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The famous Poincaré-Birkhoff-Witt theorem states that a Lie algebra, free as a module, embeds into its associative envelope—its
universal enveloping algebra—as a sub-Lie algebra for the usual commutator Lie bracket. However, there is another functorial way—
less known—to associate a Lie algebra to an associative algebra and inversely. Any commutative algebra equipped with a derivation
𝑎 󳨃→ 𝑎

󸀠, that is, a commutative differential algebra, admits a Wronskian bracket𝑊(𝑎, 𝑏) = 𝑎𝑏
󸀠
− 𝑎
󸀠
𝑏 under which it becomes a Lie

algebra. Conversely, to any Lie algebra a commutative differential algebra is universally associated, itsWronskian envelope, in a way
similar to the associative envelope.This contribution is the beginning of an investigation of these relations between Lie algebras and
differential algebras which is parallel to the classical theory. In particular, we give a sufficient condition under which a Lie algebra
may be embedded into its Wronskian envelope, and we present the construction of the free Lie algebra with this property.

1. Introduction

Any (associative) algebra (and more generally a Lie-
admissible algebra), say 𝐴, admits a derived structure of Lie
algebra under the commutator bracket [𝑎, 𝑏] = 𝑎𝑏−𝑏𝑎, 𝑎, 𝑏 ∈
𝐴. This actually describes a forgetful functor, more precisely
an algebraic functor, from associative to Lie algebras. This
functor admits a left adjoint that enables to associate to any
Lie algebra its universal associative envelope. In this way the
theory of Lie algebras may be explored through (but not
reduced to) that of associative algebras. A Lie algebra which
embeds into its universal enveloping algebra is referred to
as special.The famous Poincaré-Birkhoff-Witt theorem states
that any Lie algebra which is free as a module (and therefore,
any Lie algebra over a field) is special. When the Lie algebra is
Abelian, then its universal enveloping algebra reduces to the
symmetric algebra of its underlying module structure, and
thus any commutative Lie algebra is trivially special.

However, there is another way to associate an associative
algebra to a Lie algebra, and reciprocally, in a functorial
way. The idea does not consist anymore to consider non-
commutative algebras under commutators but differential
commutative algebras together with the so-calledWronskian
determinant. A derivation of an algebra 𝐴 is a linear map
𝜕 : 𝐴 → 𝐴 that satisfies the usual Leibniz rule. An algebra

with a distinguished derivation is said to be a differential
algebra. For any such pair (𝐴, 𝜕) may be defined a bilinear
map 𝑊 : 𝐴

2
→ 𝐴 by 𝑊(𝑎, 𝑏) = 𝑎𝜕(𝑏) − 𝜕(𝑎)𝑏. When the

algebra 𝐴 is commutative, then𝑊 is alternating and satisfies
the Jacobi identity so that it defines a Lie bracket on 𝐴. The
definition of the Lie algebra (𝐴,𝑊) from (𝐴, 𝜕) is functorial
(homomorphisms of differential algebras are transformed
into homomorphismof Lie algebras) as is the definition of the
Lie algebra (𝐴, [⋅, ⋅]) associated to𝐴 from the classical theory.
Also as in the classical case, this functor admits a left adjoint
that allows us to define a Wronskian envelope for a Lie alge-
bra, that is, a universal commutative and differential algebra.

This paper contributes to the study of this functorial
relation (an adjointness) between Lie and differential com-
mutative algebras in a way parallel to the classical theory of
Lie and associative algebras. In particular, we describe the
construction of the Wronskian envelope, and we present a
sufficient condition (Theorem 16) over a field of characteristic
zero for certain Lie algebras to be special, that is, to embed
into their Wronskian envelopes. Contrary to the usual case,
freeness of the underlying 𝑅-module is no more sufficient:
there are Lie algebras, free as modules, which do not embed
into their Wronksian envelopes. Indeed, special Lie algebras,
in this new setting, satisfy a nontrivial relation similar to a
relation that holds in Lie algebras of vector fields.
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2. Differential Algebra

Because the notion of Wronskian envelope is based upon
commutative differential algebras, we start by a basic and
brief presentation of this theory that is inspired from [1].
Besides we show that any algebra (commutative or not)
may be embedded into a differential algebra in a functorial
way.

Let 𝑅 be a commutative ring with a unit (it is assumed
hereafter to be nonzero), and let 𝐴 be an 𝑅-algebra. An 𝑅-
derivation 𝜕 of 𝐴 is an endomorphism of the underlying 𝑅-
module structure of 𝐴 that satisfies Leibniz’s rule

𝜕 (𝑎𝑏) = 𝜕 (𝑎) 𝑏 + 𝑎𝜕 (𝑏) (1)

for every 𝑎, 𝑏 ∈ 𝑅. We remark that 𝜕(1
𝐴
) = 0 (1

𝐴
denoting

the unit of 𝐴) for if 𝜕(1
𝐴
) = 𝜕(1

𝐴
1
𝐴
) = 𝜕(1

𝐴
) + 𝜕(1

𝐴
).

A pair (𝐴, 𝜕) is called a differential 𝑅-algebra. It is said to
be commutative when 𝐴 is so. We note that any 𝑅-algebra
is actually a differential 𝑅-algebra with the zero derivation.
Let (𝐴, 𝜕

𝐴
) and (𝐵, 𝜕

𝐵
) be two differential 𝑅-algebras, and 𝜙 :

𝐴 → 𝐵 be a (unit-preserving) homomorphism of 𝑅-algeb-
ras. It is a homomorphism of differential 𝑅-algebras when
𝜙 ∘ 𝜕
𝐴
= 𝜕
𝐵
∘ 𝜙. Differential (resp., commutative) 𝑅-algebras

and their homomorphisms form a category denoted by 𝑅-
DiffAlg (resp., 𝑅-CDiffAlg). A differential (two-sided)
ideal 𝐼 of a differential 𝑅-algebra (𝐴, 𝜕

𝐴
) is an (two-sided)

ideal of the carrier 𝑅-algebra 𝐴 such that 𝜕
𝐴
(𝐼) ⊆ 𝐼. It is

clear that the quotient-algebra 𝐴/𝐼 becomes a differential 𝑅-
algebra in a natural way and that the canonical epimorphism
𝜋
𝐼
: 𝐴 → 𝐴/𝐼 is a homomorphism of differential𝑅-algebras.

Let 𝑆 ⊆ 𝐴 be a subset.Then, the intersection of all differential
ideals of (𝐴, 𝜕

𝐴
) that contain 𝑆 is again a differential ideal,

called the differential ideal generated by 𝑆. We may observe
that this differential ideal is the same as the (algebraic) ideal
generated by {𝜕𝑖

𝐴
(𝑥) : 𝑥 ∈ 𝑆, 𝑖 ≥ 0}.

