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ABSTRACT

Any commutative algebra equippedwith a derivationmay be turned into a Lie
algebra under the Wronskian bracket. This provides an entirely new sort of a
universal envelope for a Lie algebra, theWronskian envelope. Themain result of
this paper is the characterization of those Lie algebras which embed into their
Wronskian envelope as Lie algebras of vector !elds on a line. As a consequence
we show that, in contrast to the classical situation, free Lie algebras almost
never embed into their Wronskian envelope.
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1. Introduction andmotivations

As is well known each associative algebra becomes a Lie algebra under its commutator bracket. This
relation is functorial and admits a le! adjoint, namely the universal enveloping algebra construction. As
a consequence of the Poincaré-Birkho"-Witt theorem [5, Théorème 1, p. 30], it is also known that as
soon as a Lie algebra is free as a module over its base ring (in particular, any free Lie algebra), then it
embeds as a Lie sub-algebra into its universal enveloping algebra. In other words, such Lie algebras have
a faithful representation in an associative algebra. There are still more elaborate embedding conditions.
E.g., this remains true over a Dedekind domain without assuming freeness of the Lie algebra [6], and
actually it su#ces to consider a Lie algebra without additive torsion [8]. Nevertheless it is not true for all
Lie algebras [6].

If one only considers di"erential commutative algebras, there is another way to proceed, signi$cantly
di"erent, which consists in replacing the commutator bracket (here, the zero bracket) by another Lie
bracket, namely, the Wronskian:Wd(a, b) = a ∗ d(b) − d(a) ∗ b, where d is a derivation of the algebra
(A, ∗) under consideration. Once again this provides an algebraic functor (between varieties of universal
algebras), which as such also admits a le! adjoint (see [25, Section 6.2, pp. 68–71]). This leads to the
notion of a “Wronskian envelope” of a (di"erential) Lie algebra. Therefore, given any (di"erential) Lie
algebra g, there is a unique (up to a canonical isomorphism) di"erential commutative algebra W (g) and
a canonical Lie map cang from g to W (g) (seen as a Lie algebra under the Wronskian bracket) which is
universal among all such pairs (((A, ∗), d),φ : g → (A,Wd)).

This being said one may ask under which conditions the canonical Lie map from a Lie algebra to its
Wronskian envelope is one-to-one. For instance, over a $eldK of characteristic zero, sl2(K) embeds into
its Wronskian envelope (Example 4).

This question about the embedding conditions was raised by Lawvere, in his PhD thesis [16],
in the following terms “is the adjunction [Author’s comment: between Lie algebras and di"erential
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commutative algebras under the Wronskian envelope construction] always an embedding, giving an
entirely di"erent sort of «universal enveloping algebra»for a Lie algebra?” and was later reformulated
as follows “given a Lie algebra L, whether a su#ciently complicated vector $eld on a su#ciently high-
dimensional variety can be found so that L can be faithfully represented by commutators of those very
special vector $elds which are in the module (over the ring of functions) generated by that particular
one” in [17].

In the work presented here one shows that the answer to the $rst question is negative, since it not true
that all Lie algebras embed into their Wronskian envelope. Notwithstanding this provides “an entirely
di"erent sort of «universal enveloping algebra»”. Of course, the answer to the second question also is
negative in general, even if Lie algebras of vector $elds (on a line) play an important rôle.

As the main result of this paper (Theorem 17) is provided a solution to this “embedding problem”.
The example of sl2(K) is rather relevant because it served as a guideline to solve the embedding

problem. For our purpose, the most important property of sl2(K) is the fact that it may be faithfully
realized as a sub-algebra of the Lie algebra of polynomial vector $elds.

So a reasonable guess for a natural candidate to a positive answer for the embedding problem is a Lie
sub-algebra of “vector $elds on a line”. Without providing all the details here, let us illustrate this notion.

Let (A, ∗) be any commutative algebra and let d be a derivation of (A, ∗). Let A · d be the set of all
derivations of (A, ∗) of the form a · d for some a ∈ A (where (a · d)(x) = a ∗ d(x), x ∈ A). With the
commutator of derivations, it becomes a Lie algebra of vector !elds on the line (A, d). One notices that
[a ·d, b ·d] = Wd(a, b) ·d. AlthoughA ·d is not, in general, (isomorphic to) a Lie sub-algebra of (A,Wd)

(because somemembers ofAmay annihilate d), it is isomorphic to (A/I,Wd̃) for some di"erential ideal
I, and, in particular, this implies that the canonical map canA·d is one-to-one. This provides a su#cient
condition.

Actually, this even provides a necessary condition. Whence a Lie algebra embeds into its Wronskian
envelope if, and only if, it is isomorphic to a sub-algebra of a Lie algebra of vector $elds on some line
(Theorem17). E.g., the one-sidedWitt algebra (C[x],W d

dx
), the two-sidedWitt algebra (C[x, x−1],W d

dx
),

the Virasoro algebra (without central extension) or the Lie algebra of smooth vector $elds on the
circle S1 ([20, De$nitions 4.1, 4.2, 4.3.(a), 4.4, pp. 384–385]) embed into their respective Wronskian
envelope.

A!er establishing the above characterization, in the remaining parts of the note one analyzes some
of its consequences which, in particular, show that the Wronskian enveloping construction, while not
completely unrelated to the usual enveloping algebra construction (Corollary 19), provides a rather,
if not entirely, di"erent theory. For instance, in the classical situation, a free Lie algebra is free as a
module, whence embeds into its universal enveloping algebra, in consequence of what a free Lie algebra
is isomorphic to its canonical image (consisting of “Lie polynomials”) into its universal envelope. In
contrast to this situation, it is never true that a free di"erential Lie algebra Di!Lie[X], for some non-
void setX, embeds into itsWronskian envelope (see Theorem 37 and Corollary 41). In particular, the Lie
algebra of “di"erential Lie polynomials”, i.e., the smallest di"erential Lie sub-algebra of W (Di!Lie[X])
generated by X, is generally not isomorphic to Di!Lie[X]. This turns the di"erential Lie polynomials
into interesting objects on their own, and not just a speci$c realization of a free Lie object (Section 3).

Some relations with other universal envelopes (related to Lie-Rinehart and Jacobi algebras) are $nally
studied in Section 4.

Because ultimately one compares algebraic structures, one uses rather intensively, except in Section 2,
some de$nitions and results fromuniversal algebra, in particular, the fundamental fact that any algebraic
functor between varieties of universal algebras admits a le! adjoint. In order to keep this text reasonably
self-contained, very few basic notions fromuniversal algebra are recalled in the Subsection 3.1, Section 3.
The reader is kindly invited to refer to [9] for other known results. Category theory is also used
mainly for presentation purpose. The reader is assumed comfortable with standard de$nitions and
basic facts related to functors, in particular le! adjoints. Not surprisingly, [19] is our reference on these
subjects.
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2. Statement of themain result

2.1. Preliminaries

Throughout this text,Rdenotes a non-trivial1 commutative ringwith a unit and every (Lie or associative)
algebra is taken over R. Every module is unital, and every morphism between algebras with a unit is
assumed to preserve the units.

Let A = (A, ∗) be a not necessarily associative nor unital R-algebra. Let EndR(A) be the R-algebra
of all R-linear endomorphisms of the R-module A. LetDerR(A) ⊆ EndR(A) be the Lie R-algebra of all
derivations on A, whence any d ∈ DerR(A) is a R-linear map d : A → A which satis$es Leibniz’s rule:
d(a ∗ b) = d(a) ∗ b + a ∗ d(b), a, b ∈ A. This de$nition applies equally for associative and Lie algebras.
(A, d) is called a di"erential (non-associative) algebra. In what follows, one denotes by |A| the underlying
module of an algebra A, whence if A = (A, ∗), then |A| = A (this notation will also serve to represent the
underlying set of an algebra, see Section 3.2). One notices that the zero derivation 0 (such that 0(a) = a,
a ∈ A) is available for all algebras (associative or not).

In what follows in order to simplify we feel free to make the harmless and standard abuse of notation
that consists in identifying a di"erential algebra with its underlying algebra or an algebra with its
underlying module or even more generally it will be allowed to identify some algebraic structure with
the underlying object supporting it or with this carrier object with only a part of the algebraic structure
as e.g., (A, ∗) may represent an algebra with a unit, so without explicit mention of its unit.

Given a di"erential (not necessarily associative) algebra (A, d), a di"erential (two-sided) ideal is a
usual ideal (i.e., a set I such that AI ⊆ I ⊇ IA) closed under the derivation (d(I) ⊆ I). The quotient
of (A, d) by a di"erential ideal I becomes a di"erential (not necessarily associative) algebra denoted

by (A/I, d̃) (see, e.g., [12, 15]), where d̃ is the quotient derivation. If X ⊆ A, then 〈X〉di" denotes the
di"erential ideal of (A, d) generated by X.

By a di"erential algebra is meant a pair (A, d) where A is an associative R-algebra with a unit. If A is
commutative, then (A, d) is referred to as a di"erential commutative algebra. A morphism of di"erential
algebras (or a di"erential algebra map) is a usual algebra map (which is assumed to respect the identity
elements) commuting with the derivations. One thus gets categories Di!Com ↪→ Di!Ass, and the
same without the derivations Com ↪→ Ass (with obvious full inclusion functors). Of course “Ass”
(respectively, “Com”) stands for “associative (respectively, “associative and commutative”) algebras (with
a unit)”. There are obvious forgetful functors dCom : Di!Com → Com and dAss : Di!Ass → Ass
which make commute the following diagram.

Di!Com ! " !!

dCom
""

Di!Ass

dAss
""

Com ! " !! Ass

(1)

Let Lie be the category of all Lie R-algebras (with usual Lie maps), and let Di!Lie be that of all
di"erential Lie R-algebras (once again the morphisms, also referred to as di"erential Lie algebra maps,
are assumed to commutewith the derivations). There is an evident forgetful functordLie : Di!Lie → Lie
which forgets the derivation.

2.2. TheWronskian envelope and some of its elementary properties

Any di"erential commutative algebra ((A, ∗), d) may be seen as a Lie algebra (A,Wd) under the
Wronskian bracket Wd as de$ned in the Introduction. Actually, ((A,Wd), d) is even a di"erential Lie

algebra. This gives rise to forgetful functors Di!Com
W
−→ Di!Lie

dLie
−−→ Lie. By abuse of language

1The fact that R )= (0) prevents us from dealing with trivial varieties (within the meaning of universal algebra) of R-algebras,
see Section 3.1.
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one also denotes the previous composite functor by W. These functors are algebraic functors between
(concrete categories concretely isomorphic to) varieties of universal algebras and thus admit a le! adjoint
(see [25, Sections 3 and 4] for the details and also cf. [24]), theWronskian envelope constructions for the
W’s functors, and the di"erential envelope construction for dLie.

In details this means the following. Let g be any Lie algebra. There exists a di"erential Lie algebra
(Diff (g), d), called the di"erential envelope of g, and a Lie map cang : g → Diff (g), called the canonical
Lie map, such that for each di"erential Lie algebra (h, e) and each Lie map φ : g → h there is a unique
di"erential algebra map ψ : (Diff (g), d) → (h, e) such that $ ◦ cang = φ (more formally one should
write dLie($) ◦ cang = φ, but there is not much risk forgetting a reference to dLie since it is a faithful
functor).

Similarly, given any di"erential Lie algebra (g, d), there is a di"erential commutative algebra
(W (g, d),D), called the Wronskian envelope of (g, d), and a Lie map can(g,d) : (g, d) →
(|W (g, d)|,WD) = W(W (g, d),D), such that for every di"erential commutative algebra (A, e) and every
di"erential Liemapφ : (g, d) → (|A|,We), there is a unique di"erential algebramapψ : (W (g, d),D) →
(A, e) such that ψ ◦ can(g,d) = φ (or, strictly speaking,W(ψ) ◦ can(g,d) = φ).

By the usual composition of le! adjoints, (W (Diff (g), d),D) with the canonical Lie map
dLie(can(Diff (g),d)) ◦ cang : g → (|W (Diff (g), d)|,WD) provides the Wronskian envelope of a usual
Lie algebra. When there is no risk of confusion one still denotes by cang the previous canonical Lie map.
Moreover one de$nes (W (g),D) := (W (Diff (g), d),D) for a Lie algebra g.

Of course, as usually, each of these universal constructions is unique up to a canonical isomorphism.

Remark 1. It is not re%ected in the notation (W (g, d),D) but the derivation D itself depends on the
di"erential Lie algebra (g, d).

