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Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS (UMR 7030), 93430 Villetaneuse, France

Correspondence should be addressed to Laurent Poinsot; laurent.poinsot@lipn.univ-paris13.fr

Received 19 March 2013; Revised 17 May 2013; Accepted 14 July 2013

Academic Editor: Stefaan Caenepeel

Copyright © 2013 Laurent Poinsot. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A locally finite category is defined as a category in which every arrow admits only finitely many different ways to be factorized by
composable arrows. The large algebra of such categories over some fields may be defined, and with it a group of invertible series
(undermultiplication). For certain particular locally finite categories, a substitution operation, generalizing the usual substitution of
formal power series, may be defined, and with it a group of reversible series (invertible under substitution). Moreover, both groups
are actually affine groups. In this contribution, we introduce their coordinate Hopf algebras which are both free as commutative
algebras.The semidirect product structure obtained from the action of reversible series on invertible series by anti-automorphisms
gives rise to an interaction at the level of their coordinate Hopf algebras under the form of a smash coproduct.

1. Introduction

The set 𝐺 of formal power series in one variable 𝑥, such as,
1 + 𝑥𝑇, where 𝑇 ∈ 𝑅[[𝑥]], forms a group under the usual
multiplication of series (whenever 𝑅 is a commutative ring
with a unit). Moreover, the set 𝐻 of series, such as, 𝑥 + 𝑥

2
𝑇,

𝑇 ∈ 𝑅[[𝑥]], forms a group under another operation, namely,
the substitution. For any 𝑆 = ∑

𝑛≥0
𝑠
𝑛
𝑥
𝑛

∈ 𝑅[[𝑥]], and
𝑇 ∈ 𝐻, the substitution of 𝑆 by 𝑇 is defined as the series
∑

𝑛≥0
𝑠
𝑛
𝑇
𝑛 (the fact that 𝑇 begins with 𝑥 implies that (𝑇

𝑛
)
𝑛≥0

is summable in the usual topology of series). This actually
gives rise to a semidirect product of groups 𝐺 ⋊ 𝐻

op (where
𝐻

op is the opposite group of 𝐻). Actually, this situation may
be generalized in the following way. Let 𝐶 be a category in
which any arrow admits only finitely many factorizations by
composable arrows. Such a category is referred to as a locally
finite category. A locally finite category admits a large algebra,
that is, the set of all set-theoretic maps from the arrows of the
category to some base (commutative) ring may be multiplied
by a Cauchy-kind product inherited from the composition of
arrows in the category. Now, the set I of all series in this
large algebra with a coefficient 1 at each identity arrow in
the category forms a group under multiplication. Moreover,
given a finite semicategory 𝐶, roughly speaking a category
without identities, wemay construct the free category𝐶

∗ over

the underlying graph structure of 𝐶, which is a locally finite
category. According to a universal property, we may define in
a uniqueway an evaluation functor thatmaps formal nonvoid
paths in 𝐶

∗ (nonvoid sequences of composable arrows in 𝐶)
to the result in 𝐶 of their compositions. This gives rise to an
operation of substitution on the large algebra of 𝐶

∗ similar
to the substitution of formal power series. The set M

1
of

all series in the large algebra which are zero on the identity
arrows and 1 on the formal paths of length one (the arrows of
𝐶) forms a group under substitution. Parallelizing the usual
situation of formal power series, it appears that this group acts
by anti-automorphisms on the groupI and therefore defines
a semidirect productI ⋊M

op

1
. Moreover both groupsI and

M
1
are actually affine groups and so admit coordinate Hopf

algebras which appear to be free as commutative algebras.
In this contribution, we present the constructions of both
affine groupsI andM

1
and introduce their coordinate Hopf

algebras which may be thought as generalizing some well-
known Hopf algebras.

2. Basic Definitions and Notations

In this paper, 𝑅 denotes a commutative ring with a unit. In
general, 𝑅-algebras are not assumed to possess a unit nor
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to be commutative but they are associative. The notation
𝑅-CAlg stands for the category of commutative 𝑅-algebras
with a unit and unit preserving algebra maps, and the hom-
sets are denoted by 𝑅-CAlg(𝐴, 𝐵). In what follows, if 𝐴 is 𝑅-
algebra with a unit, then 1

𝐴
is its identity.

