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Doubly perfect nonlinear boolean permutations

Laurent Poinsot ∗
2

LIPN CNRS UMR 7030 Institut Galilée
Université Paris-Nord, 994

Avenue Jean-Baptiste Clément
93430 Villetaneuse6

France

Abstract8

Due to implementation constraints the XOR operation is widely used in order to
combine plaintext and key bit-strings in secret-key block ciphers. This choice directly induces10

the classical version of the differential attack by the use of XOR-kind differences. While
very natural, there are many alternatives to the XOR. Each of them inducing a new form12

for its corresponding differential attack (using the appropriate notion of difference) and
therefore block-ciphers need to use S-boxes that are resistant against these nonstandard14

differential cryptanalysis. In this contribution we study the functions that offer the best
resistance against a differential attack based on a finite field multiplication. We also show that16

in some particular cases, there are robust permutations which offers the best resistant against
both multiplication and exponentiation based differential attacks. We call them doubly perfect18

nonlinear permutations.

Keywords and phrases : Finite field, perfect nonlinear function, group action.20

1. Introduction

Shannon has introduced in [13] the notions of diffusion and confusion22

which have been mainly accepted and successfully used by cryptologists
as guidelines in their work to design secret-key ciphers. These notions24

accurately set up a category of “nice” cryptographic objects namely
the iterative block-ciphers such as the Data and Advanced Encryption26

Standards (see [3, 4]). Such an algorithm works as an iteration of a
certain procedure called the round function. This functions is made in28

two pieces, a linear and a nonlinear parts, whose roles are to satisfy
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572 L. POINSOT

Shannon’s diffusion and confusion. Diffusion refers to a sensitivity to
the initial conditions: a small deviation in the input should cause a large2

change at the output. The linear part of the round-function is devoted to
provide a good level of diffusion. The goal of confusion is to hide the4

algebraic relations between the plaintext and the secret-key in order to
make harder the statistical attacks. This is exactly the role assumed by the6

nonlinear part, also called S-boxes. One of the major attacks for which the
S-boxes should be highly resistant is the differential cryptanalysis [1] or its8

“dual” counter-part the linear attack [5]. The differential cryptanalysis is
intrinsically related to the fashion the plaintexts and the round-keys are10

combined at each step. As to interlock plaintexts with keys, the XOR or
component-wise modulo-two sum (or the addition in characteristic 2) is12

usually chosen because of its implementation efficient nature. A block-
cipher is then vulnerable to the differential attack if there is a nonzero14

XOR difference of two plaintexts such that the difference in output
is statistically distinguishable from a random variable that follows a16

(discrete) uniform law. The S -boxes that offer the best resistance against
such an attack are the perfect nonlinear functions [7]. As very particular18

combinatorial objects, perfect nonlinear functions do not exist in every
configuration. For instance if one works in finite elementary Abelian 2-20

groups, which in practice is usually the case, precisely because of the
involutive nature of the addition, perfect nonlinear permutations can not22

exist. Since, yet in practice, the plaintexts and ciphertexts have the same
length, we can not use perfect nonlinear permutations as S-boxes. So24

in many cases block-ciphers exploit suboptimally differentially resistant
functions, such as almost perfect nonlinear [6] or even differentially 4-uniform26

[8] functions. We make two simple observations. We have seen above
that by nature, the XOR prohibits the existence of perfect nonlinear28

permutations. Moreover apart from the XOR operation, the combination
law of plaintexts and keys can take many forms. While really efficient30

by nature the XOR is a very specific case of group action and it could
be interesting to use another one. Roughly speaking (more details are32

given in subsection 2.2) a group action is nothing but a particular external
operation of a group on a set (as the scalar multiplication of vectors). The34

set in question is the collection of all possible plaintexts. The set of (round)
keys is endowed with a group structure and operates on the messages.36