Remark 2. Given a di"erential commutative algebra ((A, ∗), d), the multiplication a ◦ b := a ∗ d(b)
endowsAwith a structure of a pre-Lie algebra. This in turn provides a functor PL : Di!Com → PreLie.
We notice that the commutator bracket of PL((A, ∗), d) = (A, ◦) is the Wronskian bracketWd. So there

is a factorization W = Di!Com
PL
−→ PreLie

CPreLie
−−−→ Lie, where by CPreLie is meant the functor which

consists in turning any pre-Lie algebra into a Lie algebra under the commutator bracket. Each of these
functors has a le! adjoint (all of them le! unchanged the carrier sets of the algebras, and the categories
under consideration are varieties in the sense of universal algebra). Therefore in a standard way the
Wronskian enveloping functor W may be seen as the composition of two le! adjoints WPreLie ◦ UPreLie,
where WPreLie : PreLie → Di!Com (respectively, UPreLie : Lie → PreLie) is a le! adjoint of PL
(respectively, CPreLie). In this text we do not study the functor WPreLie nor the functor UPreLie, focusing
only onW . There is another notion [22] known as the “universal enveloping algebra of a pre-Lie algebra”,
de$ned by Oudom and Guin, which is essentially the composition U ◦ CPreLie : PreLie → Lie → Ass,
i.e., the usual universal enveloping algebra U(A, [·, ·]) of the pre-Lie algebra (A, ◦) seen as a Lie algebra
(A, [·, ·]) under its commutator bracket; in particular, this construction rarely provides a commutative
algebra. It follows immediately that W is not the same as this universal enveloping algebra of a pre-Lie
algebra.

Corollary 3 (of [25, Proposition 4.9, p. 71]). Let (g, d) be a di"erential Lie algebrawhich is free as amodule
with basis X. Then, (W (g, d),D) is (R[X]/〈xd(y) − d(x)y −

∑
z∈X γ z

x,yz〉, D̃d), with R[X] the algebra of
polynomials with variables in X, Dd(x) = d(x) for each x ∈ X, [x, y] =

∑
z∈X γ z

x,yz, x, y ∈ X, using the
constants of structure of the Lie algebra g and 〈xd(y)− d(x)y−

∑
z∈X γ z

x,yz〉 the algebraic ideal generated
by xd(y) − d(x)y−

∑
z∈X γ z

x,yz, x, y ∈ X, in R[X].

Proof. This follows immediately from [25, Proposition 4.9, p. 71] where it is stated that the Wronskian
envelope W (g, d) of a di"erential Lie algebra (g, d) is the quotient of the symmetric algebra S(|g|) of the
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underlying module of g by the algebraic ideal generated by x⊗d(y)−d(x)⊗y− [x, y], x, y ∈ g, together
with the quotient derivation D̃d, where Dd is the unique derivation on S(|g|) which extends d.

Example 4. Let R be a ring in which 2 is invertible. Let us consider the Lie algebra g freely generated by
e, f , h as a module, with bracket [e, h] = e, [e, f ] = 2h and [h, f ] = f . (When R is a $eld of characteristic
zero, one recovers sl2(R).) It is a di"erential Lie algebra with derivation d(e) = 0, d(h) = e and d(f ) =
2h. Then, W (g, d) = R[e, h, f ]/〈e2 − e, h(e− 1), 2h2 − f (1+ e)〉 with the quotient derivation D̃d, where
Dd ∈ DerR(R[e, h, f ]) is given byDd(e) = 0,Dd(h) = e,Dd(f ) = 2h. Moreover, the assignment f ,→ x2,
h ,→ x and e ,→ 1 de$nes a di"erential algebra map from (R[e, h, f ],Dd) onto (R[x], d

dx ), which factors
through R[e, h, f ] → R[e, h, f ]/〈e2 − e, h(e − 1), 2h2 − f (1 + e)〉 and provides the di"erential algebra
map (W (g, d), D̃d) → (R[x], d

dx ) which is also induced by the one-to-one map (g, d) ↪→ (R[x],W d
dx

),

e ,→ 1, h ,→ x and f ,→ x2, using the universal property of the Wronskian envelope.

Let us enumerate a few elementary properties of the Wronskian envelope. First of all, it is an
augmented di"erential algebra (the augmentation ideal is a di"erential ideal). The trivial Lie algebra (0)
is a zero object for Lie, i.e., both an initial and a terminal object [19]. Let tg : g → (0) and ig : (0) ↪→ g
be the terminal and initial Lie maps of g. With the zero derivation, (0) is also a zero object for Di!Lie
(one even has t(g,d) = dLie(tg) and i(g,d) = dLie(ig)). So given a Lie algebra (respectively, di"erential Lie
algebra) g (respectively, (g, d)), there is a unique di"erential algebra map ε : (W (g),D) → (W (0),D)

(respectively, ε : (W (g, d),D) → (W (0),D)) such that W(ε) ◦ cang = can(0) ◦ tg (respectively,
W(ε) ◦ can(g,d) = can(0) ◦ t(g,d)). Now, because W is a le! adjoint functor, it preserves initial
objects and thus (W (0),D) - (R, 0) (canonically). Therefore, ε : (W (g),D) → (R, 0) (respectively,
ε : (W (g, d),D) → (R, 0)) provides the augmentation map. Of course, ker ε is a di"erential ideal.

Remark 5. The initialmap ig : (0) ↪→ g also canonically provides a di"erential algebramap η : (R, 0) →
(W (g),D) which coincides with the unit map 1R ,→ 1W (g).

Let g be a (di"erential) Lie algebra and h be a (di"erential) Lie sub-algebra of g (both of the same
type, di"erential or not). Let incl : h ↪→ g be the canonical inclusion. Then, there is a unique di"erential
algebra map I : (W (h),D) → (W (g),D) such that the following diagram commutes.

W(W (h),D)
W(I)

!! W(W (g),D)

h
! "

incl
!!

canh

##

g

cang

##
(2)

Of course there is no reason why I would be one-to-one in general. The following result may be proved
similarly to [5, Proposition 3, p. 25].

Proposition 6. Let g be a (di"erential) Lie algebra, and let I be a (di"erential) Lie ideal of g (both
of the same kind, i.e., both di"erential or both not). The canonical morphism of di"erential algebras
W (πI) : (W (g),D) → (W (g/I),D) induced by the canonical epimorphism πI : g → g/I is onto and
its kernel is the di"erential ideal J := 〈cang(I)〉di" of (W (g),D) generated by cang(I). In other words,
(W (g/I),D) - (W (g)/J, D̃) (canonically).

Remark 7. As an application of Proposition 6 one gets W (g/ ker cang) - W(g)/〈cang(ker cang)〉di" -
W (g) (as di"erential algebras). Hence the (di"erential) Lie algebras g and g/ ker cang share the same
Wronskian envelope.
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2.3. Themain result

Because any Lie algebra g becomes a di"erential Lie algebra (g, 0) with the zero derivation, it follows
that cang : g → (Diff (g), d) is one-to-one. (Indeed, there is a unique di"erential Lie algebra map
ψ : (Diff (g), d) → (g, 0) such that dLie(ψ) ◦ cang = idg.) So every Lie algebra embeds into its
di"erential envelope.

The situation is a little bit more subtle for the question of whether or not a (di"erential) Lie algebra
embeds into its Wronskian envelope, or, in other terms, when the corresponding canonical map is one-
to-one. The following easy result is useful in many situations (and is true in a more general setting, see
Lemma 22).

Lemma 8. Let (g, d) (respectively, g) be a di"erential Lie algebra (respectively, Lie algebra). The following
assertions are equivalent.
1. The canonical di"erential Lie map can(g,d) : (g, d) → W(W (g, d),D) (respectively, the canonical Lie

map cang : g → W(W (g),D)) is one-to-one.
2. There exists a di"erential commutative algebra (A, e) and a di"erential Lie map (g, d) → ((|A|,We), e)

(respectively, a Lie map g → (|A|,We)) which is one-to-one.

Proof. One only treats the case of di"erential Lie algebras. That 1. implies 2. is immediate. Let us
assume the existence of a one-to-one di"erential Lie map φ : (g, d) ↪→ (|A|,We) for some di"erential
commutative algebra (A, e). Then, there is a unique di"erential algebra map ψ : (W (g, d),D) → (A, e)
such thatW(ψ) ◦ can(g,d) = φ which in turn shows that can(g,d) is one-to-one.

Remark 9. In particular, it follows from Lemma 8 that a (di"erential or not) Lie algebra g embeds
canonically into its Wronskian envelope, i.e., cang is one-to-one, if, and only if, there is a not necessarily
canonical embedding from g into its Wronskian envelope. Therefore there is no need to distinguish
between “canonical” or “non canonical” embeddings.

Corollary 10. Any abelian Lie algebra g embeds into its Wronskian envelope. This remains true if g is seen
as a di"erential Lie algebra with the zero derivation.

Proof. Let g be any abelian Lie algebra. Let 0 be the zero endomorphism of g. According to [5,
Proposition 7, p. 36], it extends uniquely as a derivation D0 on the symmetric algebra S(g). Of course,
because 0 is also a derivation on S(g), 0 = D0. Now, the canonical embedding g ↪→ S(g) provides a one-
to-one Lie map from g into (|S(g)|, 0) = W(S(g), 0). Hence, by Lemma 8, g embeds into its Wronskian
envelope. The second assertion is already provided by the proof.

Let us now introduce our most fundamental ingredient. Let (A, d) be a di"erential commutative
algebra. Let d ∈ DerR(A) and a ∈ A. Then, a · d : x ,→ ad(x) is again a derivation so that DerR(A)

becomes a le! A-module. Let A · d = { a · d : a ∈ A } be the cyclic (le!) sub-A-module generated by
d ∈ DerR(A). It is a R-module, and, because [a · d, b · d] = Wd(a, b) · d it is a Lie R-sub-algebra of
DerR(A). This is a particular kind of Passman’s Lie algebras of Witt type [23].

De!nition 11. Let us call A · d the Lie R-algebra of vector !elds on the line (A, d).

Let ann(d) = { a ∈ A : ∀x ∈ A, ad(x) = 0 } be the annihilator of d, i.e., the kernel of the A-linear map
γ : a ,→ a · d, which is an ideal of the R-algebra A. It is even a di"erential ideal because if a ∈ ann(d),
then 0 = d(ad(x)) = d(a)d(x) + ad2(x) = d(a)d(x) for every x, so that d(a) ∈ ann(d). Therefore,
A · d becomes a di"erential Lie R-algebra with derivation ∂d(a · d) = d(a) · d. (This is well de$ned since
d(ann(d)) ⊆ ann(d).) When there is no ambiguity one writes ∂ := ∂d.
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Observe that in general A · d, while being a A-module and a Lie R-algebra, is not a Lie A-algebra (it is
rather related to Lie-Rinehart algebras; see Section 4) because its Lie bracket is not A-linear. Next lemma
is fundamental.

Lemma 12. (A · d, ∂) - W(A/ann(d), d̃) = ((|A/ann(d)|,Wd̃), d̃) (as di"erential Lie R-algebras) under
a · d ,→ a + ann(d).

Proof. Let us consider A
γ
−→ A · d, γ (a) = a · d. It is a A-module map (and a R-module map)

whose kernel is ann(d). Since A · d = im(γ ), it follows that, as A-modules, and so also as R-
modules, A/ann(d) - A · d (where A/ann(d) is a le! A-module under the canonical epimorphism
A → A/ann(d)). Let γ̃ : |A/ann(d)| → A · d, γ̃ (a + ann(d)) = γ (a), be the induced R-linear
isomorphism. Since [γ (a), γ (b)] = γ (Wd(a, b)), a, b ∈ A, it follows easily that γ̃ li!s to an isomorphism
of Lie R-algebras from (|A/ann(d)|,Wd̃) to A · d. Because furthermore ann(d) is a di"erential ideal,
and γ (d(a)) = ∂(γ (a)), a ∈ A, γ̃ turns out to be an isomorphism of di"erential Lie R-algebras from
((|A/ann(d)|,Wd̃), d̃) to (A · d, ∂). The fact that ((|A/ann(d)|,Wd̃), d̃) = W(A/ann(d), d̃) is clear. This
completes the proof.

One says that the derivation d on A is faithful if ann(d) = (0). In such case, by Lemma 12,

(A · d, ∂) - W(A, d) (as di"erential Lie algebras). It is clear that the quotient derivation d̃ on A/ann(d),
from Lemma 12, is faithful for every di"erential commutative algebra (A, d).

De!nition 13. A (di"erential) Lie algebra of vector !elds on a line is a (di"erential) Lie algebra which is
isomorphic to a (di"erential) Lie sub-algebra of some A · d (respectively, (A · d, ∂)).

LetVect (respectively,Di!Vect) be the full sub-category of Lie (respectively,Di!Lie) spanned by the
(di"erential) Lie algebras of vector $elds on a line. The following diagram of functor commutes (where
the two vertical arrows are the embedding functors, so that the bottom horizontal arrow is obtained by
restriction and corestriction of the top horizontal arrow).

Di!Lie
dLie

!! Lie

Di!Vect
#!

##

dLie
!! Vect
#!

##
(3)

The following result is immediate.