The obvious forgetful functor A (resp., CA) from 𝑅-
DiffAlg (resp., 𝑅-CDiffAlg) to the category 𝑅-Alg (resp.,
𝑅-CAlg) of 𝑅-algebras (resp., commutative𝑅-algebras), that
forgets the derivation, has a left adjoint (see [2] for usual
category-theoretic definitions). To prove this fact, let us intro-
duce some notations. Let𝑋 be any set and𝑀 be any monoid
with unit 0. Let𝑓 ∈ 𝑀

𝑋. Its support supp(𝑓) is the set of all 𝑖 ∈
𝑋 such that 𝑓(𝑖) ̸= 0. Finitely supported maps are those maps
with a finite support, and 𝑀(𝑋) is the set of all such maps.
Let 𝑉 be a 𝑅-module. We denote by 𝑉(N) the 𝑅-module of all
finitely supported maps from N to 𝑉 (with point-wise addi-
tion and scalar multiplication), namely, ⨁

𝑛∈N𝑉. For every
𝑥 ∈ 𝑉 and 𝑖 ∈ N, let 𝑥

(𝑖)
∈ 𝑉
(N) be defined by 𝑥

(𝑖)
(𝑗) = 𝑥 if 𝑖 =

𝑗 and 0
𝑉
otherwise; the maps 𝑞

𝑖
: 𝑥 󳨃→ 𝑥

(𝑖)
are the canonical

injections of the coproduct 𝑉(N). We also denote by T(𝑉)

(resp.,S(𝑉)) the tensor (resp., symmetric)𝑅-algebra of𝑉 (see
[3]). The natural injection from 𝑉 to T(𝑉) (resp., S(𝑉)) is
denoted by 𝑛

𝑉
. Now, let 𝐴 be an 𝑅-algebra (resp., commuta-

tive 𝑅-algebra), and let us denote bymod(𝐴) the underlying
𝑅-module structure of 𝐴. Let 𝜕 : mod(𝐴)

(N)
→ mod(𝐴)

(N)

be the 𝑅-linear endomorphism defined by 𝜕(𝑥
(𝑖)
) = 𝑥
(𝑖+1)

for
every𝑥 ∈ 𝐴 and 𝑖 ∈ N. According to [3, Lemma 4] there exists
a unique 𝑅-derivation ofT(mod(𝐴)

(N)
), again denoted by 𝜕,

that extends 𝜕. Let𝐶 be the two-sided ideal ofT(mod(𝐴)
(N)
)

generated by 𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 for every 𝑥, 𝑦 ∈ mod(𝐴)
(N). Since

𝜕(𝐶) ⊆ 𝐶, (S(mod(𝐴)
(N)
), 𝜕) is a commutative differential

𝑅-algebra (by abuse of notations 𝜕 is the derivation on the
quotient algebra). Now, let us consider the (usual) ideal 𝐼 of
T(mod(𝐴)

(N)
) (resp., S(mod(𝐴)

(N)
)) generated by (𝑥𝑦)

(𝑖)
−

∑
𝑖

𝑗=0
(
𝑖

𝑗 ) 𝑥(𝑗)
⊗ 𝑦
(𝑖−𝑗)

for every 𝑥, 𝑦 ∈ 𝐴 and 𝑖 ∈ N (where
the product of elements in 𝐴 is denoted by a juxtaposition),
by (1
𝐴
)
(0)

− 1 (where 1 is the unit of T(mod(𝐴)
(N)
) and,

resp., of S(mod(𝐴)
(N)
)) and by (1

𝐴
)
(𝑖)

for every 𝑖 > 0. It
is clear that 𝜋

𝐼
∘ 𝜕 : T(mod(𝐴)

(N)
) → T(mod(𝐴)

(N)
)/𝐼

(resp., 𝜋
𝐼
∘ 𝜕 : S(mod(𝐴)

(N)
) → S(mod(𝐴)

(N)
)/𝐼) factors

through the quotient (where 𝜋
𝐼
is the canonical epimor-

phism from T(mod(𝐴)
(N)
) to T(mod(𝐴)

(N)
)/𝐼 and, resp.,

from S(mod(𝐴)
(N)
) to S(mod(𝐴)

(N)
)/𝐼), and defines an 𝑅-

derivation 𝜕 on T(mod(𝐴)
(N)
)/𝐼 (resp., S(mod(𝐴)

(N)
)/𝐼).

This differential 𝑅-algebra is denoted thereafter by (D(𝐴), 𝜕)

(resp., (CD(𝐴), 𝜕)).

Theorem 1. Let 𝐴 be an 𝑅-algebra (resp., commutative 𝑅-
algebra). Let (𝐵, 𝜕

𝐵
) be a differential 𝑅-algebra (resp., com-

mutative differential 𝑅-algebra), and let 𝜙 : 𝐴 → 𝐵

be a homomorphism of 𝑅-algebras. Then, there is a unique
homomorphism 𝜙 : (D(𝐴), 𝜕) → (𝐵, 𝜕

𝐵
) of differential 𝑅-

algebras (resp., 𝜙 : (CD(𝐴), 𝜕) → (𝐵, 𝜕
𝐵
) commutative

differential 𝑅-algebras) such that 𝜙(𝜋
𝐼
(𝑥
(0)
)) = 𝜙(𝑥) for every

𝑥 ∈ 𝐴.

Proof. Let 𝜙
1
: mod(𝐴)

(N)
→ mod(𝐵) be the unique 𝑅-

linear map such that 𝜙
1
(𝑥
(𝑖)
) = 𝜕

𝑖

𝐵
(𝜙(𝑥)) for every 𝑥 ∈

𝐴, 𝑖 ≥ 0. Then, we may define an algebra map ̂
𝜙
1

:

T(mod(𝐴)
(N)
) → 𝐵 (resp., ̂𝜙

1
: S(mod(𝐴)

(N)
) → 𝐵)

using the universal property of the tensor algebra (resp.,
symmetric algebra). We have ̂

𝜙
1
(𝑥
(𝑖)
) = 𝜕

𝑖

𝐵
(𝜙(𝑥)). This

map factors through 𝜋
𝐼
. Indeed, let 𝑥, 𝑦 ∈ 𝐴 and 𝑖 ≥

0. We have ̂
𝜙
1
((𝑥𝑦)
(𝑖)
) = 𝜕

𝑖

𝐵
(𝜙(𝑥𝑦)) = 𝜕

𝑖

𝐵
(𝜙(𝑥)𝜙(𝑦)) =

∑
𝑖

𝑗=0
(
𝑖

𝑗 ) 𝜕
𝑗

𝐵
(𝜙(𝑥))𝜕

𝑖−𝑗

𝐵
(𝜙(𝑥)) = ∑

𝑖

𝑗=0
(
𝑖

𝑗 )
̂
𝜙
1
(𝑥
(𝑗)
)
̂
𝜙
1
(𝑦
(𝑖−𝑗)

) =

̂
𝜙
1
(∑
𝑖

𝑗=0
(
𝑖

𝑗 ) 𝑥(𝑗)
⊗ 𝑦
(𝑖−𝑗)

), also ̂
𝜙
1
((1
𝐴
)
(0)
) = 𝜙(1

𝐴
) = 1

𝐵
=

̂
𝜙
1
(1), and ̂

𝜙
1
((1
𝐴
)
(𝑖)
) = 𝜕

𝑖

𝐵
(𝜙(1
𝐴
)) = 𝜕

𝑖

𝐵
(1
𝐵
) = 0 for every

𝑖 > 0. Therefore, there is a unique homomorphism 𝜙 of 𝑅-
algebras (resp., commutative 𝑅-algebras) from D(𝐴) (resp.,
CD(𝐴)) to 𝐵 such that 𝜙 ∘ 𝜋

𝐼
(𝑥
(0)
) = 𝜙(𝑥) for every 𝑥 ∈ 𝐴.

It is easily seen to be a homomorphism of differential (resp.,
commutative differential) 𝑅-algebras.