Such a very general block-cipher could be vulnerable to a modified
differential attack which should be no more related to the XOR differences38

but to the appropriate group action differences. In [12] is presented the
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NONLINEAR BOOLEAN PERMUTATIONS 573

algorithm of a such an attack. Therefore the determination of the best
resistant S-boxes or in other terms the adapted concept of perfect nonlinear2

functions, is needed. The theoretic description of such functions covers the
following contributions [9, 10, 11] and the most important definitions and4

relevant results upon them are recalled in section 2. We earlier say that
although natural, the XOR is not the only way to combine bit-strings. In6

the finite field setting the multiplication also may be used. The S-boxes that
maximally resist against a differential attack based on the multiplication8

rather than the addition are called multiplicatively perfect nonlinear functions
and in this paper we prove the existence of permutations with such10

a cryptographic property in many situations (and in most cases than
classical perfect nonlinear functions). In addition, in some very particular12

cases, the multiplicative group K∗ of a finite field K in characteristic
two can be equipped with another multiplication, which is distributive14

on the classical one. With this second multiplication (which is merely
an exponentiation), K∗ turns to be a finite field itself (but no more of16

characteristic two). This paper has as its major goal the construction of
Boolean permutations over K which are perfect nonlinear with respect18

to both multiplications of the new field. They are called doubly perfect
nonlinear Boolean permutations and can be seen as relevant alternatives to20

the use of almost perfect nonlinear permutations.

2. Classical and generalized situations22

2.1 Notations and conventions

In this contribution the term function has the same meaning as the24

expression total function. If X is a finite set then |X| is its cardinality and
IdX its identity map. For f : X → Y and y ∈ Y we define as usually the26

fibre f−1({y}) = {x ∈ X | f (x) = y} . For an additive group (G,+, 0)
(resp. a multiplicative group (G, ., 1) ) we define G∗ = G \ {0} (resp.28

G∗ = G \ {1} ). For a unitary ring (R,+, 0, ., 1) we have R∗ = R \ {0}
and R∗∗ = R∗ \ {1} = R \ {0, 1} . Moreover the group of units of R30

(i.e. the group of invertible elements of the ring) is denoted U(R) and
obviously U(R)∗ = U(R) \ {1} . In order to simplify the notations we32

sometimes identify a group (or a ring) with its underlying set. The ring
of integers modulo n is denoted (Zn,+, 0, ., 1) and its underlying set is34

identified with the particular system of representatives of residue classes
{0, 1, . . . , n − 1} . The finite field of characteristic p with pm elements36

is denoted GF(pm) . A prime field GF(p) is identified with Zp and
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574 L. POINSOT

therefore with {0, 1, . . . , p − 1} . Finally Aut(G) denotes the set of all
group automorphisms of a group G .2

2.2 Group actions

Essential to everything that we shall discuss in this paper is the notion4

of group actions.
Let G be a group and X a nonempty set. We say that G acts on X if6

there is a group homomorphism φ : G → S(X) , where S(X) is the group
of permutations over X . Usually for (g, x) ∈ G × X , we use the following8

convenient notation

g · x := φ(g)(x) (1)10

and so we hide any explicit reference to the morphism φ . An action is
called faithful if the corresponding homomorphism φ is one-to-one. It is12

called regular if for each (x, y) ∈ X2 there is one and only one g ∈ G such
that g · x = y · A regular action is also faithful.14

Example 1.

• A group G acts on itself by (left) translation: g · x := gx for (g, x) ∈ G2
16

(G is here written multiplicatively). This action is regular;
• A subgroup H of a group G also acts on G by translation: h · x := hx18

for (h, x) ∈ H ×G . This action is faithful and if H is a proper subgroup,
then the action is not regular;20

• The multiplicative group K∗ of a field K acts on K by the multiplica-
tion law of the group. This action is faithful but not regular since 0 is22

fixed by every elements of K∗ . More generally the action of K∗ on a
K-vector space by scalar multiplication is also a faithful action (in this24

case the null vector is fixed by any scalar multiplication).