Lemma 14.
1. Di!Vect andVect are closed under sub-algebras, i.e., given any object g ofDi!Vect (respectively,Vect),

then every di"erential Lie sub-algebra (respectively, Lie sub-algebra) h of g is also an object of Di!Vect
(respectively, Vect).

2. Moreover, given any object g ofDi!Vect, then every (non-di"erential) Lie sub-algebra h of dLie(g) is an
object of Vect.

3. Di!Vect and Vect are closed under direct products (even the empty one).

According to Lemmas 8 and 12, (A · d, ∂) embeds into its Wronskian envelope for every di"erential
commutative algebra (A, d). This is also true from Lemma 14 for any (di"erential or not) Lie sub-algebra
of A · d. Again by Lemma 8 this remains valid for any (di"erential) Lie algebra of vector $eld on a line.
Therefore the following lemma is proved.
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Lemma 15. Every (di"erential or not) Lie algebra of vector !elds on a line embeds into its Wronskian
envelope.

Let us now prove an assertion somewhat reciprocal to Lemma 15.

Lemma 16. If (A, d) is a di"erential commutative algebra, then W(A, d) = ((|A|,Wd), d) is a di"erential
Lie algebra of vector !elds on a line.

Proof. LetA[x] be theR-algebra of polynomials onA. LetDd ∈ DerR(A[x]) given byDd(ax) = d(a)x+a
for each a ∈ A and extended to the whole A[x] using Leibniz’s rule and R-linearity. Of course, the
canonical embedding A ↪→ A[x], a ,→ a1, li!s to a one-to-one map (A, d) ↪→ (A[x],Dd) (because
Dd(a1) = d(a)1 + aDd(1) = d(a)1). Furthermore ann(Dd) = (0), i.e., Dd is a faithful derivation.
Indeed, if P belongs to ann(Dd), then, in particular, P = PDd(x) = 0. Therefore, W(A[x],Dd) =
((|A[x]|,WDd),Dd) - (A[x] · Dd, ∂Dd). Finally, the embedding a ,→ a1 still de$nes an embedding
W(A, d) = ((|A|,Wd), d) ↪→ W(A[x],Dd) and thus provides an embedding W(A, d) ↪→ (A[x] ·
Dd, ∂Dd), a ,→ a · Dd.

We are now in position to establish ourmain result, providing the necessary and su#cient embedding
conditions of a (di"erential) Lie algebra into its Wronskian envelope, and thus a satisfying solution to
the embedding problem.

Theorem 17. A (di"erential) Lie algebra embeds into its Wronskian envelope if, and only if, it is a
(di"erential) Lie algebra of vector !elds on a line.

Proof. Lemma 15 provides the su#cient conditions. By Lemma 16, W(W (g),D) is a di"erential
Lie algebra of vector $elds on some line, for every (di"erential or not) Lie algebra g. When cang :
g → W(W (g),D) is one-to-one, this implies that g is also a (di"erential or not) Lie algebra of vector
$elds on some line (by Lemma 14 since g - im(cang)). The necessity is proved.

Given a (di"erential) Lie algebra g (respectively, (g, d)) which embeds into its Wronskian envelope,
according to Theorem 17 and from the proof of Lemma 16, g (resp., (g, d)) may be seen as a (di"erential)
Lie sub-algebra of vector $elds on the line (W (g)[x],DD) (resp., (W (g, d)[x],DD)).

Remark 18. Corollary 10 in conjunction with Theorem 17 shows that any abelian Lie algebra is a Lie
algebra of vector $elds on some line.

As already stated in the Introduction, using Theorem 17 one gets many – and some interesting –
examples of Lie algebras which embed into their Wronskian envelope. Would it be possible that every
Lie algebra be a Lie algebra of vector $elds on a line? No. Indeed, such Lie algebras satisfy a non-trivial
identity (i.e., which is not satis$ed by all Lie algebras) called the “standard Lie identity of degree 5” in [26],
the identity T4 in [14] (see Appendix A where this identity is displayed in some expanded form). It is
de$ned as follows:

T4(x1, x2, x2, x4, y) :=
∑

σ∈S4

ε(σ )[xσ (1), [xσ (2), [xσ (3), [xσ (4), y]]]] = 0 (4)

for every y, x1, x2, x3, x4 in a Lie algebra, where ε(σ ) denotes the sign representation of the permutation
σ . As shown in [2, pp. 19–20], in the free Lie algebra Lie[x, y] on two generators, over a $eld, the Lie
polynomial given by T4(x, y, [x, y], [x, [x, y]], x) is not reduced to zero. Therefore such a Lie algebra does
not embed into its Wronskian envelope. Actually, the Lie polynomial T4(x, y, [x, y], [x, [x, y]], x) is a
linear combination of monomials of length 8, with integer coe#cients, in the free associative algebra
R〈x, y〉 over R (see below Eq. (5)). Of course, some coe#cients may be equal to zero in R but it remains a
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non-void linear combination. Thus it is equal to zero if, and only if, the coe#cient of each monomial is
equal to zero, which is impossible at the exception of R = (0). Whence for each non trivial ring R, no
free Lie algebras on two generators embed into its Wronskian envelope, and clearly it remains the same
for every free Lie algebra on at least two generators.

T4(x, y, [x, y], [x, [x, y]], x) = −x4yxy2 + 2x4y2xy− x4y3x + 6x3yx2y2 − 13x3yxyxy + 5x3yxy2x

+ 2x3y2x2y + x3y2xyx− x3y3x2 − 13x2yx3y2 + 28x2yx2yxy

− 7x2yx2y2x− x2yxyx2y− 15x2yxyxyx + 7x2yxy2x2 − 6x2y2x3y

+ 13x2y2x2yx− 7x2y2xyx2 + x2y3x3 + 12xyx4y2 − 23xyx3yxy

+ xyx3y2x− 12xyx2yx2y + 37xyx2yxyx− 13xyx2y2x2 + 21xyxyx3y

− 37xyxyx2yx + 15xyxyxyx2 − xyxy2x3 − 2xy2x4y− xy2x3yx

+ 7xy2x2yx2 − 5xy2xyx3 + xy3x4 − 4yx5y2 + 6yx4yxy + 2yx4y2x

+ 10yx3yx2y− 21yx3yxyx + 6yx3y2x2 − 10yx2yx3y + 12yx2yx2yx

+ yx2yxyx2 − 2yx2y2x3 − 6yxyx4y + 23yxyx3yx− 28yxyx2yx2

+ 13yxyxyx3 − 2yxy2x4 + 4y2x5y− 12y2x4yx + 13y2x3yx2

− 6y2x2yx3 + y2xyx4. (5)

Theorem 17 also provides a su#cient condition for the embedding of a Lie algebra into its universal
enveloping algebra.

Corollary 19. If a Lie algebra g embeds into its Wronskian envelope, then it embeds also into its universal
enveloping algebra (as a Lie sub-algebra under the commutator bracket).

Proof. FromTheorem 17 onemay assume the existence of a di"erential commutative algebra (A, d) such
that g ↪→ A · d. The result follows from the following sequence of inclusions of Lie algebras because g
admits a faithful representation into an associative algebra: g ↪→ A · d ⊆ DerR(A) ⊆ EndR(|A|).

3. Free (di!erential) Lie algebras of vector "elds

Every (di"erential) Lie algebra freely generates a (di"erential) Lie algebra of vector $elds, namely its
canonical image into its Wronskian envelope. By contrast with the classical situation, free (di"erential)
Lie algebras are almost never isomorphic with their canonical images, which equivalently means that
they rarely embed into their Wronskian envelope (Theorem 37 and Corollary 41). To see this we $rst
consider more general embedding problems, and related functorial relations, at the level of universal
algebra.

3.1. A glance at universal algebra

Our main reference about universal algebra is [9]. A signature is a N-graded set (+(n))n∈N. A member
f of +(n) is called a function symbol of arity n when n > 0, or a constant symbol if n = 0. A +-algebra is
a pair (A, F) where A is a set and F = (Fn)n∈N is a family of maps Fn : +(n) → AAn

, n ∈ N, sometimes
referred to as the +-algebra structure of A (when c ∈ +(0), F0(c) is usually interpreted as a member of
A and not as a map from A0 → A). A homomophism φ : (A, F) → (B,G) between +-algebras is a map
φ : A → B that commutes to the “basic operations” of A and B, i.e., for each n ∈ N and each f ∈ +(n),
φ(Fn(f )(a1, · · · , an)) = Gn(f )(φ(a1), · · · ,φ(an)), a1, · · · , an. +-algebras and their homomorphisms
form a category. This category has a faithful forgetful functor to the category Set of sets, and it is well
known that it admits a le! adjoint that makes possible the construction of the free +-algebra +[X]
generated by the set X.
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An equation is a pair (s, t) of two elements of +[N] (the members of N are customary denoted by
x1, x2, x3 and so on, and called the variables). A class of +-algebras that satisfy a given set of equations
(i.e., in which the equations hold) is called a variety. For instance, the empty set of equations provides
the variety of all +-algebras.

Such a varietyV spans a full sub-category of+-algebras (and, in what follows wemake no distinction
between the variety and its associated category) the objects of which are +-algebras which satisfy the
de$ning equations of the varietyV, herea!er referred to as+-algebras inV. As such it also has a forgetful
functor to Set, so is a concrete category, and when the variety is non-trivial (i.e., when it admits algebras
with at least two elements), it has a le! adjoint, which provides the free +-algebra V[X] relatively to the
variety V generated by a set X.

3.2. A general embedding problem

From now on one only considers non-trivial varieties without further ado.
Given a variety V of +-algebras and a variety W of ,-algebras, a functor U : V → W is called

algebraic when the following diagram of functors commutes (where | · | denotes the forgetful functors).

V
U

!!

|·|
$$
!!

!!
!!

!!
W

|·|
%%""
""
""
""

Set

(6)

A fundamental result states that such an algebraic functor admits a le! adjoint (see [3, Corollary 8.17,
p. 28]).

De!nition 20. In the situation depicted by Diagram (6), for each ,-algebra (A, F) in W, one has a
+-algebra V[A, F] (called the free +-algebra in V generated by (A, F) or the universal V-envelope of
(A, F)) and a homomorphism can(A,F) : (A, F) → U(V[A, F]) of ,-algebras, called the canonical map,
such that for every+-algebra (B,G) inV and every homomorphismφ : (A, F) → U(B,G) of,-algebras,
there is a unique homomorphism ψ : V[A, F] → (B,G) of +-algebras such that U(ψ) ◦ can(A,F) = φ.
Of course, this provides the “free algebra” functor V[·] : W → V.

Remark 21. In a situation where both notations V[X] for a set X and V[A, F] for a ,-algebra (A, F)

occur, in order to avoid confusion, one denotes the former +-algebra by V[A, F]W.

There is an associated embedding problem: what are the conditions under which can(A,F) is one-to-
one? As already announced in Section 2.3 (Lemma 8) one has the following useful result, whose proof
follows the same principle as that of Lemma 8.

Lemma 22. Let (A, F) be a ,-algebra inW. The following assertions are equivalent.
1. The canonical map can(A,F) : (A, F) → U(V[A, F]) is one-to-one.
2. There exists a +-algebra (B,G) inV and a homomorphism of ,-algebras from (A, F) to U(B,G) which

is one-to-one.

3.3. The category of algebras which embed into their envelope

In this section one assumes that we are in the situation illustrated by Diagram (6).

De!nition 23. Let WU be the full sub-category ofW spanned by those ,-algebras (A, F) in W whose
canonical map can(A,F) : (A, F) → U(V[A, F]) is one-to-one.
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Remark 24. It is clear from Lemma 22 that for all (A, F) in V, U(A, F) is an object ofWU .

The notion of sub-algebras is rather evident. It is clear that WU is closed under sub-algebras (i.e.,
every sub-algebra of an object of WU is also an object of WU). Furthermore, it is also closed under
direct products (cartesian products of the underlying sets of algebras with the component-wise algebra
structure). Finally, the obvious inclusion functor EU : WU ↪→ W is (of course) full, but also faithful and
injective on objects.

Example 25.
1. With V = Di!Com, W = Lie (respectively, Di!Lie), U = W one has WU = Vect (respectively,

Di!Vect) by Theorem 17.
2. With V = Ass, W = Lie, U = C which transforms the algebra into a Lie algebra under the

commutator bracket, then WU is the category of all Lie algebras which embed into their universal
enveloping algebra. In particular, when the base ring R is a $eld,WU = Lie.

3. With V = Com, W = Ass, U is the evident forgetful functor, then WU = Com (since an algebra
embeds into its abelianization if, and only if, it is commutative).

4. With V the category Ab of abelian groups, and W that of commutative monoids, and with U the
obvious forgetful functor,WU is the category of all cancellative commutative monoids [7].

