) ∈ Ĝ × {±1} such that f(σ) = cλ(σ)}
= {±χσ

G|σ ∈ G}

i.e. AG is the set of affine forms over G.
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Let (β, x) ∈ (IFn
2 \ {0IFn

2
}) × IFm

2 . We have

̂

χβ
IFn

2
◦ fx(σ) =

∑
τ∈G

χβ
IFn

2
(f(τx))χσ

G(τ)

= |{τ ∈ G|χβ
IFn

2
(f(τx)) = χσ

G(τ)}| − |{τ ∈ G|χβ
IFn

2
(f(τx)) �= χσ

G(τ)}|
(since both χβ

IFn
2

and χσ
G are {±1} − valued)

= |G| − 2d(χβ
IFn

2
◦ fx, χσ

G) .

Thus we obtain

d(χβ
IFn

2
◦ fx, χσ

G) = 2m−1 − 1
2

̂

χβ
IFn

2
◦ fx(σ) . (18)

Let us compute d(χβ
IFn

2
◦ fx,−χσ

G).

d(χβ
IFn

2
◦ fx,−χσ

G) = |{τ ∈ G|χβ
IFn

2
(f(τx)) �= −χσ

G(τ)}|
= |{τ ∈ G|χβ

IFn
2
(f(τx)) = χσ

G(τ)}|
= |G| − |{τ ∈ G|χβ

IFn
2
(f(τx)) �= χσ

G(τ)}|
= |G| − d(χβ

IFn
2

◦ fx, χσ
G)

= 2m−1 +
1
2

̂

χβ
IFn

2
◦ fx(σ) .

It follows that d(χβ
IFn

2
◦fx, {±χσ

G}) = min({d(χβ
IFn

2
◦fx, χσ

G), d(χβ
IFn

2
◦fx,−χσ

G)})

= 2m−1 − 1
2 | ̂

χβ
IFn

2
◦ fx(σ)|.

Since AG = ∪σ∈G{±χσ
G}, we have

d(χβ
IFn

2
◦ fx,AG) = min

α∈AG

d(χβ
IFn

2
◦ fx, α)

= min
σ∈G

d(χβ
IFn

2
◦ fx, {±χσ

G})

= min
σ∈G

(2m−1 − 1
2
| ̂

χβ
IFn

2
◦ fx(σ)|)

= 2m−1 − 1
2

max
σ∈G

| ̂

χβ
IFn

2
◦ fx(σ)| . (19)

Proposition 5. Let G be a maximal group of involutions of IFm
2 and f : IFm

2 −→
IFn

2 .
f is G-perfect nonlinear if and only if ∀(β, x) ∈ (IFn

2 \ {0IFn
2
}) × IFm

2 ,

d(χβ
IFn

2
◦ fx,AG) = 2m−1 − 2

m
2 −1 .
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Proof.

⇐) Let g : IFm
2 −→ IFn

2 . By Parseval equation, we have
∑
σ∈G

| ̂

χβ
IFn

2
◦ gx(σ)|2 =

|G|
∑
σ∈G

|χβ
IFn

2
◦gx(σ)|2 = |G|2 (since χβ

IFn
2

is {±1}-valued). So max
σ∈G

| ̂

χβ
IFn

2
◦ gx(σ)|

≥ √|G| = 2
m
2 and then inf

g:IFm
2 −→IFn

2

max
σ∈G

| ̂

χβ
IFn

2
◦ gx(σ)| ≥ 2

m
2 . Moreover sup-

pose that we have d(χβ
IFn

2
◦fx,AG) = 2m−1−2

m
2 −1, then according to formula

(19), we deduce that ∀(β, x) ∈ (IFn
2 \{0IFn

2
})× IFm

2 , max
σ∈G

| ̂

χβ
IFn

2
◦ fx(σ)| = 2

m
2 .

Then ∀σ ∈ G, | ̂

χβ
IFn

2
◦ fx(σ)| ≤ 2

m
2 . The lower absolute bound previously

exhibited implies then that ∀σ ∈ G, | ̂

χβ
IFn

2
◦ fx(σ)| = 2

m
2 . The result is given

by corollary 1.
⇒) By corollary 1, if f is G-perfect nonlinear then ∀(β, x) ∈ (IFn

2 \{0IFn
2
})× IFm

2 ,

∀σ ∈ G, | ̂

χβ
IFn

2
◦ fx(σ)| = 2

m
2 . Therefore we deduce the result by applying

the formula (19). ��
Corollary 2. Let G be a maximal group of involutions of IFm

2 . Let f : IFm
2 −→

IFn
2 . If f is G-perfect nonlinear then ∀(β, x) ∈ (IFn

2 \ {0IFn
2
}) × IFm

2 , χβ
IFn

2
◦ fx has

the maximal distance to AG.

Proof. Suppose f G-perfect nonlinear. The same way as in the proof of proposi-

tion 5, we deduce the | ̂

χβ
IFn

2
◦ fx(σ)| = inf

g:IFm
2 −→IFn

2

max
σ∈G

| ̂

χβ
IFn

2
◦ gx(σ)| = 2

m
2 . Then

∀g : IFm
2 −→ IFn

2 , according to formula (19),

d(χβ
IFn

2
◦ fx,AG) ≥ 2m−1 − 1

2
max
σ∈G

| ̂

χβ
IFn

2
◦ gx(σ)| = d(χβ

IFn
2

◦ gx,AG) .

��
6 Conclusion and Further Works

We have extended both notions of perfect nonlinearity and bent functions, while
respecting the equivalence between them, by considering groups of involutions
rather than the simple translations. Moreover we have shown that our concepts
and the original ones are closely dependent. Finally we have obtained a similar
result to the traditional case with regard to the distance to the set of affine
functions.

The existence of G-perfect nonlinear functions is proved by our construction
of such function in the case where G is a conjugate group of the group of trans-
lations T (IFm

2 ). A problem remaining to solve is to show if the conjugacy class of
T (IFm

2 ) is equal to the set of all maximal groups of involutions of IFm
2 . If it is not

the case, we should also construct a G-bent function for G a group of involutions
which is not in the same conjugacy class than T (IFm

2 ), or we should prove their
nonexistence.
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