2.3 Group action perfect nonlinearity26

Let X and Y be two finite nonempty sets. A function f is called
balanced if for each y ∈ Y ,28

|{x ∈ X | f (x) = y}| = |X|
|Y| . (2)

With the concept of group actions we now have all the ingredients to recall30

the notion of group action perfect nonlinearity (see [10]).

Definition 1. Let G be a finite group that acts faithfully on a finite32

nonempty set X . Let H be a finite group (written additively). A function
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NONLINEAR BOOLEAN PERMUTATIONS 575

f : X → H is called perfect nonlinear (by respect to the action of G on X )
or G -perfect nonlinear if for each α ∈ G∗ , the derivative of f in direction α2

dα f : X → H
x 7→ f (α.x)− f (x) (3)4

is balanced or in other words for each α ∈ G∗ and each β ∈ H ,

|{x ∈ X | dα f (x) = β}| = |X|
|H| . (4)6

As we can see our definition coincides with the classical one (see [2]) in the
classical situations (G acts on itself by left translation).8

3. Doubly perfect nonlinear Boolean permutations

In the finite fields settings there are two main natural group actions,10

namely additive and multiplicative translations. The first one is the
standard used as plaintext and key combination process and has been12

widely studied in terms of (classical) perfect nonlinearity and/or bentness.
In this contribution we focus on the second one: we construct perfect14

nonlinear functions by respect to multiplication rather than addition called
multiplicatively perfect nonlinear functions. Moreover in very particular16

cases, multiplication can be seen as an addition of a new finite field. In
this paper we exhibit some perfect nonlinear functions by respect to both18

original and new multiplications called doubly perfect nonlinear functions.

3.1 Multiplicatively perfect nonlinear functions20

Let us begin with a lemma whose proof is a triviality.

Lemma 2. Let G and H be two finite groups (written multiplicatively). Let λ22

be a group homomorphism from G to H . For each β ∈ λ(G) ,

|λ−1({β})| = | ker λ| . (5)24

Let d and m be two nonzero integers. We denote by V(p, m, d) any d
dimensional vector space over the finite field GF(pm) . We use the same26

symbols “+” (resp. “−”) to denote both additions (resp. subtractions)
of V(p, m, d) and GF(pm) and α · v is the scalar multiplication of v ∈28

V(p, m, d) by α ∈ GF(pm) .

Lemma 3. Let d, e, m, n > 0 be any positive integers. Let λ be a group30

homomorphism from (V(p, m, d),+) to (V(p, n, e),+) . Let G be a subgroup
of the group GF(pm)∗ . Then for each β ∈ λ(V(p, m, d)) and for each α ∈ G∗ ,32
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576 L. POINSOT
2

|{v ∈ V(p, m, d) | dαλ(v) = β}| = |λ−1({β})| = | ker λ|. (6)

The proof of the previous lemma is not difficult and thus is not given4

here.

Theorem 4. Let d, e, m, n > 0 be any positive integers such that dm ≥ en . Let6

λ be a group epimorphism1 from (V(p, m, d),+) onto (V(p, n, e),+) . Then λ

is GF(pm)∗ -perfect nonlinear.8

Proof. Since λ is onto, every β ∈ V(p, n, e) belong to λ(V(p, m, d)) .
According to Lemma 3 with G = GF(pm)∗ , for each β ∈ V(p, n, e) and10

for each α ∈ GF(pm)∗∗ = GF(pm) \ {0, 1} , |{v ∈ V(p, m, d) | dαλ(v) =

β}| = |λ−1({β})| = | ker λ| . But {λ−1({β})}β∈V(p,n,e) is a partition12

of V(p, m, d) . Therefore we have |V(p, m, d)| = ∑
β∈V(p,n,e)