Before going on, one recalls the following facts: let (A, F) and (B,G) be two +-algebras in a variety
V, and let φ : (A, F) → (B,G) be a homomorphism.
1. The image im(φ) = φ(A) is a sub-algebra of (B,G) and, as such, is an object of V (since a variety is

closed under sub-algebras, cartesian products and homomorphic image).
2. The kernel kerφ = { (a, b) ∈ A2 : φ(a) = φ(b) } is a congruence (i.e., an equivalence relation on A

compatible with the+-algebra structure F [8]), the quotient setA/ kerφ admits a natural structure of
+-algebra denoted by (A/ kerφ, F̃), which is an object of V, and, $nally, the canonical epimorphism
π : A → A/ kerφ li!s to a homomorphism of +-algebras π : (A, F) → (A/ kerφ, F̃).
Let us go back to the situation illustrated byDiagram (6). One observes that for every,-algebra (A, F)

inW, im(can(A,F)) is a ,-sub-algebra of U(V[A, F]) which belongs toW, and thus is an object ofWU .
It is of course the least ,-sub-algebra of U(V[A, F]) generated by im(can(A,F)) (i.e., the intersection of
all ,-sub-algebras of U(V[A, F]) that contain im(can(A,F))).

De!nition 26. Herea!er im(can(A,F)) as above is referred to as the canonical image of (A, F) into its
universal V-envelope.

Moreover, as ,-algebras inW,

im(can(A,F)) - (A/ ker can(A,F), F̃).

This follows from the $rst isomorphism theorem for (universal) algebras as indicated in the diagram
below (where (A, F) is a ,-algebra in W, c̃an(A,F) denotes the induced isomorphism, and incl is the
canonical inclusion).

(A, F)
can(A,F)

!!

π
""

U(V[A, F])

(A/ ker can(A,F), F̃)
c̃an(A,F)

im(can(A,F))
#!

incl

##
(7)

Remark 27. It follows from Diagram (7) that π is one-to-one (whence an isomorphism) if, and only if,
can(A,F) is one-to-one if, and only if, (A, F) is an object ofWU .
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Actually, (A, F) ,→ im(can(A,F)) is the object component of a functor SpU : W → WU which is

de$ned as follows. Let φ : (A, F) → (B,G) be a homomorphism of ,-algebras inW. Let φ̂ : V[A, F] →
V[B,G] be the unique homomorphism of +-algebras in V such that the following diagram commutes.

U(V[A, F])
U(φ̂)

!! U(V[B,G])

(A, F)
φ

!!

can(A,F)

##

(B,G)

can(B,G)

##
(8)

Let y = can(A,F)(x) for some x ∈ A. So,

can(B,G)(φ(x)) = U(φ̂)(can(A,F)(x)) = U(φ̂)(y).

Therefore there is a unique map φ0 : im(can(A,F)) → im(can(B,G)) such that the following diagram
commutes.

U(V[A, F])
U(φ̂)

!! U(V[B,G])

im(can(A,F))
#!

incl

##

φ0

!! im(can(B,G))
#!

incl

##
(9)

That φ0 is a homomorphism of ,-algebras is obvious. One thus de$nes SpU(φ) := φ0. The remaining
details to check functoriality of SpU : W → WU are le! to the reader.

Remark 28. “Sp” stands for “special” because of [9] where the Lie algebras that embed into their
universal enveloping algebra are referred to as “special Lie algebras”.

The result below shows thatWU is a re%ective sub-category ofW [19].

Theorem 29. The functor SpU provides a le# adjoint of the canonical embedding EU : WU ↪→ W.

Proof. One uses the notations from Diagram (7). Let (A, F) be a ,-algebra in WU . Then, (c̃an(A,F) ◦
π)−1 : SpU(EU(A, F)) - (A, F) (Remark 27). So one has a natural isomorphism2 ε : SpU ◦ EU ⇒
idWU : WU → WU . Now, from Diagram (7), one gets η := π ◦ c̃an : idW ⇒ EU ◦ SpU : W → W.
By de$nition, the composite EU(ε(A,F)) ◦ η(A,F) = id(A,F) for every algebra (A, F) inWU . Now, let (A, F)

be a ,-algebra in W. The following commutative Diagram (10) implies that Sp(η(A,F)) = ηim(can(A,F))

so that εim(can(A,F)) ◦ Sp(η(A,F)) = id(A,F). Therefore the two natural transformations satisfy the usual
triangle equalities that characterize an adjunction [19], and shows that SpU is a le! adjoint to EU .

im(can(A,F))" $

incl
""

SpU (η(A,F))
!! im(canim(can(A,F)))" $

incl
""

U(V[A, F])
η̂(A,F)

!! U(V[im(can(A,F))])

(A, F)

can(A,F)

##

η(A,F)

!!

η(A,F)

&&

im(can(A,F))
#!

canim(can(A,F))

##

ηim(can(A,F))

''
(10)

2α : F ⇒ G : C → D denotes a natural transformation from F to Gwhich are functors from C to D.
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Remark 30. It follows from Theorem 29 that given a ,-algebra (A, F) inW, im(can(A,F)) = SpU(A, F)

satis$es the following universal property. Let (B,G) be an algebra in WU and let φ : (A, F) →
EU(B,G) be a homomorphism of ,-algebras. Then, there is a unique homomorphism of ,-algebras
ψ : im(can(A,F)) → (B,G) such that EU(ψ) ◦ π ◦ c̃an(A,F) = φ, under the notation from Diagram (7).
This makes it possible to call im(can(A,F)) the free ,-algebra in W which embeds into its V-envelope
generated by (A, F).

Let us summarize the situation by the following commutative diagram of functors, where U is the
functor from Diagram (6), and U0 is obtained by co-restricting U toWU .

V
U

!!

U0 ((
!!

!!
!!

!!
W

WU

%
& EU

))""""""""

(11)

One already knows thatU and EU have a le! adjoint. In general that does not imply that alsoU0 has a le!
adjoint (in particular because WU is not a variety since it is generally not closed under homomorphic
images, and thus U0 is not algebraic), but it does in this particular situation.

Lemma 31. Let C,D,E be three categories such that the following diagram of functors commutes, where E
is fully faithful and U admits a le# adjoint F : D → C.

C
U

!!

V
**
##

##
##

##
D

E

E

++$$$$$$$$

(12)

Then, F ◦ E : E → C is a le# adjoint of V. Under the previous assumptions, if, moreover, E also has a le#
adjoint, say G : D → E, then F ◦ E ◦ G : D → C is also a le# adjoint of U, and thus F and F ◦ E ◦ G are
naturally isomorphic.

Proof. Let e be an object of E and c an object of C. The following holds.

E(e,V(c)) - D(E(e),E(V(c)))
(because E is fully faithful)

= D(E(e),U(c))
(since E ◦ V = U)

- C(F(E(e)), c)
(since F is a le! adjoint of U)

(13)

The second assertion follows from the fact that, by composition of adjoints, F ◦ E ◦ G is a le! adjoint of
E ◦ V = U.

Lemma 31 applies in the situation depicted in Diagram (11), and thus
1. U0 has a le! adjoint given by V[·] ◦ EU ,
2. V[·] ◦ EU ◦ SpU - V[·] (naturally) is a le! adjoint of U. This means that given (A, F) a ,-algebra

in W, then V[A, F] - V[EU(SpU(A, F))] = V[EU(im(can(A,F)))]. (Remark 7 was merely a special
instance of this result.)

3.4. The free algebra on a set that embeds into its envelope

Before applying the results of the previous section to the case of (di"erential) Lie algebras, as some $nal
comments one adds that in the following commutative diagram (combining Diagrams (6) and (11)),
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each functor has a le! adjoint. Here | · | : WU → Set is the evident restriction of the forgetful functor
| · | : W → Set.

V

|·|

,,

U
!!

U0 ((
!!

!!
!!

!!
W

|·|

--

WU

|·|

""

%
& EU

))""""""""

Set

(14)

What is new in the above diagram is the fact that | · | : WU → Set also has a le! adjoint, although
WU is in general not a variety. This does not follow from an application of Lemma 31, but from an
evident composition of le! adjoints: given a set X the free ,-algebra in WU is given by SpU(W[X]) =
im(canW[X]), and thus consists of the canonical image of the free algebra W[X] into its universal
V-envelope. There is another way to describeWU[X].

Lemma 32. Given a set X, the least ,-algebra 〈X〉, in U(V[X]) generated by X, where V[X] is the free
+-algebra in V over X, is the free ,-algebraWU[X] inWU on X.

Proof. Indeed, $rst of all, 〈X〉, is an algebra of WU (it belongs to W since U(V[X]) does and W is
closed under sub-algebras, and it embeds into its universalV-envelope because of Lemma22). Second, let
φ : X → |(A, F)| = A be amap, where (A, F) is a,-algebra inWU , whence can(A,F) is one-to-one. There
is a unique homomorphism of +-algebras ψ : V[X] → V[A, F] such that |ψ | ◦ canX = |can(A,F)| ◦ φ,
where canX : X → |V[X]| is the canonical embedding (the canonical map from a set to the free algebra
over this set in a non-trivial variety is always one-to-one [9]). The restriction of U(ψ) on 〈X〉, is a
homomorphism of,-algebras which extends φ. Because it is determined by its values on X, it is unique.
Therefore 〈X〉, has to be the free +-algebra inWU generated by X.

Remember the use of notationV[A, F]W for V[A, F] from Remark 21 to distinguish the former from
V[X] when both notations occur.

Corollary 33. Let X be a set. Then,

V[X] - V[W[X]]W = V[EU(WU [X])]W.

Proof.

V[X] - V[W[X]]W

(by composition of le! adjoints)

- V[EU(SpU(W[X]))]W

(according to the paragraph following the proof of Lemma 31)

= V[EU(WU[X])]W

(by de$nition ofWU [X]) (15)

Finally it may be useful to recall the explicit (or rather inductive) construction of 〈X〉, = WU[X] (see
[8, Proposition 5.1, p. 79]). LetX0 := X, and for each n ∈ N, letXn+1 := Xn∪{ Fk(f )(t1, · · · , tk) : k ∈ N,



COMMUNICATIONS IN ALGEBRA® 1655

f ∈ ,(k), t1, · · · , tk ∈ Xn } (where (Fn)n is the ,-algebra structure on U(V[X])). Then,

〈X〉, =
⋃

k≥0

Xk.

Remark 34. Every ,-algebra inW which embeds into its V-envelope is a quotient of some free algebra
WU [X].

3.5. Free (di!erential) Lie algebras of vector "elds

The constructions from the previous sections apply without fail to the case of Lie algebras. More
precisely, one $rst has the following commutative diagram which consists in three particular instances
of Diagram (6), where the rôle of U is played by the functorsW and C, which transforms a di"erential
commutative algebra (respectively, an associative algebra) into a (di"erential) Lie algebra under the
Wronskian bracket (respectively, commutator bracket, see Example 25.2). The unnamed arrows are the
evident forgetful functors.

Di!Com

W
""

..
%%

%%
%%

%%
%%

%%
%%

%%
W

!! Lie

""

Ass

//&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

C
00

Di!Lie

11'
''

''
''

''

Set

(16)

As we proceeded to pass from Diagram (6) to Diagram (11), one obtains the following diagram from
Diagram 16, completed with some already known functors.

Di!Vect

dLie

,,

' (

EW

22(
((

((
((

((
(

Di!Lie

dLie
""

Di!Com

W0

##

W0

""

W
!!

W
33))))))))))

Lie Ass
C

00

C0

""

Vect
)
* EW

44))))))))))
! "

E
!! LieC
+ ,

EC

55*********

(17)

In Diagram (17), Di!Vect = Di!LieW and Vect = LieW , according to Theorem 17. Moreover, the
full inclusion functor E from Vect and LieC is just a translation of Corollary 19. By Theorem 29, both
functors denoted by EW have a le! adjoint SpW . EC also has a le! adjoint SpC for the same reason.

Applying Lemma 31 one time on each of the three triangles, with verticesDi!Com,Di!Vect,Di!Lie,
with verticesDi!Com,Vect, Lie and with verticesAss, LieC, Lie, provides a le! adjoint, respectively, for
the twoW0’s and for C0. Another application of Lemma 31 on the triangle with vertices Vect, Lie, LieC
provides the existence of a le! adjoint for E. The fact that the le!most occurrence of dLie has a le! adjoint
also follows from an application of Lemma 31 on the triangle with verticesDi!Vect,Vect and Lie (since
EW : Vect → Lie is fully faithful, and dLie◦EW : Di!Vect → Lie has a le! adjoint). In conclusion, every
functor in this diagram has a le! adjoint. In consequence of that, there is a corresponding commutative
diagram (up to natural isomorphisms) of le! adjoints (where U is the usual universal enveloping
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algebra functor).