Example 2. Let 𝑅[𝑋] = S(𝑅𝑋) be the free commutative
𝑅-algebra over 𝑋. Therefore (CD(𝑅[𝑋]), 𝜕) is recovered
from the usual algebra of differential polynomials 𝑅{𝑋}

over 𝑅 (see [4, 5] for instance), that is, the free commutative
𝑅-algebra 𝑅[𝑋 × N] with the 𝑅-derivation 𝜕(𝑥, 𝑖) = (𝑥, 𝑖 + 1)

for all 𝑥 ∈ 𝑋, 𝑖 ≥ 0. Now, if 𝑅⟨𝑋⟩ = T(𝑅𝑋) is the
free 𝑅-algebra over 𝑋, then (D(𝑅⟨𝑋⟩), 𝜕) is the (not so
wellknown, see [6] however) noncommutative counterpart
of 𝑅{𝑋}, that is, the free 𝑅-algebra 𝑅⟨𝑋 × N⟩ with derivation
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𝜕((𝑥
1
, 𝑖
1
)(𝑥
2
, 𝑖
2
) ⋅ ⋅ ⋅ (𝑥, 𝑖

𝑛
)) = (𝑥

1
, 𝑖
1
+ 1)(𝑥

2
, 𝑖
2
) ⋅ ⋅ ⋅ (𝑥, 𝑖

𝑛
) +

(𝑥
1
, 𝑖
1
)(𝑥
2
, 𝑖
2
+1) ⋅ ⋅ ⋅ (𝑥

𝑛
, 𝑖
𝑛
)+⋅ ⋅ ⋅+(𝑥

1
, 𝑖
1
)(𝑥
2
, 𝑖
2
) ⋅ ⋅ ⋅ (𝑥

𝑛
, 𝑖
𝑛
+1).

Remark 3. It is clear that (commutative) differential algebras
form a variety (in the sense of universal algebra, see [7]), and
therefore, we may define the free (commutative) differential
algebra over a set𝑋. It is not difficult to check that𝑅{𝑋} is the
free commutative differential algebra over 𝑋 and D(𝑅⟨𝑋⟩)

is the free differential algebra over 𝑋. Moreover 𝑋 embeds
into these algebras:𝑋 ⊆ 𝑅{𝑋} and𝑋 ⊆ D(𝑅⟨𝑋⟩).

Corollary 4. The algebra 𝐴 (resp., commutative algebra 𝐴)
embeds into D(𝐴) (resp., CD(𝐴)) as a subalgebra, more
precisely the map 𝑗

𝐴
: 𝐴 → D(𝐴) (resp., 𝑗

𝐴
: 𝐴 → CD(𝐴)),

such that 𝑗
𝐴
(𝑥) = 𝜋

𝐼
(𝑥
(0)
) for every 𝑥 ∈ 𝐴 is a one-to-one

algebra homomorphism.

Proof. The map 𝑗
𝐴
: 𝐴 → D(𝐴) (resp., 𝑗

𝐴
: 𝐴 → CD(𝐴))

is easily seen to be an algebramap. Since (𝐴, 0) is a differential
𝑅-algebra (resp., commutative differential 𝑅-algebra) and
according toTheorem 1, the identity algebra map 𝑖𝑑

𝐴
extends

uniquely to a homomorphism 𝑖𝑑
𝐴
: (D(𝐴), 𝜕) → (𝐴, 0)

(resp., 𝑖𝑑
𝐴
: (CD(𝐴), 𝜕) → (𝐴, 0)) of differential 𝑅-algebras

(resp., commutative differential 𝑅-algebras) such that
𝑖𝑑
𝐴
∘ 𝑗
𝐴
= 𝑖𝑑
𝐴
, so that 𝑗

𝐴
is one-to-one.

From these results (Theorem 1 and Corollary 4), we may
deduce a Poincaré-Birkhoff-Witt-like theorem. Let us denote
by U(g) the universal enveloping algebra of a Lie algebra g,
and let 𝑖g : g → U(g) denote the canonical map which is
one-to-one when g is a free module (Poincaré-Birkhoff-Witt
theorem; see [8], e.g.). The underlying Lie algebra structure,
denoted by l(𝐴), of an associative algebra 𝐴 is given by the
usual commutation bracket.

Corollary 5. Let g be a Lie algebra (resp., commutative Lie
algebra) over 𝑅 which is free as a 𝑅-module. Then, g embeds
into D(U(g)) (resp., CD(U(g))) as a Lie subalgebra. More-
over, if (𝐵, 𝜕

𝐵
) is a differential 𝑅-algebra (resp., commutative

differential 𝑅-algebra) and 𝜙 : g → l(𝐵) is a homomorphism
of Lie algebras, then there is a unique homomorphism 𝜙 :

(D(U(g)), 𝜕) → (𝐵, 𝜕
𝐵
) (resp.,𝜙 : (CD(U(g)), 𝜕) →

(𝐵, 𝜕
𝐵
)) such that 𝜙 ∘ 𝑗U(g) ∘ 𝑖g.

Proof. The proof is easy (essentially a composition of left
adjoints), hence omitted.

Corollary 5 means in particular that the forgetful functor
from differential 𝑅-algebras (resp., commutative differential
𝑅-algebras) to Lie algebras (resp., commutative Lie algebras)
𝑅-LieAlg (resp., 𝑅-CLieAlg), obtained by composition
of the previous “forget-the-derivation” functor from 𝑅-
DiffAlg to 𝑅-Alg (resp., 𝑅-CDiffAlg to 𝑅-CAlg) and l
from 𝑅-Alg to 𝑅-LieAlg (resp., 𝑅-CAlg to 𝑅-CLieAlg),
has a left adjoint, also obtained by composition of the
one given by Theorem 1 and the universal enveloping alge-
bra functor. But there is another forgetful functor from
𝑅-CDiffAlg to 𝑅-LieAlg given by the Wronskian, which
is studied in what follows.

3. Wronskian Envelope

In this section theWronskian envelope universally associated
to any Lie algebra is constructed, that is, a left adjoint to the
forgetful functor from commutative differential algebras to
Lie algebras.

Let (𝐴, 𝜕
𝐴
) be a differential commutative𝑅-algebra.Then,

it admits a (functorial) structure of a Lie 𝑅-algebra for which
the bracket is defined by the usual Wronskian determinant

𝑊
𝐴
(𝑥, 𝑦) = 𝑥𝜕

𝐴
(𝑦) − 𝜕

𝐴
(𝑥) 𝑦 = (𝑖𝑑

𝐴
∧ 𝜕
𝐴
) (𝑥 ∧ 𝑦) (2)

for every 𝑥, 𝑦 ∈ 𝐴, where ∧ denotes the exterior prod-
uct (this kind of structure has been used to define 𝑛-
Lie algebras, see [9]). Let us denote by w(𝐴, 𝜕

𝐴
) or more

simply w(𝐴) this Lie algebra structure. Let (𝐵, 𝜕
𝐵
) be

another differential commutative 𝑅-algebra, and let 𝜙 :

(𝐴, 𝜕
𝐴
) → (𝐵, 𝜕

𝐵
) be a homomorphism of differential

commutative 𝑅-algebras. Then, 𝜙 is also a homomorphism
of Lie algebras from w(𝐴) to w(𝐵) since 𝜙(𝑊

𝐴
(𝑥, 𝑦)) =

𝜙(𝑥𝜕
𝐴
(𝑦) − 𝜕

𝐴
(𝑥)𝑦) = 𝜙(𝑥)𝜙(𝜕

𝐴
(𝑦)) − 𝜙(𝜕

𝐴
(𝑥))𝜙(𝑦) =

𝜙(𝑥)𝜕
𝐵
(𝜙(𝑦)) − 𝜕

𝐵
(𝜙(𝑥))𝜙(𝑦) = 𝑊

𝐵
(𝜙(𝑥), 𝜙(𝑦)). Hence

w : 𝑅-DiffAlg → 𝑅-LieAlg defines a (forgetful) functor.