| λ−1({β})| =

| ker λ‖V(p, n, e)| . So | ker λ| = |V(p,m,d)|
|V(p,n,e)| = pmd−ne . ¤14

In classical situations it is well-known that if a function f : V(2, m, d)
→ V(2, n, e) is bent then md is an even integer and md ≥ 2ne . Replacing16

addition by multiplication allows us to find “bent” function even if md is
an odd integer and/or 2ne > md ≥ ne . When md = ne (and p = 2), almost18

perfect nonlinear (APN) functions are relevant for cryptographic purposes.
They are defined (see [6]) by the fact that the equation dα f (x) = β with x20

as an unknown has at most two solutions for each a 6= 0 and each β . The
only known examples of APN permutations need md to be an odd integer.22

In our case by construction any GF(pm) -linear isomorphism of V(p, m, d)
is a GF(pm)∗ -perfect nonlinear; so it is also the case for p = 2 and md an24

even integer.

3.2 Doubly perfect nonlinear Boolean permutations26

The group of units GF(pm)∗ of the finite field GF(pm) can be
equipped with another multiplication that turns it into a unitary commu-28

tative ring. Indeed let γ be a primitive root of GF(pm) . The exponential

eγ : (Zpm−1,+) → GF(pm)∗30

i 7→ γi (7)

is a group isomorphism (in the remainder we always suppose that such32

a primitive root γ is fixed). We can use it to turn GF(pm)∗ into a com-
mutative unitary ring, isomorphic to the ring of modulo pm − 1 integers,34

1A group epimorphism is a group homomorphism which is onto.
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NONLINEAR BOOLEAN PERMUTATIONS 577

by2 γi × γ j = γi j . We call such a structure (GF(pm),+, 0, ., 1,×,γ) a
characteristic (p, pm − 1) field-ring (which means that (GF(pm),+, 0, ., 1)2

is a characteristic 2 field and (GF(pm)∗, ., 1,×,γ) is a characteristic pm − 1
ring i.e. γpm−1 = 1,γi 6= 1 for all 0 < i < pm − 1) or double-field when4

(GF(pm)∗, ., 1,×,γ) is also a field. The multiplicative identity of the ring
(GF(pm)∗, ., 1,×,γ) is γ1 = γ and the classical rules of distributivity,6

absorption and associativity take the following forms γi × (γ jγk) = (γi ×
γ j)(γi × γk) , 1 × γi = 1, γi × (γ j × γk) = (γi × γ j) × γk . The group8

of units of this ring, U(GF(pm)∗) , is equal to {γi | i ∈ U(Zpm−1)} =

{γi | (i, pm − 1) = 1} (where (i, j) is the greatest common divisor of i and10

j ) and if γi is invertible with respect to × (i.e. γi is a unit), (γi)−1 = γ
1
i .

If i 6= 0 is not congruent with 1 modulo pm − 1, then it is a zero divisor12

in Zpm−1 : it exists j ∈ Z∗
pm−1 such that i j = 0, therefore γi is itself a

zero divisor3 in GF(pm)∗ because γi × γ j = γi j = γ0 = 1. This ring is an14

integral domain if and only if (Zpm−1,+.0, ., 1) is itself an integral domain
or equivalently a (finite) field. So (GF(pm)8,+, 0, ., 1) is a finite field if and16

only if pm − 1 is a prime integer. If p is an odd prime number then the
only possible choice is p = 3 and m = 1 (since 31 − 1 = 2) because in the18

other case pm − 1 > 2 and is even. The following lemma gives a constraint
on m when p = 2.20

Lemma 5. Let k ∈ N∗ , k > 1 . Let m ∈ N∗ . If m is not a prime integer then so
is km − 1.22

Proof. Suppose that m = rs where both r and s are integers greater or

equal to 2. We will prove that krs − 1 = (kr − 1)
s
∑

i=1
kr(s−i) by induction on24

the integer s .
If s = 2 then k2r − 1 = (kr − 1)(kr + 1) .26

Let s ∈ N∗ such that s ≥ 2. Suppose that for all integer l such that

1 ≤ l ≤ s , krl − 1 = (kr − 1)
l
∑

i=1
k(l−i) . Let us prove that kr(s+1) − 1 =28

(kr − 1)
s+1
∑

i=1
kr(s + 1 − i) .