Di!Vect

W ◦EW

""

Di!Lie

SpW

''((((((((((

W

66))
))
))
))
))

Di!Com Lie
W

00

SpW77))
))
))
))
))

Diff

##

U
!! Ass

Vect

W ◦EW

##

SpW◦Diff ◦EW

88

LieC
SpW◦EC

00

U◦EC

##

SpC

55*********

(18)

Diagram (18)makes it possible to exhibit amajor di"erence between the universal enveloping algebra
and the Wronskian envelope. Given a Lie algebra g, its image, by the canonical map, into U(g), seen as
a Lie algebra under its commutator bracket, is SpC(g). In particular, if one considers the free Lie algebra
Lie[X] on a set X, then U(Lie[X]) is the free associative algebra R〈X〉 on X, and thus SpC(Lie[X]) is the
Lie algebra LiePol〈X〉 = 〈X〉Lie of Lie polynomials in R〈X〉 (cf. [27]). But, as is well known [5], Lie[X]
is free as a module, whence, by Poincaré-Birkho"-Witt theorem, embeds into its universal enveloping
algebra, so that Lie[X] - LiePol〈X〉. In this situation there is no di"erence between free Lie algebras
and free Lie algebras which embed into their universal enveloping algebras.

Now, given a (di"erential) Lie algebra g, its image, by the canonical map, into W (g), seen as a Lie
algebra under its Wronskian bracket, of course is SpW(g). Let X be a set. Then, theWronskian envelope
W (Lie[X]) (respectively, W (Di!Lie[X])) of the free (respectively, free di"erential) Lie algebra Lie[X]
(respectively, Di!Lie[X]) on X, is the algebra R{X} := Di!Com[X] of di"erential polynomials (see
e.g. [15]). (This follows by composing some le! adjoints of the functors occurring in Diagram (16).)
As a commutative algebra R{X} = R[X × N], and it has a derivation d determined by the relations
d(x(i)) = x(i+1), x ∈ X, i ∈ N (the notation x(i) is usually preferred than (x, i) and also x = x(0)). The
derivation d(P) of a di"erential polynomials P ∈ R{X} is denoted by P′.

Let us consider the canonical images. Let Vect[X] = SpW(Lie[X]) and Di!Vect[X] =
SpW(Di!Lie[X]) be, respectively, the free Lie and the free di"erential Lie algebras of vector !elds on
a line. These Lie algebras thus are (di"erential) Lie sub-algebras of R{X}.

De!nition 35. The members ofDi!Vect[X] will be referred to as di"erential Lie polynomials.

In detail, let X0 := X and let Xn+1 = Xn ∪ { αP : α ∈ R, P ∈ Xn} ∪ { P + Q : P,Q ∈ Xn } ∪ { PQ′ −
P′Q : P,Q ∈ Xn}, n ∈ N, and then Vect[X] =

⋃
n≥0 Xn, and let Y0 = X, Yn+1 = Yn ∪ { αP : α ∈

R, P ∈ Yn} ∪ { P + Q : P,Q ∈ Yn } ∪ { PQ′ − P′Q : P,Q ∈ Yn} ∪ { P′ : P ∈ Yn }, n ∈ N, and then
Di!Vect[X] =

⋃
n≥0 Yn.

Remark 36. Every (di"erential) Lie algebra of vector $elds on a line is a quotient a free (di"erential) Lie
algebra of vector $elds on a line.

Of course, Lie[∅] - (0) so that, as an abelian Lie algebra, it embeds into its Wronskian envelope
R{∅} - W (0) - (R, 0) (Corollary 10), whence Lie[∅] - Vect[∅]. Similarly, Lie[x] - Rx (abelian Lie
algebra) and thus by Corollary 10 again, it embeds into its Wronskian envelope R{x}, so that Lie[x] -
Vect[x]. The crucial argument of a major di"erence with the case of Lie polynomials appears now. One
already knows that Lie[x, y] does not embed into its Wronskian envelope R{x, y} (because it does not
satisfy the T4 identity). Therefore, Lie[x, y] is not isomorphic to the Lie algebra Vect[x, y] (Remark 27).
Moreover, since for every setX with |X| ≥ 2, Lie[X] contains a free Lie algebra on 2 generators, it cannot
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be isomorphic to the free Lie algebra Vect[X] of vector $elds on a line. The following result thus is
proved.

Theorem 37. No free Lie algebra on at least two generators embeds into its Wronskian envelope, nor is
isomorphic to its canonical image.

In order to get a similar result for the free di"erential Lie algebras, one $rst needs to analyze them.
Amagma is a pair (M, ∗) consisting of a setM and a binary operation ∗ : M×M → M satisfying no laws.
Let Mag[X × N] be the free magma (i.e., “non-associative” words or trees) on X × N [5]. One writes
x(i) rather than (x, i), x ∈ X, i ≥ 0, following the same convention as used for R{X}, and, of course,
x(i) will be interpreted as the ith-derivative of x. The (non-associative) multiplication inMag[X ×N] is
denoted by ∗. Recall that Mag[X × N] admits a canonical N-gradation de$ned as the number of leaves
of a tree: .(x(i)) = 1, (x, i) ∈ X × N, and .(s ∗ t) = .(s) + .(t). Let Mn := .−1({ n }), n ∈ N. Then,
Mag[X × N] =

⊔
n≥0Mn (disjoint union),M0 = ∅,M1 = X × N, andMm ∗Mn ⊆ Mm+n, m, n ∈ N.

Actually,Mn =
⊔

k+.=n Mk ∗M., n ≥ 1.
The free non-associative R-algebra Alg[X ×N] on X ×N is the free R-module onMag[X ×N] with

multiplication, again denoted by ∗, inherited from the product law ofMag[X × N].
Let us de$ne a derivation d on Alg[X × N] as follows: d(x(i)) = x(i+1) on X × N, and d(s ∗ t) =

d(s) ∗ t + s ∗ d(t), s, t ∈ Mag[X × N] (this is a well-de$ned construction as shows an easy induction
on the number of leaves of a tree), and then extend d by linearity to the whole Alg[X × N]. Let
Di!Alg[X] := Alg[X × N].

Lemma 38. The pair (Di!Alg[X], d) is the free non-associative di"erential algebra generated by X.

Proof. Let ((A, ∗), e) be a not necessarily associative di"erential algebra. Let f : X → A be a map. De$ne
f1(x(i)) = ei(f (x)) (with e(0) = id), (x, i) ∈ X × N, and let f2 : Mag[X × N] → (A, ∗) be the unique
homomorphism extension of f1, i.e., f2 = f1 on X × N, and f2(s ∗ t) = f2(s) ∗ f2(t), s, t ∈ Mag[X × N].
Let $nally f3 : Alg[X × N] → (A, ∗) be the extension by linearity of f2. Because f2 is a homomorphism
of magmas, f3 is an algebra map. It is easy to see by induction on the degree that f3 commutes to the
derivations, whence provides a di"erential algebra map f3 : (Di!Alg[X], d) → ((A, ∗), e). Uniqueness
follows because f3 is determined by its values on X.

Let us now consider the two-sided ideal L of Alg[X × N] generated by t ∗ t, and by s ∗ (t ∗ u) + t ∗
(s ∗ u) + u ∗ (s ∗ t), s, t, u ∈ Alg[X × N]. From [5, Proposition 1, p. 18], Alg[X × N]/L = Lie[X × N],
where the Lie bracket is the quotient multiplication on Alg[X × N]/L.

Lemma 39. L is a di"erential ideal of (Di!Alg[X], d).

Proof. Let s, t ∈ Di!Alg[X]. Then, (s + t) ∗ (s + t) = s ∗ s + t ∗ t + s ∗ t + t ∗ s so that s ∗ t + t ∗ s =
(s + t) ∗ (s + t) − s ∗ s − t ∗ t ∈ L. Thus, d(t ∗ t) = d(t) ∗ t + t ∗ d(t) ∈ L. Furthermore, let
s, t, u ∈ Di!Alg[X]. Then,

d(s ∗ (t ∗ u)) = d(s) ∗ (t ∗ u) + s ∗ (d(t) ∗ u) + s ∗ (t ∗ d(u)),
d(t ∗ (u ∗ s)) = d(t) ∗ (u ∗ s) + t ∗ (d(u) ∗ s) + t ∗ (u ∗ d(s)),
d(u ∗ (s ∗ t)) = d(u) ∗ (s ∗ t) + u ∗ (d(s) ∗ t) + u ∗ (s ∗ d(t)).

(19)

Therefore, d(s ∗ (t ∗ u) + t ∗ (u ∗ s) + u ∗ (s ∗ t)) ∈ L. Whence d(L) ⊆ L.

By Lemma 39, the Lie algebra Lie[X × N] thus admits the quotient derivation d̃.

Lemma 40. The Lie algebra Lie[X×N], with the derivation d̃, is the free di"erential Lie algebraDi!Lie[X]
on X.
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Proof. Let (g, e) be a di"erential Lie algebra, and let f : X → g be a map. According to Lemma 38

there is a unique homomorphism of di"erential algebras f̂ : (Di!Alg[X], d) → (g, e) (since (g, e) is a
particular kind of a not necessarily associative di"erential algebra) such that f̂ (x(0)) = f (x), x ∈ X.
Since the multiplication in g is alternating and satis$es the Jacobi identity, it follows that L ⊆ ker f̂ ,
which completes the proof.

According to Lemma 40, one $nally observes that (Di!Lie[∅], d̃) = ((0), 0), whence embeds into its
Wronskian envelope (see Corollary 10). Therefore the following corollary to Theorem 37 holds.

Corollary 41. No free di"erential Lie algebra on at least one generator embeds into itsWronskian envelope,
nor is isomorphic to its canonical image.

Proof. This follows by an application of Theorem 37 from the fact that W (Di!Lie[X]) = W (Lie[X]) =
R{X} and because the underlying Lie algebra ofDi!Lie[X] is the free Lie algebra on X × N.

Remark 42. Corollary 41 implies in particular that it is generally not true that if g is an object of Vect,
then its di"erential envelope Diff (g) is an object of Di!Vect (consider g = Lie[x], Diff (Lie[x]) =
Di!Lie[x] = Lie[{x} × N]).

4. Other universal envelopes

In this $nal section are introduced some other universal envelopes related to di"erential commutative
and to Lie algebras. Some results about embedding conditions into these envelopes are provided.

4.1. Lie-Rinehart algebras

Given a di"erential commutative algebra ((A, ∗), d), the algebra structure (A, ∗) and the Lie structure
(A,Wd) interact rather nicely. Indeed, the triple ((A, ∗), (A,Wd), ∂d) is a Lie-Rinehart algebra over R
([11, 28] and see below), with ∂d : (A,Wd) → DerR(A, ∗), a ,→ a ·d (where as in Section 2.3, (a ·δ)(x) =
a ∗ δ(x), a, x ∈ A, δ ∈ DerR(A, ∗), provides the structure of le! (A, ∗)-module onDerR(A, ∗)).

De!nition 43. A Lie-Rinehart R-algebra is a pair ((A, ∗), g, ∂), where (A, ∗) is a commutative algebra
with a unit, g is a Lie R-algebra which is also a le! (A, ∗)-module (the le! (A, ∗)-action is denoted by
a · x, a ∈ A, x ∈ g), ∂ : g → DerR(A, ∗) is a Lie R-algebra map, called the anchor, such that
1. ∂(a · x) = a · ∂(x), i.e., ∂ is le! (A, ∗)-linear,
2. [x, a · y] = a · [x, y] + ∂(x)(a) · y
for all a ∈ A, x, y ∈ g.

Remark 44. The algebraic laws of a Lie-Rinehart algebra are modeled on those of the pair
(C∞(V),X(V)) where V is a $nite-dimensional smooth manifold, C∞(V) is the ring of smooth
functions on V andX(V) is the Lie algebra of smooth vector $elds on V , and the underlying Lie algebra
g of a Lie-Rinehart algebra (A, g, ∂) is the algebraic counterpart of a Lie algebroid [21] from di"erential
geometry.

Given two Lie-Rinehart R-algebras (A, g, ∂) and (B, h,!), a morphism between them is a pair (f , g)
such that f : A → B is a (unit-preserving) algebra map, g : g → h is a Lie map such that
1. g(a · x) = f (a) · g(x), and
2. f (∂(x)(a)) = !(g(x))(f (a))
a ∈ A, x ∈ g. All of this provides a category LieRin.
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There are two obvious forgetful functors Com
Com
←−− LieRin

Lie
−→ Lie. As explained above at

the beginning of this section, there is also a functor LR : Di!Com → LieRin with LR((A, ∗), d) =
((A, ∗), (A,Wd), ∂d). At the level of morphisms, it maps a di"erential algebra map φ : ((A, ∗), d) →
((B, ∗), e) to the Lie-Rinehart map (φ,W(φ)). These functors interact as in the following commutative
diagram (where the unnamed arrows are the usual forgetful functors, and dCom is as in Diagram (1)).
(“LR” of course stands for “Lie-Rinehart”.)