Let 𝑋 be any set, and let 𝑓 ∈ 𝑅
𝑋. The support of 𝑓 is the

set {𝑥 ∈ 𝑋 : 𝑓(𝑥) ̸= 0}. Such a map 𝑓 is said to be finitely
supported or has afinite supportwhen its support is a finite set.
The set of all finitely supported maps from 𝑋 to 𝑅 is denoted
by 𝑅

(𝑋). It is free as a module with basis {𝛿
𝑥

: 𝑥 ∈ 𝑋} where
𝛿
𝑥
is the map such that 𝛿

𝑥
(𝑦) = 0 if 𝑦 ̸= 𝑥 and 𝛿

𝑥
(𝑥) = 1.

In what follows, we identify 𝑥 ∈ 𝑋 with its image 𝛿
𝑥
in

𝑅
(𝑋) so that any map 𝑝 ∈ 𝑅

(𝑋) may be written in a unique
way as a linear combination ∑

𝑥∈𝑋
𝑝(𝑥)𝑥. The module 𝑅

(𝑋) is
actually a submodule of the product 𝑅

𝑋. There is a duality
bracket between 𝑅

𝑋 and 𝑅
(𝑋), namely, the 𝑅-bilinear form

⟨⋅ | ⋅⟩ : 𝑅
𝑋

× 𝑅
(𝑋)

→ 𝑅 such that for every 𝑓 ∈ 𝑅
𝑋, 𝑝 ∈ 𝑅

(𝑋),

⟨𝑓 | 𝑝⟩ = ∑

𝑥∈𝑋

𝑓 (𝑥) 𝑝 (𝑥) , (1)

(the sum has only finitely many nonzero terms because 𝑝 is
finitely supported). It is obviously a two-sided nondegenerate.
In particular, for every 𝑓 ∈ 𝑅

𝑋 and every 𝑥 ∈ 𝑋, 𝑓(𝑥) = ⟨𝑓 |

𝑥⟩, and for every 𝑝 ∈ 𝑅
(𝑋), 𝑝 = ∑

𝑥∈𝑋
⟨𝑝 | 𝑥⟩𝑥. We observe

that for each 𝑥 ∈ 𝑋, 𝛿
𝑥
may be identified with an element of

(𝑅
𝑋

)
∗ through ⟨⋅ | ⋅⟩, namely, 𝛿

𝑥
(𝑓) = ⟨𝑓 | 𝑥⟩ = 𝑓(𝑥) for

every 𝑓 ∈ 𝑅
𝑋.

When 𝑅 is equipped with the discrete topology, and 𝑅
𝑋

has the product topology, then it becomes a (Hausdorff)
complete topological module (the addition and 𝑓 → −𝑓 are
continuous, and scalar multiplication is jointly continuous),
and it is the completion of the topological 𝑅-module 𝑅

(𝑋)

(equipped with the product topology inherited from that of
𝑅
𝑋). Moreover, for any 𝑓 ∈ 𝑅

𝑋, the family (⟨𝑓 | 𝑥⟩𝑥)
𝑥∈𝑋

is
summable (see [1]) in𝑅

𝑋with sum𝑓 so thatwemay represent
𝑓 as an infinite linear combination 𝑓 = ∑

𝑥∈𝑋
⟨𝑓 | 𝑥⟩𝑥 (more

details may be found in [2–4]). Moreover, ⟨⋅ | ⋅⟩ is separately
continuous.

3. A General Approach on Coordinate Hopf
Algebras of a Group of Series

In this section, we present in a general way the notion of
coordinate Hopf algebra on a group-valued functor of 𝐴-
valued functions defined on some set 𝑍, for varying algebras
𝐴. The result presented here will be used in the sequel to
define two coordinate Hopf algebras of two groups of formal
series that define a semidirect product. The reader should
refer to [5, 6] for basic definitions about Hopf algebras, to [7–
9] for the notions concerning algebraic groups, and to [10] for
category-theoretic concepts.