Remark 6. We observe that the Lie algebra structure w(𝐴)
associated to the differential 𝑅-algebra (𝐴, 0) is commutative.
Conversely, let (𝐴, 𝜕

𝐴
) be a commutative differential algebra

such that w(𝐴, 𝜕
𝐴
) is a commutative Lie algebra; that is,

𝑊
𝐴
(𝑥, 𝑦) = 0 for every 𝑥, 𝑦 ∈ 𝐴. Since𝑊

𝐴
(1
𝐴
, 𝑥) = 𝜕

𝐴
(𝑥), it

follows that 𝜕
𝐴
is the zero derivative.

The functor w also has a left adjoint (The existence of
a left adjoint is guaranteed because w is algebraic. See, e.g.,
[10] for the notion of algebraic functors.) that allows us to
define a notion of Wronskian universal enveloping algebra
or shortly Wronskian envelope. Let g be a Lie algebra over
𝑅. Another time let us denote by mod(g) its underlying 𝑅-
module structure.We now consider the symmetric 𝑅-algebra
S(mod(g)

(N)
) ofmod(g)

(N). As in Section 2, let𝐶 be the two-
sided ideal of T(mod(g)

(N)
) generated by 𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥

for every 𝑥, 𝑦 ∈ mod(g)
(N). We have 𝜕(𝐶) ⊆ 𝐶 where, as

in Section 2, 𝜕 is the unique 𝑅-derivation of T(mod(g)
(N)
)

that extends the 𝑅-linear endomorphism 𝜕 : 𝑥
(𝑖)

󳨃→ 𝑥
(𝑖+1)

of mod((g)
(N)
). Hence (S(mod(g)

(N)
), 𝜕) is a commutative

differential 𝑅-algebra where, by abuse of language, 𝜕 is the
natural derivation on the quotient algebra. Let us consider
the differential ideal 𝐽g generated by [𝑥, 𝑦]

(0)
− 𝑥
(0)

⊗ 𝑦
(1)

+

𝑥
(1)

⊗ 𝑦
(0)

for every 𝑥, 𝑦 ∈ g. Let 𝜎 : S(mod(g)
(N)
) →

S(mod(g)
(N)
)/𝐽g be the canonical epimorphism, and let 𝜕 be

the (unique) derivation such that 𝜕 ∘ 𝜎 = 𝜎 ∘ 𝜕. Let W(g) =

S(mod(g)
(N)
)/𝐽g.

Remark 7. For any𝑅-module𝑉, we denote byS(𝑉)
+
the ideal

of all members of S(𝑉) with no constant term (relatively
to the usual gradation of the symmetric algebra), and let
S(𝑉)
0
= 𝑅⋅1 so thatS(𝑉) = S(𝑉)

0
⊕S(𝑉)

+
as𝑅-module.We

observe that 𝐽g ⊆ S(mod(g)
(N)
)
+
(since for every 𝑥, 𝑦 ∈ g,

[𝑥, 𝑦]
(0)

− 𝑥
(0)

⊗ 𝑦
(1)

+ 𝑥
(1)

⊗ 𝑦
(0)

and all their derivatives
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[𝑥, 𝑦]
(𝑛)

− ∑
𝑛

𝑘=0
(
𝑛

𝑘
) 𝑥
(𝑛−𝑘)

⊗ 𝑦
(𝑘+1)

+ ∑
𝑛

𝑘=0
(
𝑛

𝑘
) 𝑥
(𝑛−𝑘+1)

⊗ 𝑦
(𝑘)

belong toS(mod(g)
(N)
)
+
) so that𝑊(g) is not reduced to zero

(except if 𝑅 itself is (0)) because there exists an algebra map
from W(g) onto S(mod(g)

(N)
)/S(mod(g)

(N)
)
+
≅ 𝑅 ⋅ 1. The

direct sum decompositionS(mod(g)
(N)
) = S(mod(g)

(N)
)
0
⊕

S(mod(g)
(N)
)
+
induces a decomposition W(g) = W(g)

0
⊕

W(g)
+
, whereW(g)

+
andW(g)

0
are the canonical images of

S(mod(g)
(N)
)
+
and S(mod(g)

(N)
)
0
, andW(g)

0
= 𝑅 ⋅ 1.

In what follows we denote simply by 𝑊 the
Wronskian bracket 𝑊

S(mod(g)
(N)
)
of the differential algebra

(S(mod(g)
(N)
), 𝜕), and the tensor symbol “⊗” is omitted.

Proposition 8. For every 𝑥, 𝑦 ∈ g and every 𝑖, 𝑗, 𝑛 ≥ 0,

𝜕
𝑛
(𝑊(𝑥

(𝑖)
, 𝑦
(𝑗)
)) =

𝑛

∑

𝑘=0

(

𝑛

𝑘
)𝑊(𝑥

(𝑖+𝑛−𝑘)
, 𝑦
(𝑗+𝑘)

) . (3)

Proof. We have

𝜕 (𝑊(𝑥
(𝑖)
, 𝑦
(𝑗)
)) = 𝜕 (𝑥

(𝑖)
𝑦
(𝑗+1)

− 𝑥
(𝑖+1)

𝑦
(𝑗)
)

= 𝑥
(𝑖+1)

𝑦
(𝑗+1)

+ 𝑥
(𝑖)
𝑦
(𝑗+2)

− 𝑥
(𝑖+2)

𝑦
(𝑗)
− 𝑥
(𝑖+1)

𝑦
(𝑗+1)

= 𝑥
(𝑖)
𝑦
(𝑗+2)

− 𝑥
(𝑖+1)

𝑦
(𝑗+1)

+ 𝑥
(𝑖+1)

𝑦
(𝑗+1)

− 𝑥
(𝑖+2)

𝑦
(𝑗)

= 𝑊(𝑥
(𝑖)
, 𝑦
(𝑗+1)

) +𝑊(𝑥
(𝑖+1)

, 𝑦
(𝑗)
) .