Di!Com

99

dCom

""

LR
22(

((
((

((
((

(

W

::

W
!! Di!Lie

dLie

""

;;

LieRin

Com
66))
))
))
))
))

Lie
<<+

++
++

++
++

+

Com

==
,,

,,
,,

,,
,,

,,
,,

,,
,

22(
((

((
((

((
( Lie

77--
--
--
--
-

>>..
..
..
..
..
..
..
..

Mod

""

Set

(20)

LieRin is not (at least in an obvious way) a variety of universal algebras as introduced in Section 3.1 (it
could be however described as a variety of heterogeneous algebras [4]), because it has two carrier sets
(that of the underlying commutative and that of the underlying Lie algebras). In consequence of what
one cannot rely entirely on the theory of algebraic functors between varieties to deduce the existence of
le! adjoints for those functors with domain or codomain LieRin in the above diagram, namely, LR,Com
and Lie. Nevertheless these adjunctions do exist as we now observe.

Let F : Com → LieRin be given by F(A) := (A, (0), iDerR(A)), where, as in Section 2.2, ig : (0) ↪→ g
is the initial map of a Lie algebra g, and for f : A → B, an algebra map, F(f ) := (f , id(0)) : F(A) →
F(B). It is not di#cult to check that F provides a le! adjoint to Com. (Given an algebra map f : A →

B = Com(B, g, ∂), there is a unique Lie-Rinehart algebra map f̂ : (A, (0), iDerR(A)) → (B, g, ∂) such that

Com(f̂ ) = f , namely, f̂ = (f , ig).)
Let G : Lie → LieRin be given by G(g) = (R, g, tg), where, again as in Section 2.2, tg : g → (0) is

the terminal map of the Lie algebra g. (Since if d ∈ DerR(R), d(1) = 0, it follows thatDerR(R) = (0).)
G is a le! adjoint to Lie. (Given a Lie map g : g → h = Lie(A, h, ∂) there is a unique Lie-Rinehart
algebra map g̃ : (R, g, tg) → (A, h, ∂) such that Lie(g̃) = g, namely g̃ = (ηA, g), where ηA : R → A is
given by ηA(r) = r1.) Onemay call (R, g, tg) the free Lie-Rinehart algebra generated by g or the universal
Lie-Rinehart envelope of g (this terminology is inspired from Section 3).

Let us $nally prove directly, by constructing a universal object, that LR also has a le! adjoint, enabling
the de$nition of theWronskian envelope of a Lie-Rinehart algebra. Let (A, g, ∂) be a Lie-Rinehart algebra.

Let us consider D(A, g) as the free commutative di"erential R-algebra R{|A| 7 |g|} generated by the
disjoint sum |A| 7 |g| (where, |A|, and respectively |g|, denotes the underlying set of the algebra A,
respectively, Lie algebra g). Let q|A|7|g| : |A| 7 |g| ↪→ D(A, g) be the unit of the adjunction, i.e., the

insertion of variables in the algebra of di"erential polynomials. Let qA : |A|
i|A|
−→ |A|7|g|

q|A|7|g|
−−−−→ D(A, g),

and qg : |g|
i|g|
−−→ |A|7|g|

q|A|7|g|
−−−−→ D(A, g) (where by iX : X ↪→ X7Y and iY : Y ↪→ X7Y are the canonical

injections).
The di"erential algebra D(A, g), by de$nition, satis$es the following universal property: given a

di"erential commutativeR-algebra (B, e) and a set-theoretic map h : |A|7 |g| → |B| there exists a unique
homomorphism of di"erential algebras h̄ : D(A, g) → (B, e) such that |h̄| ◦ q|A|7|g| = h.
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One denotes by D the R-derivation of the di"erential algebra D(A, g), and by 1 its identity element.
The multiplication, and scalar action, onD(A, g) are denoted by juxtaposition. Now, let us consider the
di"erential ideal I(A, g, ∂) of the di"erential algebra (D(A, g),D) generated by qA(a + b) − qA(a) −
qA(b), qA(ab) − qA(a)qA(b), qA(1A) − 1, qA(ra) − rqA(a), qg(x + y) − qg(x) − qg(y), qg(rx) − rqg(x),
qg([x, y]) = qg(x)D(qg(y))−D(qg(x))qg(y), qg(a · x)−qA(a)qg(x), and qA(∂(x)(a))−qg(x)D(qA(a))
for all a ∈ A, x ∈ g and r ∈ R. Let π : D(A, g) → D(A, g)/I(A, g) be the canonical epimorphism
(which is an homomorphism of di"erential algebras, where D(A, g)/I(A, g, ∂) is equipped with the
quotient derivation D̃ ◦ π = π ◦ D). By de$nition of the di"erential ideal I(A, g, ∂) it is clear that
π ◦ qA de$nes an algebra map from A toD(A, g)/I(A, g, ∂), and that π ◦ qg de$nes a Lie map from g to
(D(A, g)/I(A, g, ∂),WD̃).

Let (B, e) be a commutative di"erential R-algebra (and B be the underlying module of B), and let
(f , g) : (A, g, ∂) → LR(B, e) = (B, (B,We), ∂e) be a homomorphism of Lie-Rinehart algebras. Let
h : |A| 7 |g| → |B| be the unique set-theoretic map such that h ◦ i|A| = |f | and h ◦ i|g| = |g|. By
the universal property of D(A, g) there is a unique di"erential algebra map h̄ : (D(A, g),D) → (B, e)
such that |h̄| ◦ q|A|7|g| = h. In particular, |h̄| ◦ qA = |f | and |h̄| ◦ qg = |g|. It is easily checked that

the map h̄ passes to the quotient by I(A, g, ∂). Hence, there is a unique well-de$ned homomorphism

h̃ : (D(A, g)/I(A, g, ∂), D̃) → (B, e) of di"erential algebras such that h̃◦π = h̄. In particular, h̃◦π ◦qA =

h̄ ◦ qA = f and h̃ ◦ π ◦ qg = h̄ ◦ qg = g. It is clearly the unique di"erential algebra map with those two
properties.

Remark 45. The map π ◦ qA : A → D(A, g)/I(A, g, ∂) is an algebra map, while π ◦ qg : g →
(D(A, g)/I(A, g, ∂),WD̃) is a Lie map by de$nition of the ideal I(A, g, ∂). Moreover,

π(qA(a · x)) = π(qA(a)qg(x)) = π(qA(a))π(qg(x))

and

π(qA(d(x)(a))) = π(qg(x)D(qA(a)))

= π(qg(x))π(D(qA(a)))

= π(qg(x))D̃(π(qA(a))), (21)

so that (π ◦ qA,π ◦ qg) is a morphism of Lie-Rinehart algebras from (A, g, ∂) to LR(D(A, g)/I(A, g, ∂)).

In conclusion, (W (A, g, ∂), D̃) := (D(A, g)/I(A, g, ∂), D̃) is the Wronskian envelope of the Lie-
Rinehart algebra (A, g, ∂). It follows from Diagram (20) (more precisely, by using the corresponding
diagram for le! adjoints obtained by reversing the direction of the arrows) that theWronskian envelope
(W (g),D) of a Lie algebra g is (isomorphic to) theWronskian envelope (W (R, g, tg), D̃) of the universal
Lie-Rinehart algebra (R, g, tg) of g. The following result thus is immediate.

Lemma 46. A Lie algebra g embeds into its Wronskian envelope (as a Lie sub-algebra for the Wronskian
bracket) if, and only if, the map π ◦ qg : g → (|W (R, g, tg)|,WD̃) = Lie(LR(W (R, g, tg), D̃)) is a one-to-
one Lie map.

Remark 47. Herz in [11] and Rinehart in [28] both provide a universal enveloping algebra construction
for a Lie-Rinehart algebra (A, g, ∂) (see also [21]) which is rather di"erent from our. It is given as
an associative algebra with a unit U(A, g, ∂) together with an algebra map ιA : A → U(A, g, ∂) and
a Lie map ιg : g → C(U(A, g, ∂)) (recall from Section 3.5 that C turns an associative algebra into
a Lie algebra under the commutator bracket) which interact nicely: ιA(a)ιg(x) = ιg(a · x) and
ιg(x)ιA(a) − ιA(a)ιg(x) = ιA(∂(x)(a)), a ∈ A, x ∈ g. All of this satis$es a universal property: given
an associative (not necessarily commutative) R-algebra B, an algebra map f : A → B and a Lie map
g : g → C(B) such that f (a)g(x) = f (a · x) and f (∂(x)(a)) = [g(x), f (a)], a ∈ A, x ∈ g, there is a unique
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algebra map h : U(A, g, ∂) → B with h ◦ ιA = f and h ◦ ιg = g. This notion is thus di"erent from our,
and does not provide a le! adjoint construction.

4.2. Jacobi algebras: The associative side

De!nition 48. A Jacobi algebra over R [10, 29] is a unital commutative R-algebra A (the unit is denoted
by 1) together with a R-linear Lie bracket [·, ·] (called Jacobi bracket) satisfying the following version of
Leibniz rule, called Jacobi-Leibniz rule,

[ab, c] = a[b, c] + b[a, c] − ab[1, c], a, b, c ∈ A.

One obtains the category Jac of Jacobi R-algebras (a morphism between Jacobi algebras is a morphism
between both the underlying unital R-algebras and the underlying Lie R-algebras).

Remark 49. Jacobi algebras have been introduced as the algebraic counterpart of Jacobi manifolds or
local Lie algebras [13, 18] from di"erential geometry.

Such Jacobi algebras may be seen as a common generalization of di"erential commutative algebras
and Poisson algebras. Recall that a Poisson algebra is a pair (A, {·, ·}), where A is a commutative (unital)
algebra, {·, ·} is a Lie bracket on the module |A|, and for each a ∈ A, {a, ·} ∈ DerR(A), or, in other terms,
{a, bc} = {a, b}c+ b{a, c}, a, b, c ∈ A. By a morphism of Poisson algebras is meant an algebra map which
is also a Lie algebra map. It is clear that one has an obvious full embedding functor P : Poi ↪→ Jac.

Likewise, let (A, d) be a di"erential commutative algebra. Then, (A,Wd) turns to be a Jacobi algebra
since one hasWd(ab, c) = abd(c)− d(ab)c = abd(c)− d(a)bc− ad(b)c, aWd(b, c) = abd(c)− ad(b)c,
bW(a, c) = bad(c) − bd(a)c = abd(c) − d(a)bc, and abW(1, c) = abd(c), a, b, c ∈ A, which shows
that the Wronskian bracket is a Jacobi bracket. This clearly provides a functor DC : Di!Com → Jac,
(A, d) ,→ (A,Wd), which is full (since any di"erential algebra map is automatically a Lie algebra map
for the corresponding Wronskian brackets), faithful and injective on objects (the derivation d of A is
recovered from the Jacobi algebra (A,Wd) asWd(1, ·)).

So Poi and Di!Com may be seen as full sub-categories of Jac. In particular, a Poisson algebra is a
Jacobi algebra with [1, x] = 0 for every x (as is easily checked from Jacobi-Leibniz rule).

Whence one has P : Poi ↪→ Jac ←↩ Di!Com : DC, and the following diagram is commutative (as
usually the unnamed arrows are the forgetful functors).

Poi !
" P !!

((
//

//
//

//
Jac

""

Di!Com# $DC
00

??00
00
00
00
00

Set

(22)

It follows from Diagram (22), because the categories here are varieties of universal algebras, that both
P and DC have a le! adjoint, which makes possible to de$ne the universal Poisson envelope and the
universal di"erential commutative algebra envelope of a Jacobi algebra.

These constructions are easily provided.
1. Given a Jacobi algebra (A, [·, ·]), let us consider its Jacobi ideal IP (i.e., both an ideal and a Lie ideal)

generated by [1, x], x ∈ A. Then, A/IP, with its quotient Jacobi bracket, is the universal Poisson
envelope of (A, [·, ·]) [1]. The le! adjoint functor is denoted by Poi[·]Jac : Jac → Poi.