Let 𝐴 be a commutative 𝑅-algebra with a unit, where 𝑅

is a commutative ring with unit. An 𝑅-group is a functor
from 𝑅-CAlg to the category of groups Grp. When an 𝑅-
group 𝐺 is representable when viewed as a set-valued functor

(by composition with the forgetful functor from Grp to
the category of sets Set), that is, 𝐺(𝐵) ≅ 𝑅-CAlg(𝐴, 𝐵)

(isomorphic as sets, natural in 𝐵) for some commutative
𝑅-algebra 𝐴, then it is called an affine group (or proaffine
algebraic group when the base ring 𝑅 is a field), and 𝐴

(determined up to a unique isomorphism) is referred to as
the coordinate Hopf algebraO(𝐺) of 𝐺, for reasons made clear
hereafter. The representable 𝑅-group 𝐺 is an affine algebraic
group when O(𝐺) is finitely generated as an 𝑅-algebra. Since
the multiplication 𝑚

𝐵
: 𝐺(𝐵) × 𝐺(𝐵) → 𝐺(𝐵), the inversion

𝑖
𝐵

: 𝐺(𝐵) → 𝐺(𝐵), and the unit element 𝑒
𝐵

: ⋆ →

𝐺(𝐵) are natural transformations between representable set-
theoretic functors, by Yoneda’s lemma they uniquely give rise
respectively to a (coassociative) coproduct Δ : O(𝐺) →

O(𝐺) ⊗
𝑅
O(𝐺), an antipode 𝑆 : O(𝐺) → O(𝐺), and a counit

O(𝐺) → 𝑅 that turn the algebra O(𝐺) into a commutative
Hopf 𝑅-algebra. It turns that the natural set isomorphisms
𝐺(𝐵) ≅ 𝑅-CAlg(O(𝐺), 𝐵) become group isomorphisms.

In what follows we will be interested in the following
situation. Let 𝐺 be an 𝑅-group, and let 𝑍 be a set. We assume
that there exists a subset 𝑋 of 𝑍 such that, as a set-valued
functor, 𝐺 is isomorphic to Set(𝑋, 𝑈(⋅)), where 𝑈 : 𝑅-
CAlg → Set is the forgetful functor, that is, for every algebra
𝐴, 𝛼

𝐴
: 𝐺(𝐴) ≅ 𝐴

𝑋
⊆ 𝐴

𝑍 (bijection natural in 𝐴), and for
every algebra map 𝑓 : 𝐴 → 𝐵, 𝛼

𝐵
(𝐺(𝑓)(𝑆)) = 𝑓 ∘ 𝛼

𝐴
(𝑆) for

each 𝑆 ∈ 𝐺(𝐴). This is equivalent to say that 𝐺 is represented
by the free commutative 𝑅-algebra 𝑅[𝑋]. In this situation, we
say that 𝑋 is the coordinate system of 𝐺 (obviously when it
exists, 𝑋 is uniquely determined up to bijections). We may
view any 𝑆 ∈ 𝐴

𝑋 as a formal series ∑
𝑥∈𝑋

⟨𝑆 | 𝑥⟩𝑥. The
functor 𝐺 × 𝐺 is represented by the algebra 𝑅[𝑋] ⊗

𝑅
𝑅[𝑋],

while 𝑅 represents the constant functor ∗ equal to a one-
point set. By Yoneda’s lemma, the multiplication 𝑚 : 𝐺 ×

𝐺 → 𝐺 uniquely determines an algebra map Δ ∈

(𝑅[𝑋]⊗
𝑅
𝑅[𝑋])

𝑋
≅ 𝑅-CAlg(𝑅[𝑋], 𝑅[𝑋] ⊗

𝑅
𝑅[𝑋]) which

is explicitly given by 𝛼
𝑅[𝑋]⊗𝑅𝑅[𝑋]

(𝑚
𝑅[𝑋]⊗𝑅𝑅[𝑋]

(𝛼
−1

𝑅[𝑋]⊗𝑅𝑅[𝑋]
(𝑆),

𝛼
−1

𝑅[𝑋]⊗𝑅𝑅[𝑋]
(𝑇))) where 𝑆 = ∑

𝑥∈𝑋
(𝑥 ⊗ 1) 𝑥 ∈ 𝑅[𝑋]