We have30

kr(s+1) − 1 = kr(s+1) − kr + kr − 1

2More rigorously γi × γ j = eγ(e−1
γ (γi)e−1

γ (γ j)) = eγ(i j) . In fact any calculation in the
exponent should be understood modulo pm − 1 .

3More formally we should say a × -divisor of 1.
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578 L. POINSOT

= kr(krs − 1) + (kr − 1) (8)

= kr(kr − 1)
s

∑
i=1

kr(s−i) + (kr − 1) (by induction hypothesis)2

= (kr − 1)
( s

∑
i=1

kr(s+1−i) + 1
)

= (kr − 1)
s+1

∑
i=1

kr(s+1−i). (9)4

¤
An integer of the form 2q − 1 where q is a prime number is called a6

Mersenne number. When a Mersenne number is itself a prime integer,
it is called a Mersenne prime4. So given a Mersenne prime p = 2q − 1,8

(GF(2q)∗, ., 1,×,γ) is isomorphic to the prime field (GF(p),+, 0, ., 1)
(which is identified with (Zp,+, 0, ., 1) ) and (GF(2q),+, 0, ., 1,×,γ) is a10

characteristic (2, p) double-field (i.e. (GF(2q),+, 0, ., 1) is a characteristic
2 field and (GF(2q)∗, ., 1,×,γ) is a characteristic p field).12

We now characterize the existence of some subgroups of units in rings
which will be useful in the sequel.14

Lemma 6. Let R be a non-trivial unitary ring5. Then −1 is invertible in R .

Proof. It is obvious since (−1)(−1) = 1. ¤16

Lemma 7. Let n > 1 . The group of units U(Zn) contains at least one subgroup
G such that for every i ∈ G∗ (i.e. i 6= 1 and i ∈ G ), i − 1 ∈ U(Zn) if and only18

if n is equal to 2 or is an odd integer.

Proof. If n=2 then G=U(Z2)={1} is a group with the good properties.20

Let suppose that n > 2 is an even integer. Then i belongs to U(Zn) if
and only if (i, n) = 1. Therefore i is an odd integer. Then i − 1 is equal22

to zero or is an even integer and it is invertible in none of the two cases.
Now let suppose that n is an odd integer. Then 2 is invertible modulo n .24

Since according to Lemma 6 (since n > 1, Zn is non-trivial), 1 is a unit,
−2 = 2(−1) = −1 − 1 is also invertible. The group G = 〈−1〉 = {±1}26

satisfies the assumptions of the lemma. ¤
We should note that in the particular case where n is a prime number28

p,Z∗
p = U(Zp) is such a group G . If n = 2m − 1 then n is odd so there

4For instance 3 = 22 − 1 , 5 = 23 − 1 , 31 = 25 − 1 and 127 = 27 − 1 are Mersenne prime
numbers.

5 R is not reduced to 0.
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NONLINEAR BOOLEAN PERMUTATIONS 579

is at least one subgroup G of Z2m−1 such that ∀ i ∈ G∗, i − 1 ∈ (Z2m−1) .
If p is an odd prime then pm − 1 is an even number. So unless the trivial2

case p = 3 and m = 1, U(Zpm−1) does not contain any such group G .

Lemma 8. Let γi ∈ U((GF(pm)∗, ., 1,×,γ)) . Then the map4

λ×
γi : GF(pm)∗ → GF(pm)∗

γ j 7→ γi ×γ j (10)6

is a group automorphism of (GF(pm)∗, ., 1) .