(4)

Now, assume by induction on 𝑛 that

𝜕
𝑛
(𝑊(𝑥

(𝑖)
, 𝑦
(𝑗)
)) =

𝑛

∑

𝑘=0

(

𝑛

𝑘
)𝑊(𝑥

(𝑖+𝑛−𝑘)
, 𝑦
(𝑗+𝑘)

) (5)

(the cases 𝑛 = 0, 1 are checked). We have

𝜕
𝑛+1

(𝑊(𝑥
(𝑖)
, 𝑦
(𝑗)
))

= 𝜕 (𝜕
𝑛
(𝑊(𝑥

(𝑖)
, 𝑦
(𝑗)
)))

= 𝜕(

𝑛

∑

𝑘=0

(

𝑛

𝑘
)𝑊(𝑥

(𝑖+𝑛−𝑘)
, 𝑦
(𝑗+𝑘)

))

=

𝑛

∑

𝑘=0

(

𝑛

𝑘
) (𝑊(𝑥

(𝑖+𝑛+1−𝑘)
, 𝑦
(𝑗+𝑘)

)

+𝑊(𝑥
(𝑖+𝑛−𝑘)

, 𝑦
(𝑗+1+𝑘)

))

= (

𝑛

0
)

⏟⏟⏟⏟⏟⏟⏟

=1

𝑊(𝑥
(𝑖+𝑛+1)

, 𝑦
(𝑗)
)

+ (

𝑛

𝑛
)

⏟⏟⏟⏟⏟⏟⏟

=1

𝑊(𝑥
(𝑖)
, 𝑦
(𝑗+1+𝑛)

)

+

𝑛

∑

𝑘=1

(

𝑛

𝑘
)𝑊(𝑥

(𝑖+𝑛+1−𝑘)
, 𝑦
(𝑗+𝑘)

)

+

𝑛−1

∑

𝑘=0

(

𝑛

𝑘
)𝑊(𝑥

(𝑖+𝑛−𝑘)
, 𝑦
(𝑗+1+𝑘)

)

= 𝑊(𝑥
(𝑖+𝑛+1)

, 𝑦
(𝑗)
) +𝑊(𝑥

(𝑖)
, 𝑦
(𝑗+1+𝑛)

)

+

𝑛

∑

𝑘=1

(

𝑛

𝑘
)𝑊(𝑥

(𝑖+𝑛+1−𝑘)
, 𝑦
(𝑗+𝑘)

)

+

𝑛

∑

𝑘=1

(

𝑛

𝑘 − 1
)𝑊(𝑥

(𝑖+𝑛+1−𝑘)
, 𝑦
(𝑗+𝑘)

)

= 𝑊(𝑥
(𝑖+𝑛+1)

, 𝑦
(𝑗)
) +𝑊(𝑥

(𝑖)
, 𝑦
(𝑗+1+𝑛)

)

+

𝑛

∑

𝑘+1

((

𝑛

𝑘 − 1
) + (

𝑛

𝑘
))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=(

𝑛 + 1

𝑘

)

𝑊(𝑥
(𝑖+𝑛+1−𝑘)

, 𝑦
(𝑗+𝑘)

)

=

𝑛+1

∑

𝑘=0

(

𝑛 + 1

𝑘
)𝑊(𝑥

(𝑖+𝑛+1−𝑘)
, 𝑦
(𝑗+𝑘)

) .

(6)

According to Proposition 8, 𝐽g is actually the ideal gener-
ated by [𝑥, 𝑦]

(𝑛)
− ∑
𝑛

𝑘=0
(
𝑛

𝑘
)𝑊(𝑥

(𝑛−𝑘)
, 𝑦
(𝑘)
) for every 𝑥, 𝑦 ∈ g

and every 𝑛 ≥ 0.
We claim that (W(g), 𝜕) is the universal enveloping

algebra of g with respect to w. More precisely, the following
holds.

Theorem9. Let g be a Lie algebra over𝑅. Let𝑤g : g → W(g)
be the map defined by 𝑤g(𝑥) = 𝜎(𝑥

(0)
) for every 𝑥 ∈ g. Then,

𝑤g is a homomorphism of Lie algebras from g to w(W(g)).
Let (𝐴, 𝜕

𝐴
) be a commutative differential 𝑅-algebra, and let

𝜙 : g → w(𝐴) be a homomorphism of Lie algebras. Then,
there is a unique homomorphism of commutative differential
𝑅-algebras ̃𝜙 : (W(g), 𝜕) → (𝐴, 𝜕

𝐴
) such that ̃𝜙 ∘ 𝑤g = 𝜙.

Proof. It is quite clear that 𝑤g is 𝑅-linear. Let 𝑥, 𝑦 ∈ g. Then,
we have 𝑤g([𝑥, 𝑦]) = 𝜎([𝑥, 𝑦]

(0)
) = 𝜎(𝑥

(0)
⊗ 𝑦
(1)

− 𝑥
(1)

⊗

𝑦
(0)
) = 𝜎(𝑥

(0)
)𝜎(𝑦
(1)
) − 𝜎(𝑥

(1)
)𝜎(𝑦
(0)
) = 𝜎(𝑥

(0)
)𝜎(𝜕(𝑦

(0)
)) −

𝜎(𝜕(𝑥
(0)
))𝜎(𝑦
(0)
) = 𝜎(𝑥

(0)
)𝜕
𝐴
(𝜎(𝑦
(1)
)) − 𝜕

𝐴
(𝜎(𝑥
(0)
))𝜎(𝑦
(0)
) =

𝑊
𝐵
(𝜎(𝑥
(0)
), 𝜎(𝑦
(0)
)). This proves that 𝑤g is a homomorphism

of Lie algebras. Now, let (𝐴, 𝜕
𝐴
) be a commutative differential

𝑅-algebra, and let 𝜙 : g → w(𝐴) be a homomorphism of
Lie algebras. Let 𝜙

1
: mod(g)

(N)
→ mod(𝐴) be the unique



Algebra 5

𝑅-linear map such that 𝜙
1
(𝑥
(𝑖)
) = 𝜕
𝑖

𝐴
(𝜙(𝑥)) for every 𝑥 ∈ g,

𝑖 ≥ 0. According to the universal property of the symmetric
algebra, there is a unique homomorphism of algebras ̂

𝜙
1
:

𝑆(mod(g)
(N)
) → 𝐴 such that ̂𝜙

1
(𝑥
(𝑖)
) = 𝜙
1
(𝑥
(𝑖)
) for every 𝑥 ∈

g, 𝑖 ≥ 0. This map factors through the quotient by 𝐽g. Indeed,
̂
𝜙
1
([𝑥, 𝑦]

(0)
) = 𝜙([𝑥, 𝑦]) = 𝑊

𝐴
(𝜙(𝑥), 𝜙(𝑦)) = 𝜙(𝑥)𝜕

𝐴
(𝜙(𝑦)) −

𝜕
𝐴
(𝜙(𝑥))𝜙(𝑦) =

̂
𝜙
1
(𝑥
(0)
)
̂
𝜙
1
(𝑦
(1)
)−

̂
𝜙
1
(𝑥
(1)
)
̂
𝜙
1
(𝑦
(0)
) =

̂
𝜙
1
(𝑥
(0)
⊗

𝑦
(1)
−𝑥
(1)
⊗𝑦
(0)
).Therefore, there is a unique homomorphism

of algebras ̃𝜙 : 𝑊(g) → 𝐴 such that ̃𝜙 ∘ 𝜎 =
̂
𝜙
1
. By con-

struction, it commutes with the derivations; hence, it is a
homomorphism of differential 𝑅-algebras. Finally, ̃𝜙 ∘𝑤g = 𝜙

also by construction.

The commutative differential 𝑅-algebra (W(g), 𝜕) of
Theorem 9 is called the universal enveloping algebra of gwith
respect to w or theWronskian envelope of g.