𝑋 and
𝑇 = ∑

𝑥∈𝑋
(1 ⊗ 𝑥) 𝑥 ∈ 𝑅[𝑋]

𝑋 (essentially because id
𝑅[𝑋]⊗𝑅𝑅[𝑋]

is induced by the pair of maps (𝑆, 𝑇) under the isomorphism
𝑅-CAlg(𝑅[𝑋]⊗

𝑅
𝑅[𝑋], 𝑅[𝑋]⊗

𝑅
𝑅[𝑋]) ≅ (𝑅[𝑋]⊗

𝑅
𝑅[𝑋])

𝑋
×

(𝑅[𝑋]⊗
𝑅
𝑅[𝑋])

𝑋). Similarly, again by Yoneda’s lemma, the
unit 𝑒 : ∗ → 𝐺 uniquely determines an algebra map 𝜖 :

𝑅[𝑋] → 𝑅 given by 𝜖 = 𝛼
𝑅
(1

𝐺(𝑅)
) ∈ 𝑅

𝑋 (with 1
𝐺
the

identity of a group 𝐺). Finally, the inversion 𝑖 : 𝐺 → 𝐺

gives rise to a unique algebra map 𝑠 ∈ 𝑅[𝑋]
𝑋 explicitly given

by 𝑠 = 𝛼
𝑅[𝑋]

(𝑖
𝑅[𝑋]

(𝛼
−1

𝑅[𝑋]
(∑

𝑥∈𝑋
𝑥𝑥))), where ∑

𝑥∈𝑋
𝑥𝑥 is the

member 𝑅[𝑋]
𝑋 that induces the identity id

𝑅[𝑋]
. This map 𝑠 is

of course the antipode of 𝑅[𝑋].
In what follows we introduce two affine groups I and

M
1
(see Section 6), whose 𝑅-rational points are groups of

formal series on some locally finite categories, and whose
coordinate rings are both free commutative algebras (as in the
aforementional discussion). As𝑅-groups, they interact under
the form of an 𝑅-group semidirect product (a semidirect
product natural in its algebra variable).Themain result of this
paper is the following.
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Theorem 1. LetK be a field.TheK-groupI ⋊ M
op
1
is actually

an affine group.

Example 2. Let 𝑥 be a variable, 𝑅 a commutative ring with
unit, and 𝐴 a commutative 𝑅-algebra with a unit. We present
two examples of coordinate Hopf algebras which are well
known (see [11–13]) and that are generalized hereafter.

(1) Let𝐺 be the𝑅-group of invertible formal power series
𝐺(𝐴) = {𝑆 ∈ 𝐴[[𝑥]] : ⟨𝑆 | 1⟩ = 1}, that is, 𝑆 ∈ 𝐺(𝐴),
if, and only if, 𝑆 = 1 + 𝑥𝑇, where 𝑇 ∈ 𝐴[[𝑥]]. Let
(𝑥

𝑛
)
𝑛≥1

be an infinite sequence of pairwise distinct
variables. Let us compute the coproduct Δ, counit 𝜖,
and antipode 𝑠 of free commutative algebra 𝑅[𝑥

𝑛
:

𝑛 ≥ 1]. According to the previous discussion, Δ is
obtained by computing the product in 𝐺(𝑅[𝑥