Proof. Since × is distributive on . , λ×
γi is a group endomorphism of8

(GF(pm)∗, ., 1) . Let γ j such that γi j = 1. This is equivalent to i j = 0.
But γi ∈ U(GF(pm)∗) so i ∈ U(Zpm−1) and then i j = 0 if and only if10

j = 0. So γ j = γ0 = 1 and λ×
γi is one-to-one also is onto. It is thus an

element of Aut((GF(pm)∗, ., 1)) . ¤12

Lemma 9. Let G be a subgroup of (U(GF(pm)∗),×,γ) . Then G acts faithfully
(by group automorphism) on (GF(pm)∗, ., 1) by ρ(γi) : γ j 7→ γi ×γ j .14

Proof. We define

ρ : G → Aut((GF(pm)∗, ., 1))16

γi 7→ λ×
γi : (γ j 7→ γi ×γ j). (11)

(By Lemma 8 we already know that for each γi ∈ G , we have ρ(γi) =18

λ×
γi ∈ Aut((GF(pm)∗, ., 1)) .) Let’s prove that is a group action on GF(pm)∗ .

Let γi and γ j be elements of G . Let γk ∈ GF(pm)∗ . ρ(γi × γ j)(γk) =20

ρ(γi j)(γk) = γi j × γk = γi jk = γi × (γ j × γk) = (ρ(γi) ◦ ρ(γ j))(γk) .
Then ρ is a group homomorphism from G to Aut(GF(pm)∗, ., 1) . Finally22

let γi ∈ G such that ρ(γi) = IdGF(pm)∗ . For any k ∈ Zpm−1,γik = γk . So
ik = k and in particular i1 = 1, therefore i = 1 and γi = γ1γ . We deduce24

that ρ is one-to-one and the action is thus faithful. ¤

Definition 10. Let G be a group and X be any (nonempty) set. The26

restriction to G∗ of a map f : G → X is denoted f ∗ .

Theorem 11. Let m ∈ N∗ such that m > 1 . Let G be a subgroup of U(Z2m−1)28

such that for each i ∈ G∗ , i − 1 ∈ U(Z2m−1) (such a group exists according to
Lemma 7 since 2m − 1 > 1 by assumption and is an odd number). Let λ be a30

field automorphism of GF(2m) . Then we have

(i) λ is (GF(2m)∗, ., 1) -perfect nonlinear from GF(2m) to GF(2m) ;32
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580 L. POINSOT

(ii) λ∗ is (γG ,×,γ) -perfect nonlinear from GF(2m)∗ to GF(2m)∗ where
γG = eγ(G) .2

Proof. (i) This result is clear by applying Theorem 4 with GF(2m)

considered as a one-dimensional vectors space over itself;4

(ii) Since γG = eγ(G) , γG is a subgroup of the group of units of
GF(2m)∗ . By Lemma 9, γG acts faithfully on GF(2m)∗ by group auto-6

morphism. Because λ is a field homomorphism, λ(GF(2m)∗) ⊆ GF(2m)∗

and therefore λ∗ : GF(2m)∗ → GF(2m)∗ is a group homomorphism.8

Moreover λ∗ is onto. Indeed for y ∈ GF(2m)∗ there is x ∈ GF(2m)

such that λ(x) = y . Since y 6= 0, x 6= 0 and therefore λ∗(x) = y .10

So λ∗ is a group epimorphism (and then a group automorphism). Let
β ∈ GF(2m)∗ = λ(GF(2m)∗) . Let γi ∈ (γG)∗ (so i 6= 1). Let’s prove that12

{γ j ∈ GF(2m)∗ | dγiλ∗(γ j) = β} = γ
1
j × λ−1({β}) .We have

dγiλ
∗(γ j) = β14

⇔ λ∗(γi ×γ j)

λ∗(γ j)
= β

⇔ λ

(
(γi ×γ j)

γ j

)
= β (because λ is a field homomorphism)16

⇔ λ((γi ×γ j)(γ− j)) = β (12)