2. Given a Jacobi algebra (A, [·, ·]), let (Diff [A], d) be the di"erential envelope of A (i.e., obtained using
the le! adjoint of the algebraic functor dCom : Di!Com → Com), and let I be the di"erential

ideal of (Diff [A], d) generated by Wd(x, y) − [x, y], x, y ∈ A. Then, (Diff [A]/I, d̃) is the universal
di"erential commutative envelope of (A, [·, ·]). In what follows, (Di!Com[A, [·, ·]], d) denotes this
universal object.
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Contrary to what it seems, Jac does not play a symmetric rôle for Poi and for Di!Com. It follows
from the Jacobi-Leibniz rule, with c = 1, that ad1 : |A| → |A|, a ,→ [1, a], provides a R-derivation
on A (since [1, ab] = a[1, b] + b[1, a]). It is then possible to turn such a Jacobi algebra (A, [·, ·]) into
a di"erential commutative algebra (A, ad1). Moreover, let f : (A, [·, ·]) → (B, [·, ·]) be a morphism of
Jacobi algebras. Then, f is a (unital) algebra map from A to B, and, furthermore, f (ad1(x)) = f ([1, x]) =
[f (1), f (x)] = [1, f (x)] = ad1(f (x)), so that f : (A, ad1) → (B, ad1) is a di"erential algebra map. This
readily provides an algebraic functor AD1 : Jac → Di!Com which makes it possible to consider the
universal Jacobi algebra Jac[A, d]Di!Com of a di"erential commutative algebra (A, d) as a le! adjoint to
AD1. One observes that AD1 ◦ DC = idDi!Com, whence id(A,d) : (A, d) → AD1(DC(A, d)) provides an
embedding of a di"erential commutative algebra into a Jacobi algebra (seen as a di"erential commutative
algebra under the derivation ad1). From these observations the following result is obtained.

Lemma 50. Any di"erential commutative algebra (A, d) embeds into its universal Jacobi envelope
Jac[A, d]Di!Com.

4.3. Jacobi algebras: The Lie side

Clearly, (A, [·, ·]) → (|A|, [·, ·]) provides an algebraic functor L : Jac → Lie. One observes that the
following diagram commutes.

Di!Com ! "DC !!

W
""

Jac

L
??00
00
00
00
0

Lie

(23)

Note also that one has another algebraic functor L′ : Jac → Lie given by L′ := W◦AD1, i.e., L′(A, [·, ·]) =
W(A, ad1) = (|A|,Wad1). In general L )= L′, i.e., L′(A, [·, ·]) = (|A|,Wad1) )= (|A|, [·, ·]), or, in
other terms, Wad1 )= [·, ·]. Indeed, in general, [·, ·] − Wad1 is a non-zero alternating biderivation (i.e.,
alternating bilinear map which is a derivation of A in both of its variables), i.e., [x, y] )= x[1, y] − [1, x]y
(it su#ces to consider a Poisson algebra with a non-zero bracket).

So we are le! with two di"erent algebraic functors L, L′ : Jac → Lie. Each of them admit-
ting a le! adjoint, one has two di"erent kinds of universal Jacobi algebra of a Lie algebra. Let
Jac[·]Lie, Jac′[·]Lie : Lie → Jac be the corresponding le! adjoints.

According to Diagram (23), one has a commutative (up to isomorphisms) diagram of le! adjoint
functors.

Di!Com Jac
Di!Com[·]

00

Lie

W

##

Jac[·]Lie

@@000000000

(24)

In other terms, for every Lie algebra g, (W (g),D) - (Di!Com[Jac[g]Lie], d) (as di"erential Lie
algebras).

From the de$nition of L′, one gets another commutative diagram of le! adjoints.

Di!Com
Jac[·]Di!Com

!! Jac

Lie

W

##

Jac′[·]Lie

@@000000000

(25)

In other terms, for every Lie algebra g, Jac[W (g),D]Di!Com - Jac′[g]Lie (as Jacobi algebras).
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Theorem 51. Let g be a Lie algebra. The following assertions 1 and 2 are equivalent, and both of them
imply 3.
1. g embeds into W(W (g),D).
2. g embeds into L′(Jac′[g]Lie).
3. g embeds into L(Jac[g]Lie).

Proof.
1⇒3: By Lemma 22 since g ↪→W(W (g),D) - W(Di!Com[Jac[g]Lie], d) = L(DC(Di!Com

[Jac[g]Lie], d)).

1⇒2: Ifg embeds intoW(W (g),D), then, since by Lemma50W (g,D) ↪→ AD1(Jac[W (g),D]Di!Com),
it follows that

g ↪→ W(AD1(Jac[W (g),D]Di!Com))

= L′(Jac[W (g),D]Di!Com)

- L′(Jac′[g]Lie). (26)

2⇒1: By Lemma 22 since g ↪→ L′(Jac′[g]Lie) - L′(Jac[W (g),D]Di!Com) = W(AD1(Jac[W (g),
D]Di!Com)).

Theorem 17 together with Theorem 51 provides a su#cient condition for the embedding problem of
Lie algebras into Jacobi algebras with respect to the functor L.

Corollary 52. Every Lie algebra g of vector !elds on a line embeds into its universal Jacobi envelope
L(Jac[g]) seen as a Lie algebra under L.

There is another su#cient condition for the same embedding problem. Let us consider the algebraic
functor L ◦ P : Poi → Lie (this is also the obvious forgetful functor, whence an algebraic functor, from
Poi to Lie, and it has a le! adjoint denoted by Poi[·]Lie). One has a corresponding commutative diagram
of le! adjoints.

Jac

Poi[·]Jac
""

Lie
Jac[·]Lie
00

Poi[·]Lie%%""
""
""
""

Poi

(27)

Corollary 53. Let g be a Lie algebra. If g embeds into its universal Poisson envelope L(P(Poi[g]Lie)), seen
as a Lie algebra under L ◦ P, then g embeds into L(Jac[g]Lie).

Proof. It is obvious according to Diagram (27).

A. Standard Lie identity of degree 5

The computation of T4(x1, x2, x3, x4, y) in Z{x1, x2, x3, x4, y} is displayed in the following Equa-
tion (28) (see pages 1663–1666). A!er factorization and simpli$cation, it gives the value 0. Since
T4(x1, x2, x3, x4, y) is a member of Vect[x1, x2, x3, x4, y] (over the integers), which is the free Lie algebra
of vector $elds on 5 generators (see Section 3.5), it is satis$ed by all Lie algebras of vector $elds on a line.

T4(x1, x2, x3, x4, y)

= (((yx(2)
4 − x4y(2))x1 − (yx(1)

4 − x4y(1))x(1)
1 )x(2)

3 + ((yx(2)
4 − x4y(2))x(2)

1 + (yx(1)
4 − x4y(1))x(3)

1
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− (yx(4)
4 − x4y(4) + 2y(1)x(3)

4 − 2x(1)
4 y(3))x1 − (yx(3)

4 − x4y(3) + y(1)x(2)
4 − x(1)

4 y(2))x(1)
1 )x3)x2

− (((yx(2)
4 − x4y(2))x1 − (yx(1)

4 − x4y(1))x(1)
1 )x(2)

2 + ((yx(2)
4 − x4y(2))x(2)

1 + (yx(1)
4 − x4y(1))x(3)

1

− (yx(4)
4 − x4y(4) + 2y(1)x(3)

4 − 2x(1)
4 y(3))x1 − (yx(3)

4 − x4y(3) + y(1)x(2)
4 − x(1)

4 y(2))x(1)
1 )x2)x3

− (((yx(2)
4 − x4y(2))x2 − (yx(1)

4 − x4y(1))x(1)
2 )x(2)

3 + ((yx(2)
4 − x4y(2))x(2)

2 + (yx(1)
4 − x4y(1))x(3)

2

− (yx(4)
4 − x4y(4) + 2y(1)x(3)

4 − 2x(1)
4 y(3))x2 − (yx(3)

4 − x4y(3) + y(1)x(2)
4 − x(1)

4 y(2))x(1)
2 )x3)x1

+ (((yx(2)
4 − x4y(2))x2 − (yx(1)

4 − x4y(1))x(1)
2 )x(2)

1 + ((yx(2)
4 − x4y(2))x(2)

2 + (yx(1)
4 − x4y(1))x(3)

2

− (yx(4)
4 − x4y(4) + 2y(1)x(3)

4 − 2x(1)
4 y(3))x2 − (yx(3)

4 − x4y(3) + y(1)x(2)
4 − x(1)

4 y(2))x(1)
2 )x1)x3

+ (((yx(2)
4 − x4y(2))x3 − (yx(1)

4 − x4y(1))x(1)
3 )x(2)

2 + ((yx(2)
4 − x4y(2))x(2)

3 + (yx(1)
4 − x4y(1))x(3)

3

− (yx(4)
4 − x4y(4) + 2y(1)x(3)

4 − 2x(1)
4 y(3))x3 − (yx(3)

4 − x4y(3) + y(1)x(2)
4 − x(1)

4 y(2))x(1)
3 )x2)x1

− (((yx(2)
4 − x4y(2))x3 − (yx(1)

4 − x4y(1))x(1)
3 )x(2)

1 + ((yx(2)
4 − x4y(2))x(2)

3 + (yx(1)
4 − x4y(1))x(3)

3

− (yx(4)
4 − x4y(4) + 2y(1)x(3)

4 − 2x(1)
4 y(3))x3 − (yx(3)

4 − x4y(3) + y(1)x(2)
4 − x(1)

4 y(2))x(1)
3 )x1)x2

− (((yx(2)
3 − x3y(2))x1 − (yx(1)

3 − x3y(1))x(1)
1 )x(2)

4 + ((yx(2)
3 − x3y(2))x(2)

1 + (yx(1)
3 − x3y(1))x(3)

1

− (yx(4)
3 − x3y(4) + 2y(1)x(3)

3 − 2x(1)
3 y(3))x1 − (yx(3)

3 − x3y(3) + y(1)x(2)
3 − x(1)

3 y(2))x(1)
1 )x4)x2

+ (((yx(2)
3 − x3y(2))x1 − (yx(1)

3 − x3y(1))x(1)
1 )x(2)

2 + ((yx(2)
3 − x3y(2))x(2)

1 + (yx(1)
3 − x3y(1))x(3)

1

− (yx(4)
3 − x3y(4) + 2y(1)x(3)

3 − 2x(1)
3 y(3))x1 − (yx(3)

3 − x3y(3) + y(1)x(2)
3 − x(1)

3 y(2))x(1)
1 )x2)x4

+ (((yx(2)
3 − x3y(2))x2 − (yx(1)

3 − x3y(1))x(1)
2 )x(2)

4 + ((yx(2)
3 − x3y(2))x(2)

2 + (yx(1)
3 − x3y(1))x(3)

2

− (yx(4)
3 − x3y(4) + 2y(1)x(3)

3 − 2x(1)
3 y(3))x2 − (yx(3)

3 − x3y(3) + y(1)x(2)
3 − x(1)

3 y(2))x(1)
2 )x4)x1

− (((yx(2)
3 − x3y(2))x2 − (yx(1)

3 − x3y(1))x(1)
2 )x(2)

1 + ((yx(2)
3 − x3y(2))x(2)

2 + (yx(1)
3 − x3y(1))x(3)

2

− (yx(4)
3 − x3y(4) + 2y(1)x(3)

3 − 2x(1)
3 y(3))x2 − (yx(3)

3 − x3y(3) + y(1)x(2)
3 − x(1)

3 y(2))x(1)
2 )x1)x4

− (((yx(2)
3 − x3y(2))x4 − (yx(1)

3 − x3y(1))x(1)
4 )x(2)

2 + ((yx(2)
3 − x3y(2))x(2)

4 + (yx(1)
3 − x3y(1))x(3)

4

− (yx(4)
3 − x3y(4) + 2y(1)x(3)

3 − 2x(1)
3 y(3))x4 − (yx(3)

3 − x3y(3) + y(1)x(2)
3 − x(1)

3 y(2))x(1)
4 )x2)x1

+ (((yx(2)
3 − x3y(2))x4 − (yx(1)

3 − x3y(1))x(1)
4 )x(2)

1 + ((yx(2)
3 − x3y(2))x(2)

4 + (yx(1)
3 − x3y(1))x(3)

4

− (yx(4)
3 − x3y(4) + 2y(1)x(3)

3 − 2x(1)
3 y(3))x4 − (yx(3)

3 − x3y(3) + y(1)x(2)
3 − x(1)

3 y(2))x(1)
4 )x1)x2

+ (((yx(2)
2 − x2y(2))x1 − (yx(1)

2 − x2y(1))x(1)
1 )x(2)

4 + ((yx(2)
2 − x2y(2))x(2)

1 + (yx(1)
2 − x2y(1))x(3)

1

− (yx(4)
2 − x2y(4) + 2y(1)x(3)

2 − 2x(1)
2 y(3))x1 − (yx(3)

2 − x2y(3) + y(1)x(2)
2 − x(1)

2 y(2))x(1)
1 )x4)x3

− (((yx(2)
2 − x2y(2))x1 − (yx(1)

2 − x2y(1))x(1)
1 )x(2)

3 + ((yx(2)
2 − x2y(2))x(2)

1 + (yx(1)
2 − x2y(1))x(3)

1

− (yx(4)
2 − x2y(4) + 2y(1)x(3)

2 − 2x(1)
2 y(3))x1 − (yx(3)

2 − x2y(3) + y(1)x(2)
2 − x(1)

2 y(2))x(1)
1 )x3)x4

− (((yx(2)
2 − x2y(2))x3 − (yx(1)

2 − x2y(1))x(1)
3 )x(2)