It is easy to prove that any commutative Lie algebra
embeds as a sub-Lie algebra into W(g). Moreover the uni-
versal enveloping algebra U(g) of g also embeds into W(g)
as a subalgebra but not as a differential subalgebra (when
U(g) is equipped with the zero derivative and W(g) with its
derivative 𝜕). Indeed, let 𝑗g : g 󳨅→ S(mod(g)) ≅ U(g) be
the canonical injection. It is clearly a homomorphism of Lie
algebras from g tow(S(mod(g)), 0) = l(S(mod(g))). Hence
by Theorem 9 there is a unique homomorphism of commu-
tative differential algebras 𝑗g : (W(g), 𝜕) → (S(mod(g)), 0)

such that 𝑗g ∘ 𝑤g = 𝑗g. We then deduce that 𝑤g is one-to-one
(let 𝑥 ∈ ker𝑤g, then 0 = 𝑗g(𝑤g(𝑥)) = 𝑗g(𝑥) so that 𝑥 = 0).
Moreover, since 𝑤g is a homomorphism of Lie algebras from
g to w(W(g), 𝜕) and because g is commutative, it is also
a homomorphism of Lie algebras from g to w(W(g), 0) =

l(W(g)). Therefore there is a unique homomorphism of
(commutative) algebras 𝑤#

g from S(mod(g)) to W(g) such
that 𝑤#

g ∘ 𝑗g = 𝑤g. Thus, we obtain 𝑤#
g ∘ 𝑗g ∘ 𝑤g = 𝑤g and also

𝑗g ∘ 𝑤
#
g ∘ 𝑗g = 𝑗g. According to the universal property of the

enveloping algebra, the unique homomorphism that satisfies
the second equality is 𝑖𝑑S(mod(g)) so that 𝑗g ∘ 𝑤

#
g = 𝑖𝑑S(mod(g)).

We observe, however, that we cannot deduce from the first
equality that 𝑤#

g ∘ 𝑗g = 𝑖𝑑W(g) because 𝑤
#
g ∘ 𝑗g is a homomor-

phism of commutative differential algebras from (W(g), 𝜕) to
(W(g), 0) and not from (W(g), 𝜕) to itself. Nevertheless from
𝑗g ∘ 𝑤

#
g = 𝑖𝑑S(g) it follows that 𝑤

#
g is one-to-one and 𝑗g is

onto.We observe that in general when g is a commutative Lie
algebra, then its universal enveloping algebra with respect to
w is not (S(mod(g)), 0) that is, 𝑗g is only onto and not one-
to-one, while 𝑤#

g is only one-to-one and not onto, and the
derivative 𝜕 on W(g) is not the zero derivative. Indeed, for
instance let g be the free 𝑅-module 𝑅 ⋅ 𝑥 generated by {𝑥}
with the zero Lie bracket. The algebra 𝑅[𝑥] of polynomials in
the variable 𝑥 isS(mod(g)) = S(𝑅 ⋅ 𝑥). Let 𝜙 : 𝑅 ⋅ 𝑥 → 𝑅{𝑥}

be the 𝑅-module homomorphism defined by 𝜙(𝑥) = 𝑥. It is
a homomorphism of Lie algebras from 𝑅 ⋅ 𝑥 tow(𝑅{𝑥}) since
0 = 𝜙(0) = 𝜙([𝛼𝑥, 𝛽𝑥]) and𝛼𝛽(𝜙(𝑥)󸀠𝜙(𝑥)−𝜙(𝑥)𝜙(𝑥)󸀠) = 0 for
every 𝛼, 𝛽 ∈ 𝑅 while the algebra homomorphism extension
𝜙
#
: 𝑅[𝑥] → 𝑅{𝑥} of𝜙 is not a homomorphismof differential

algebras from (𝑅[𝑥], 0) to 𝑅{𝑥} because it does not commute
with the derivations (0 = 𝜙#(0𝑥) and (𝜙#(𝑥))󸀠 = 𝑥󸀠 ̸= 0).

3.1. Some Remarks about the Generators of 𝐽g. Let us denote
by 𝑃
𝑛+1

(𝑥, 𝑦) = [𝑥, 𝑦]
(𝑛)
− 𝜕
𝑛
𝑢
𝑥,𝑦

for every 𝑛 ≥ 0 and 𝑥, 𝑦 ∈ g,
where 𝑢

𝑥,𝑦
= [𝑥, 𝑦]

(0)
−𝑥
(0)
𝑦
(1)
+𝑥
(1)
𝑦
(0)
.We have𝑃

𝑛+1
(𝑥, 𝑦) =

∑
𝑛

𝑘=0
(
𝑛

𝑘
)𝑊(𝑥

(𝑛−𝑘)
, 𝑦
(𝑘)
).

Let us introduce the following integers: 𝑇(1, 0) = −1,
𝑇(1, 1) = 1, and, for all 𝑛 ≥ 2 and all 𝑘 = 0, . . . , 𝑛,

𝑇 (𝑛, 𝑘) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑇 (𝑛 − 1, 0)

if 𝑘 = 0,
𝑇 (𝑛 − 1, 𝑛 − 1)

if 𝑘 = 𝑛,
𝑇 (𝑛 − 1, 𝑘 − 1) + 𝑇 (𝑛 − 1, 𝑘)

if 𝑘 = 1, . . . , 𝑛 − 1.

(7)

Lemma 10. For every 𝑛 ≥ 1 and every 𝑘 = 0, . . . , 𝑛,

𝑇 (𝑛, 𝑘) = (

𝑛

𝑘
) − 2(

𝑛 − 1

𝑘
) . (8)

Proof. Recall that ( 𝑛
𝑘
) = 0 for every 𝑘 > 𝑛 ≥ 0. We have

𝑇(1, 0) = (
1

0
) − 2 (

0

0
) − = 1 − 2 = −1, and 𝑇(1, 1) = (

1

1
) −

2 (
0

1
) = 1. For every 𝑛 ≥ 1,𝑇(𝑛, 0) = ( 𝑛0 )−2 ( 𝑛−10 ) = 1−2 = −1

and 𝑇(𝑛, 𝑛) = (
𝑛

𝑛 ) − 2 (
𝑛−1

𝑛
) = 1. For every 𝑛 ≥ 2 and 𝑘 =

0, . . . , 𝑛, we have ( 𝑛0 )−2 ( 𝑛−10 ) = 1−2 = −1 = ( 𝑛−10 )−2 ( 𝑛−20 ),
(
𝑛

𝑛 ) − 2 (
𝑛−1

𝑛
) = 1 = (

𝑛−1

𝑛−1
) − 2 (

𝑛−2

𝑛−1
). Now, let 𝑘 = 1, . . . , 𝑛 − 1.

If 𝑘 ≤ 𝑛 − 2, then ( 𝑛
𝑘
) − 2 (

𝑛−1

𝑘
) = (
𝑛−1

𝑘−1
) − 2 (

𝑛−2

𝑘−1
) + (
𝑛−1

𝑘
) −

2 (
𝑛−2

𝑘
), and if 𝑘 = 𝑛 − 1, then ( 𝑛𝑛−1 ) − 2 ( 𝑛−1𝑛−1 ) = 𝑛 − 2 while

(
𝑛−1

𝑛−2
)−2 (

𝑛−2

𝑛−2
)+(
𝑛−1

𝑛−1
)−2 (

𝑛−2

𝑛−1
) = 𝑛−1−2+1−0 = 𝑛−2.