⇔ λ((γi ×γ j)(γ−1 ×γ j)) = β18

⇔ λ((γiγ−1)×γ j) = β (by distributivity)

⇔ λ(γi−1 ×γ j) = β20

⇔ γi−1 ×γ j ∈ λ−1({β}).
Since γi ∈ (γG)∗ ⇔ i ∈ G∗ and by assumption on G , i − 1 is invertible22

modulo 2m − 1. Then γi−1 ∈ U(GF(2m)∗) . According to Lemma 8,
λ×
γi−1 ∈ Aut((GF(2m)∗, ., 1)) . Therefore γi−1 × γ j ∈ λ−1({β}) ⇔ γ j ∈24

(λ×
γi−1)

−1(λ−1({β})) = γ
1

i−1 × λ−1({β}) . Since λ×
γ

1
i−1

is a permutation

we have |λ−1({β})| = |γ 1
i−1 × λ−1({β})| . Because β ∈ GF(pm)∗ ,26

we have λ−1({β}) = (λ∗)−1({β}) and by Lemma 2, we deduce that

|γ 1
i−1 × λ−1({β})| = |(λ∗)−1({β})| = | ker λ∗| with ker λ∗ = {x ∈28

GF(2m)∗|λ∗(x) = 1} = {x ∈ GF(2m)∗ | λ(x) = 1} . In addition
{λ−1({β})}β∈GF(pm)∗ is a partition of GF(2m)∗ .30
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NONLINEAR BOOLEAN PERMUTATIONS 581

Therefore we have

|GF(2m)∗| = ∑
β∈GF(2m)∗

|λ−1(β)| = | ker λ∗| |GF(2m)∗|. (13)2

Then for each γi ∈ (γG)∗ (or equivalently for each i ∈ G∗ ) and for each
β ∈ GF(2m)∗, |{γ j ∈ GF(2m)∗|dγiλ∗(γ j) = β| = | ker λ∗| = 1. ¤4

Definition 12. Let p = 2q − 1 be a Mersenne prime number. A function
f : GF(2q) → GF(2q) such that f (α) 6= 0 for all invertible α ∈ GF(2q) is6

called doubly perfect nonlinear if

(i) f is (GF(2q)∗, ., 1) -perfect nonlinear from GF(2q) to itself;8

(ii) f ∗ is (GF(2q)∗∗,×,γ) -perfect nonlinear from GF(2q)∗ to itself.

Since the group of field automorphisms of a finite field GF(pm) is10

identical to the Galois group of the degree m extension GF(pm) over its
prime field which is a cyclic group generated by the Frobenius automor-12

phism

Fp : GF(pm) → GF(pm)14

x 7→ xp (14)

every field automorphism λ can be written as F r
p for one r such that16

0 ≤ r ≤ m − 1. We now give a nice result that asserts the existence of
a Boolean permutation over GF(2q) , where p = 2q − 1 is a Mersenne18

prime, which is merely both (GF(2q)∗, ., 1) and (GF(2q)∗∗,×,γ) -perfect
nonlinear i.e. doubly perfect nonlinear.20

Theorem 13. Let p = 2q − 1 be a Mersenne prime number. Let λ = F r
2 (for

any 0 ≤ r ≤ q − 1) be a field automorphism of GF(2q) . Then λ is a doubly22

perfect nonlinear permutation.

Proof. Because p = 2q − 1 is a prime number, GF(2q)∗ is isomorphic24

to the field GF(p) = Zp . Therefore we can choose G = Z∗
p as a group

such that for each i ∈ G∗ , i − 1 is invertible modulo p . Then γG =26

U(GF(2q)∗) = GF(2q)∗∗ = GF(2q) \ {0, 1} . According to Theorem 11,
λ is (GF(2q)∗, ., 1) -perfect nonlinear and λ∗ is (GF(2q)∗∗,×,γ) -perfect28

nonlinear. ¤
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