4 + ((yx(2)
2 − x2y(2))x(2)

3 + (yx(1)
2 − x2y(1))x(3)

3

− (yx(4)
2 − x2y(4) + 2y(1)x(3)

2 − 2x(1)
2 y(3))x3 − (yx(3)

2 − x2y(3) + y(1)x(2)
2 − x(1)

2 y(2))x(1)
3 )x4)x1

+ (((yx(2)
2 − x2y(2))x3 − (yx(1)

2 − x2y(1))x(1)
3 )x(2)

1 + ((yx(2)
2 − x2y(2))x(2)

3 + (yx(1)
2 − x2y(1))x(3)

3

− (yx(4)
2 − x2y(4) + 2y(1)x(3)

2 − 2x(1)
2 y(3))x3 − (yx(3)

2 − x2y(3) + y(1)x(2)
2 − x(1)

2 y(2))x(1)
3 )x1)x4

+ (((yx(2)
2 − x2y(2))x4 − (yx(1)

2 − x2y(1))x(1)
4 )x(2)

3 + ((yx(2)
2 − x2y(2))x(2)

4 + (yx(1)
2 − x2y(1))x(3)

4

− (yx(4)
2 − x2y(4) + 2y(1)x(3)

2 − 2x(1)
2 y(3))x4 − (yx(3)

2 − x2y(3) + y(1)x(2)
2 − x(1)

2 y(2))x(1)
4 )x3)x1

− (((yx(2)
2 − x2y(2))x4 − (yx(1)

2 − x2y(1))x(1)
4 )x(2)

1 + ((yx(2)
2 − x2y(2))x(2)

4 + (yx(1)
2 − x2y(1))x(3)

4

− (yx(4)
2 − x2y(4) + 2y(1)x(3)

2 − 2x(1)
2 y(3))x4 − (yx(3)

2 − x2y(3) + y(1)x(2)
2 − x(1)

2 y(2))x(1)
4 )x1)x3

− (((yx(2)
1 − x1y(2))x2 − (yx(1)

1 − x1y(1))x(1)
2 )x(2)

4 + ((yx(2)
1 − x1y(2))x(2)

2 + (yx(1)
1 − x1y(1))x(3)

2
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− (yx(4)
1 − x1y(4) + 2y(1)x(3)

1 − 2x(1)
1 y(3))x2 − (yx(3)

1 − x1y(3) + y(1)x(2)
1 − x(1)

1 y(2))x(1)
2 )x4)x3

+ (((yx(2)
1 − x1y(2))x2 − (yx(1)

1 − x1y(1))x(1)
2 )x(2)

3 + ((yx(2)
1 − x1y(2))x(2)

2 + (yx(1)
1 − x1y(1))x(3)

2

− (yx(4)
1 − x1y(4) + 2y(1)x(3)

1 − 2x(1)
1 y(3))x2 − (yx(3)

1 − x1y(3) + y(1)x(2)
1 − x(1)

1 y(2))x(1)
2 )x3)x4

+ (((yx(2)
1 − x1y(2))x3 − (yx(1)

1 − x1y(1))x(1)
3 )x(2)

4 + ((yx(2)
1 − x1y(2))x(2)

3 + (yx(1)
1 − x1y(1))x(3)

3

− (yx(4)
1 − x1y(4) + 2y(1)x(3)

1 − 2x(1)
1 y(3))x3 − (yx(3)

1 − x1y(3) + y(1)x(2)
1 − x(1)

1 y(2))x(1)
3 )x4)x2

− (((yx(2)
1 − x1y(2))x3 − (yx(1)

1 − x1y(1))x(1)
3 )x(2)

2 + ((yx(2)
1 − x1y(2))x(2)

3 + (yx(1)
1 − x1y(1))x(3)

3

− (yx(4)
1 − x1y(4) + 2y(1)x(3)

1 − 2x(1)
1 y(3))x3 − (yx(3)

1 − x1y(3) + y(1)x(2)
1 − x(1)

1 y(2))x(1)
3 )x2)x4

− (((yx(2)
1 − x1y(2))x4 − (yx(1)

1 − x1y(1))x(1)
4 )x(2)

3 + ((yx(2)
1 − x1y(2))x(2)

4 + (yx(1)
1 − x1y(1))x(3)

4

− (yx(4)
1 − x1y(4) + 2y(1)x(3)

1 − 2x(1)
1 y(3))x4 − (yx(3)

1 − x1y(3) + y(1)x(2)
1 − x(1)

1 y(2))x(1)
4 )x3)x2

+ (((yx(2)
1 − x1y(2))x4 − (yx(1)

1 − x1y(1))x(1)
4 )x(2)

2 + ((yx(2)
1 − x1y(2))x(2)

4 + (yx(1)
1 − x1y(1))x(3)

4

− (yx(4)
1 − x1y(4) + 2y(1)x(3)

1 − 2x(1)
1 y(3))x4 − (yx(3)

1 − x1y(3) + y(1)x(2)
1 − x(1)

1 y(2))x(1)
4 )x2)x3

− (((yx(1)
4 − x4y(1))x(2)

1 − (yx(3)
4 − x4y(3) + y(1)x(2)

4 − x(1)
4 y(2))x1)x3

+ ((yx(2)
4 − x4y(2))x1 − (yx(1)

4 − x4y(1))x(1)
1 )x(1)

3 )x(1)
2

+ (((yx(1)
4 − x4y(1))x(2)

1 − (yx(3)
4 − x4y(3) + y(1)x(2)

4 − x(1)
4 y(2))x1)x2

+ ((yx(2)
4 − x4y(2))x1 − (yx(1)

4 − x4y(1))x(1)
1 )x(1)

2 )x(1)
3

+ (((yx(1)
4 − x4y(1))x(2)

2 − (yx(3)
4 − x4y(3) + y(1)x(2)

4 − x(1)
4 y(2))x2)x3

+ ((yx(2)
4 − x4y(2))x2 − (yx(1)

4 − x4y(1))x(1)
2 )x(1)

3 )x(1)
1

− (((yx(1)
4 − x4y(1))x(2)

2 − (yx(3)
4 − x4y(3) + y(1)x(2)

4 − x(1)
4 y(2))x2)x1

+ ((yx(2)
4 − x4y(2))x2 − (yx(1)

4 − x4y(1))x(1)
2 )x(1)

1 )x(1)
3

− (((yx(1)
4 − x4y(1))x(2)

3 − (yx(3)
4 − x4y(3) + y(1)x(2)

4 − x(1)
4 y(2))x3)x2

+ ((yx(2)
4 − x4y(2))x3 − (yx(1)

4 − x4y(1))x(1)
3 )x(1)

2 )x(1)
1

+ (((yx(1)
4 − x4y(1))x(2)

3 − (yx(3)
4 − x4y(3) + y(1)x(2)

4 − x(1)
4 y(2))x3)x1

+ ((yx(2)
4 − x4y(2))x3 − (yx(1)

4 − x4y(1))x(1)
3 )x(1)

1 )x(1)
2

+ (((yx(1)
3 − x3y(1))x(2)

1 − (yx(3)
3 − x3y(3) + y(1)x(2)

3 − x(1)
3 y(2))x1)x4

+ ((yx(2)
3 − x3y(2))x1 − (yx(1)

3 − x3y(1))x(1)
1 )x(1)

4 )x(1)
2

− (((yx(1)
3 − x3y(1))x(2)

1 − (yx(3)
3 − x3y(3) + y(1)x(2)

3 − x(1)
3 y(2))x1)x2

+ ((yx(2)
3 − x3y(2))x1 − (yx(1)

3 − x3y(1))x(1)
1 )x(1)

2 )x(1)
4

− (((yx(1)
3 − x3y(1))x(2)

2 − (yx(3)
3 − x3y(3) + y(1)x(2)

3 − x(1)
3 y(2))x2)x4

+ ((yx(2)
3 − x3y(2))x2 − (yx(1)

3 − x3y(1))x(1)
2 )x(1)

4 )x(1)
1

+ (((yx(1)
3 − x3y(1))x(2)

2 − (yx(3)
3 − x3y(3) + y(1)x(2)

3 − x(1)
3 y(2))x2)x1

+ ((yx(2)
3 − x3y(2))x2 − (yx(1)

3 − x3y(1))x(1)
2 )x(1)

1 )x(1)
4

+ (((yx(1)
3 − x3y(1))x(2)

4 − (yx(3)
3 − x3y(3) + y(1)x(2)

3 − x(1)
3 y(2))x4)x2

+ ((yx(2)
3 − x3y(2))x4 − (yx(1)

3 − x3y(1))x(1)
4 )x(1)

2 )x(1)
1

− (((yx(1)
3 − x3y(1))x(2)

4 − (yx(3)
3 − x3y(3) + y(1)x(2)

3 − x(1)
3 y(2))x4)x1

+ ((yx(2)
3 − x3y(2))x4 − (yx(1)

3 − x3y(1))x(1)
4 )x(1)

1 )x(1)
2

− (((yx(1)
2 − x2y(1))x(2)

1 − (yx(3)
2 − x2y(3) + y(1)x(2)

2 − x(1)
2 y(2))x1)x4
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+ ((yx(2)
2 − x2y(2))x1 − (yx(1)

2 − x2y(1))x(1)
1 )x(1)

4 )x(1)
3

+ (((yx(1)
2 − x2y(1))x(2)

1 − (yx(3)
2 − x2y(3) + y(1)x(2)

2 − x(1)
2 y(2))x1)x3

+ ((yx(2)
2 − x2y(2))x1 − (yx(1)

2 − x2y(1))x(1)
1 )x(1)

3 )x(1)
4

+ (((yx(1)
2 − x2y(1))x(2)

3 − (yx(3)
2 − x2y(3) + y(1)x(2)

2 − x(1)
2 y(2))x3)x4

+ ((yx(2)
2 − x2y(2))x3 − (yx(1)

2 − x2y(1))x(1)
3 )x(1)

4 )x(1)
1

− (((yx(1)
2 − x2y(1))x(2)

3 − (yx(3)
2 − x2y(3) + y(1)x(2)

2 − x(1)
2 y(2))x3)x1

+ ((yx(2)
2 − x2y(2))x3 − (yx(1)

2 − x2y(1))x(1)
3 )x(1)

1 )x(1)
4

− (((yx(1)
2 − x2y(1))x(2)

4 − (yx(3)
2 − x2y(3) + y(1)x(2)

2 − x(1)
2 y(2))x4)x3

+ ((yx(2)
2 − x2y(2))x4 − (yx(1)

2 − x2y(1))x(1)
4 )x(1)

3 )x(1)
1

+ (((yx(1)
2 − x2y(1))x(2)

4 − (yx(3)
2 − x2y(3) + y(1)x(2)

2 − x(1)
2 y(2))x4)x1

+ ((yx(2)
2 − x2y(2))x4 − (yx(1)

2 − x2y(1))x(1)
4 )x(1)

1 )x(1)
3

+ (((yx(1)
1 − x1y(1))x(2)

2 − (yx(3)
1 − x1y(3) + y(1)x(2)

1 − x(1)
1 y(2))x2)x4

+ ((yx(2)
1 − x1y(2))x2 − (yx(1)

1 − x1y(1))x(1)
2 )x(1)

4 )x(1)
3

− (((yx(1)
1 − x1y(1))x(2)

2 − (yx(3)
1 − x1y(3) + y(1)x(2)

1 − x(1)
1 y(2))x2)x3

+ ((yx(2)
1 − x1y(2))x2 − (yx(1)

1 − x1y(1))x(1)
2 )x(1)

3 )x(1)
4

− (((yx(1)
1 − x1y(1))x(2)

3 − (yx(3)
1 − x1y(3) + y(1)x(2)

1 − x(1)
1 y(2))x3)x4

+ ((yx(2)
1 − x1y(2))x3 − (yx(1)

1 − x1y(1))x(1)
3 )x(1)

4 )x(1)
2

+ (((yx(1)
1 − x1y(1))x(2)

3 − (yx(3)
1 − x1y(3) + y(1)x(2)

1 − x(1)
1 y(2))x3)x2

+ ((yx(2)
1 − x1y(2))x3 − (yx(1)

1 − x1y(1))x(1)
3 )x(1)

2 )x(1)
4

+ (((yx(1)
1 − x1y(1))x(2)

4 − (yx(3)
1 − x1y(3) + y(1)x(2)

1 − x(1)
1 y(2))x4)x3

+ ((yx(2)
1 − x1y(2))x4 − (yx(1)

1 − x1y(1))x(1)
4 )x(1)

3 )x(1)
2

− (((yx(1)
1 − x1y(1))x(2)

4 − (yx(3)
1 − x1y(3) + y(1)x(2)

1 − x(1)
1 y(2))x4)x2

+ ((yx(2)
1 − x1y(2))x4 − (yx(1)

1 − x1y(1))x(1)
4 )x(1)

2 )x(1)
3 . (28)
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