Lemma 11. For every 𝑛 ≥ 1 and every 𝑥, 𝑦 ∈ g, one has

𝑃
𝑛
(𝑥, 𝑦) =

𝑛

∑

𝑘=0

𝑇 (𝑛, 𝑘) 𝑥
(𝑛−𝑘)

𝑦
(𝑘)
. (9)

Proof. Wehave𝑃
1
(𝑥, 𝑦) = 𝑥

(0)
𝑦
(1)
−𝑥
(1)
𝑦
(0)
= 𝑇(1, 0)𝑥

(1)
𝑦
(0)
+

𝑇(1, 1)𝑥
(0)
𝑦
(1)
. It is clear that 𝑃

𝑛
(𝑥, 𝑦) is homogeneous of

degree 𝑛 (in the sense that it is a sum of word 𝑥
(𝑖)
𝑦
(𝑗)

with 𝑖 + 𝑗 = 𝑛). It can be written as 𝑃
𝑛
(𝑥, 𝑦) =

∑
𝑛

𝑘=0
𝛼
𝑛,𝑘
𝑥
(𝑛−𝑘)

𝑦
(𝑘)
. We have 𝑃

𝑛+1
(𝑥, 𝑦) = 𝜕𝑃

𝑛
(𝑥, 𝑦) =

∑
𝑛

𝑘=0
𝛼
𝑛,𝑘
𝑥
(𝑛+1−𝑘)

𝑦
(𝑘)

+ ∑
𝑛

𝑘=0
𝛼
𝑛,𝑘
𝑥
(𝑛−𝑘)

𝑦
(𝑘+1)

= 𝛼
𝑛,0
𝑥
(𝑛+1)

+

𝛼
𝑛,𝑛
𝑦
(𝑛+1)

+∑
𝑛

𝑘=1
𝛼
𝑛,𝑘
𝑥
(𝑛+1−𝑘)

𝑦
(𝑘)
+∑
𝑛−1

𝑘=0
𝛼
𝑛,𝑘
𝑥
(𝑛−𝑘)

𝑦
(𝑘+1)

so that
𝛼
𝑛+1,0

= 𝛼
𝑛,0
, 𝛼
𝑛+1,𝑛+1

= 𝛼
𝑛,𝑛

and 𝛼
𝑛+1,𝑘

= 𝛼
𝑛,𝑘−1

+ 𝛼
𝑛,𝑘
.

4. Embedding Conditions

In this section, we present a sufficient condition under which
a Lie algebra embeds into its Wronskian envelope.

Adapting the terminology from [7, 11], we callWronskian
special those Lie 𝑅-algebras that embed into their Wronskian
envelope.Thus everyAbelian Lie algebra isWronskian special
(see Section 3). It is quite obvious that not all Lie algebras
areWronskian special, even when they are free as 𝑅-modules
and even in the case where 𝑅 is a field. This can be shown
as follows. For any elements 𝑥

1
, . . . , 𝑥

𝑛
of a Lie algebra,

we denote by [𝑥
1
, . . . , 𝑥

𝑛
] the left-normed bracket; that is,
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if 𝑛 = 2, then [𝑥
1
, 𝑥
2
] is the Lie bracket, and for 𝑛 > 2, [𝑥

1
,

. . . , 𝑥
𝑛
] = [[𝑥

1
, . . . , 𝑥

𝑛−1
], 𝑥
𝑛
].

Let (𝐴, 𝜕) be a commutative differential 𝑅-algebra (with
a unit). Then, the Lie algebra w(𝐴, 𝜕) satisfies the nontrivial
identity (called the “standard Lie identity of degree 5” in [12]
and 𝑇

4
in [13])

∑

𝜎∈S4

𝜖 (𝜎) [𝑧, 𝑥
𝜎(1)

, 𝑥
𝜎(2)

, 𝑥
𝜎(3)

, 𝑥
𝜎(4)

] , (10)

where 𝜖(𝜎) denotes the signature representation of the per-
mutation 𝜎, for every 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑦 ∈ 𝐴. (This result was

noticed in [12–14], e.g.) Therefore, a necessary condition for
an embedding is the following.

Lemma 12. AWronskian special Lie algebra satisfies 𝑇
4
.

It is not known whether the above lemma is also a
sufficient condition. Nevertheless this gives a negative answer
to a question of Lawvere in his Ph.D thesis [15]where he asked
whether or not any Lie algebra is Wronskian special.

Following [16], let us define the Lie algebra Diff
𝜕
(𝐴) of

special derivations with respect to the signature derivation 𝜕
as follows: let 𝐴 ⋅ 𝜕 = {𝛼𝜕 : 𝛼 ∈ 𝐴} be the sub-𝐴-module of
Der
𝑅
(𝐴), the 𝐴-module of all 𝑅-derivations of 𝐴, generated

by 𝜕 (it is the image of the𝐴-modulemap 𝜌
𝜕
: 𝐴 → Der

𝑅
(𝐴)

given by 𝜌(𝛼) = 𝛼𝜕). Then, Diff
𝜕
(𝐴) is the 𝑅-module

structure of𝐴⋅𝜕 together with the usual bracket of derivations
(inherited by the usual bracket of gl

𝑅
(𝐴) = End

𝑅-Mod(𝐴) the
linear endomorphisms of 𝐴). Let ann(𝜕) = {𝑎 ∈ 𝐴 : 𝑎𝜕 = 0}

be the annihilator of 𝜕. It is an Abelian Lie subalgebra of
w(𝐴, 𝜕) and ann(𝜕) 󳨅→ w(𝐴, 𝜕)

𝜌𝜕

󴀀󴀤 Diff
𝜕
(𝐴) is a short exact

sequence of Lie 𝑅-algebras in such a way that w(𝐴, 𝜕) is
an extension of Diff

𝜕
(𝐴) by ann(𝜕). In the case where

ker 𝜌
𝜕
= ann(𝜕) = 0—for instance when 𝐴 has no zero divi-

sors and 𝜕 ̸= 0—then Diff
𝜕
(𝐴) and w(𝐴, 𝜕) are isomorphic

Lie 𝑅-algebras. The following result is thus obvious.

Lemma 13. Let 𝐴 be a commutative integral 𝑅-domain, and
let 𝜕 be a nonzero derivation of 𝐴. Let g be a Lie 𝑅-algebra
such that g 󳨅→ Diff

𝜕
(𝐴) (as Lie 𝑅-algebras) (we note that in

particular g satisfies 𝑇
4
since it holds in Diff

𝜕
(𝐴)). Then, g is

a Wronskian special Lie algebra.

Example 14. The Lie algebra sl
2
(K) over a field of charac-

teristic zero is simple and embeds into Diff
𝜕
(K[𝑥]) where

𝜕 is the usual derivation of polynomials in the variable 𝑥.
Indeed, sl

2
(K) is isomorphic to the three-dimensional K-

vector space generated by 𝑒 = −𝑥
2
𝜕, 𝑓 = 𝜕, ℎ = 2𝑥𝜕 with the

Lie algebra structure given by the usual commutator (see, e.g.,
[17]). Therefore, sl

2
(K) is a Wronskian special Lie algebra.

We may also remark that Wronskian speciality is pre-
served by direct products (even infinite). More precisely, let
(g
𝑖
)
𝑖∈𝐼

be a collection of Lie 𝑅-algebras such that for each
𝑖 ∈ 𝐼, g

𝑖
󳨅→ w(W(g

𝑖
)) (as Lie 𝑅-algebras), that is, each

factor g
𝑖
is a Wronskian special Lie algebra. Then,∏

𝑖∈𝐼
g
𝑖
󳨅→

w(W(∏
𝑖∈𝐼
g
𝑖
)) as Lie 𝑅-algebras, where the operations (Lie

brackets, derivative, andproduct) are considered component-
wise (i.e.,∏

𝑖∈𝐼
g
𝑖
is a Wronskian special Lie algebra). Indeed,

it is clear that ∏
𝑖∈𝐼
g
𝑖
󳨅→ ∏

𝑖∈𝐼
w(W(g

𝑖
)) = w(∏

𝑖∈𝐼
W(g
𝑖
))

as a sub-Lie algebra over 𝑅. It is also clear that any sub-
Lie algebra of a Wronskian special Lie algebra is itself a
Wronskian special Lie algebra. Thus, Wronskian speciality is
closed under product and subalgebra.

Now, we recall an important result fromRazmyslov that is
used hereafter to describe some basic Wronskian special Lie
algebras.

Theorem 15 (see [12, 16]). Let K be a field of characteristic
zero. Let g be a simple Lie algebra that satisfies 𝑇

4
. Then,

there exists a commutative integralK-domain𝐴 and a nonzero
derivation 𝜕 ∈ DerK(𝐴) such that g embeds into Diff

𝜕
(𝐴) as

a Lie subalgebra.

As a consequence of the previous theorem and Lemma 13,
in characteristic zero, any simple Lie algebra satisfying 𝑇

4
is

a Wronskian special Lie algebra. From this result we deduce
the following.

Theorem 16. Let K be a field of characteristic zero. Let (g
𝑖
)
𝑖∈𝐼

be a family of Lie K-algebras such that for every 𝑖 ∈ 𝐼 either
g
𝑖
is simple and satisfies 𝑇

4
or g
𝑖
is Abelian. Let g be a sub-Lie

algebra of∏
𝑖∈𝐼
g
𝑖
. Then, g is a Wronskian special Lie algebra.

Proof. According to Razmyslov’s theorem if g
𝑖
is simple and

satisfies 𝑇
4
then g

𝑖
is Wronskian special. We also know that

anyAbelian Lie algebra isWronskian special. So their product
∏
𝑖∈𝐼
g
𝑖
also is. Finally any sub-Lie algebra of a Wronskian

special Lie algebra also is Wronskian special.

5. The Free Wronskian Special Lie 𝑅-Algebra

Up to now it is not known if Wronskian special Lie alge-
bras form a variety of Lie algebras (nor even if it closed
under homomorphic images). In [13] it is conjectured that
(finitely generated) Wronskian special Lie algebras form the
variety of all (finitely generated) Lie algebras satisfying 𝑇

4

(in characteristic zero). We do not prove nor disprove this
conjecture. Nevertheless we observe that Wronskian special
Lie 𝑅-algebras, for some ring 𝑅, form a derived category
of the variety of commutative differential algebras obtained
by considering their Lie bracket as the derived operator
𝑊(𝑥, 𝑦) = 𝑥𝜕(𝑦) − 𝜕(𝑥)𝑦 (see [7] for definitions of derived
category and derived operator). Therefore, we may speak
about the free Wronskian special Lie 𝑅-algebra generated by
a set 𝑋 (see [7, Theorem 4.4]). It is obtained as the Lie
subalgebra of w(𝑅{𝑋}) generated by 𝑋, where we recall that
𝑅{𝑋} is the free commutative differential algebra over 𝑋 (if
𝑢 ∈ 𝑅{𝑋}, then 𝑢󸀠 denotes the derivation of 𝑢 in 𝑅{𝑋} and its
Wronskian commutator is denoted by𝑊(𝑢, V) = 𝑢V󸀠 − 𝑢󸀠V).
It is constructed by induction as follows: let

𝑋
0
= 𝑋,

𝑋
𝑘+1

= ⟨𝑋
𝑘
∪ {𝑤 ∈ 𝑅 {𝑋} : ∃𝑢, V ∈ 𝑋

2

𝑘
,

𝑤 = 𝑊 (𝑢, V) }⟩ ∀𝑘 ≥ 0,

(11)
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where ⟨𝐸⟩ denotes the submodule of 𝑅{𝑋} generated by
a subset 𝐸. Then, the free Wronskian special Lie algebra,
denoted by WspLie(𝑋), over 𝑋 is the nested union ⋃

𝑘≥0
𝑋
𝑘
,

and its bracket is given by theWronskian bracket𝑊 of 𝑅{𝑋}.
(It is clear that as defined previously WspLie(𝑋) is a 𝑅-
module.)

Remark 17. It is clear that if 𝑢, V ∈ 𝑅{𝑋} have no nonzero
constant term, then it is also the case for𝑊(𝑢, V). Moreover
every element of WspLie(𝑋) has no nonzero constant term as
it can be checked inductively from the previous observation
and since every element of 𝑋

0
= 𝑋 has no nonzero

constant term. Therefore, WspLie(𝑋) ̸= 𝑅{𝑋} as sets so that
WspLie(𝑋) ̸=w(𝑅{𝑋}) as Lie algebras. (Note that when 𝑋 =

0, then WspLie(0) = 0while𝑅{0} ≅ 𝑅.)When𝑋 is reduced to
only one element 𝑥, then WspLie({𝑥}) is the free module 𝑅𝑥
seen as an Abelian Lie algebra and, therefore, is isomorphic
to the free Lie algebra on one generator.

We observe that since commutative differential alge-
bras form a nontrivial variety (a nontrivial variety is a
variety with algebras of cardinality >1), the natural set-
theoretic map from 𝑋 to 𝑅{𝑋} is one-to-one, and we may
assume that 𝑋 ⊆ WspLie(𝑋) ⊆ 𝑅{𝑋} (in particular, 𝑋 is free
over 𝑅 in WspLie(𝑋)). According to the property of the
Wronskian envelope, there is a unique differential algebra
map 𝜙 : W(WspLie(𝑋)) → 𝑅{𝑋} such that the following
diagram commutes (where the unnamed arrows are the
canonical inclusions)

𝔴(𝜙)

𝔴(𝑅{𝑋})(𝑋)

𝔴(𝒲(WspLie(𝑋)))

WspLie

(12)

Moreover the composition 𝑋 󳨅→ WspLie(𝑋) 󳨅→
w(W(WspLie(𝑋))) of natural embeddings gives rise to a
set-theoretic map𝑋 󳨅→ W(WspLie(𝑋)).Therefore, there is a
unique homomorphism of commutative differential algebras
𝜓 : 𝑅{𝑋} → W(WspLie(𝑋)) such that the following dia-
gram commutes:

𝑋

𝜓

𝑅{𝑋}

𝒲(WspLie(𝑋))
(13)

Both compositions 𝜓 ∘ 𝜙 and 𝜙 ∘ 𝜓 are the identity on 𝑋

andhence, by uniqueness, the identity everywhere.Therefore,
W(WspLie(𝑋)) and 𝑅{𝑋} are canonically isomorphic (as
commutative differential algebras):

𝑊(WspLie (𝑋)) ≅ 𝑅 {𝑋} . (14)

Remark 18. The previous result shares some similarity with
the well-known fact that the universal enveloping algebra of
the free Lie algebra generated by𝑋 is canonically isomorphic
to the free associative algebra generated by𝑋 (see [3]).

Remark 19. Let us assume that 𝑅 is an integral
domain. Then, 𝑅{𝑋} is also an integral domain, and

w(𝑅{𝑋}) ≅ Diff
𝜕
(𝑅{𝑋}) (as Lie algebras over 𝑅), where

𝜕 is the usual derivation on 𝑅{𝑋} (i.e, 𝜕(𝑢) = 𝑢
󸀠).

Since Diff
𝜕
(𝑅{𝑋}) is a sub-Lie algebra of gl

𝑅
(𝑅{𝑋})

(under the commutator), it follows that w(𝑅{𝑋}) is also a
special Lie algebra.
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