𝑛
: 𝑛 ≥

1] ⊗
𝑅

𝑅[𝑥
𝑛

: 𝑛 ≥ 1]) of the series 𝑆 = 1 + ∑
𝑛≥1

(𝑥
𝑛

⊗

1)𝑥
𝑛 and 𝑇 = 1 + ∑

𝑛≥1
(1 ⊗ 𝑥

𝑛
)𝑥

𝑛 which is equal to
1+∑

𝑛≥1
(𝑥

𝑛
⊗ 1+1 ⊗ 𝑥

𝑛
+∑ 𝑖+𝑗=𝑛; 𝑖,𝑗≥1 (𝑥

𝑖
⊗𝑥

𝑗
))𝑥

𝑛.Then,
Δ = ∑

𝑛≥1
(𝑥

𝑛
⊗ 1 + 1 ⊗ 𝑥

𝑛
+ ∑ 𝑖+𝑗=𝑛; 𝑖,𝑗≥1 𝑥

𝑖
⊗ 𝑥

𝑗
)𝑥

𝑛

so that for every 𝑛 ≥ 1, Δ(𝑥
𝑛
) = 𝑥

𝑛
⊗ 1 + 1 ⊗ 𝑥

𝑛
+

∑ 𝑖+𝑗=𝑛; 𝑖,𝑗≥1 𝑥
𝑖

⊗ 𝑥
𝑗
. The counit is given by the set-

theoretic map 𝜖(𝑥
𝑛
) = 0 for each 𝑛 ≥ 1. The inverse

of 𝑆 ∈ 𝐺(𝐴) is given recursively by ⟨𝑆
−1

| 1⟩ = 1,
and ⟨𝑆

−1
| 𝑥

𝑛+1
⟩ = −⟨𝑆 | 𝑥

𝑛+1
⟩ − ∑ 𝑖+𝑗=𝑛+1; 𝑖,𝑗≥1 ⟨𝑆 |

𝑥
𝑖
⟩⟨𝑆

−1
| 𝑥

𝑗
⟩ for all 𝑛 ≥ 0. In particular, for 𝑆 =

1 + ∑
𝑛≥1

𝑥
𝑛
𝑥
𝑛

∈ 𝐺(𝑅[𝑥
𝑛

: 𝑛 ≥ 1]), for each 𝑛 ≥ 1,
⟨𝑆

−1
| 𝑥

𝑛
⟩ = −𝑥

𝑛
− ∑

𝑛−1

𝑖=1
𝑥
𝑖
⟨𝑆

−1
| 𝑥

𝑛−𝑖
⟩. It follows

that 𝑠 = ∑
𝑛≥1

⟨𝑆
−1

| 𝑥
𝑛
⟩𝑥

𝑛
or in other terms 𝑠(𝑥

𝑛
) =

−𝑥
𝑛

+ ∑
𝑛−1

𝑖=1
𝑥
𝑖
𝑠(𝑥

𝑛−𝑖
) for all 𝑛 ≥ 1.

(2) Let 𝐻(𝐴) be the set {𝑆 ∈ 𝐴[[𝑥]] : ⟨𝑆 | 1⟩ =

0, ⟨𝑆 | 𝑥⟩ = 1
𝐴

}, that is, 𝑆 ∈ 𝐻(𝐴), if, and only
if, 𝑆 = 𝑥 + 𝑥

2
𝑇 for 𝑇 ∈ 𝐴[[𝑥]]. This forms a group

under the usual composition of formal power series
𝑆 ∘ 𝑇 = 𝑥 + ∑

𝑛≥2
⟨𝑆 | 𝑥

𝑛
⟩𝑇

𝑛. It is clear that {𝑥
𝑛

:

𝑛 ≥ 2} is the coordinate system of 𝐻. Let us explicitly
compute the bialgebra structure of the corresponding
coordinate Hopf algebra 𝑅[𝑥

𝑛
: 𝑛 ≥ 2]. Following [14]

(or for instance by the usual Faà di Bruno formula, see
[15, 16]), we have ⟨𝑆 ∘ 𝑇 | 𝑥

2
⟩ = ⟨𝑆 | 𝑥

2
⟩ + ⟨𝑇 | 𝑥

2
⟩

and ⟨𝑆 ∘ 𝑇𝑥
𝑛+1

⟩ = ⟨𝑆 | 𝑥
𝑛+1

⟩ + ⟨𝑇 | 𝑥
𝑛+1

⟩ +

∑
𝑛

𝑘=2
⟨𝑆 | 𝑥

𝑘
⟩𝐵

𝑘
(⟨𝑇 | 𝑥

2
⟩, . . . , ⟨𝑇 | 𝑥

𝑘
⟩), where 𝐵

𝑘

is a polynomial in 𝑘 − 1 variables. Applying this to
𝑆 = 𝑥+∑

𝑛≥2
(𝑥

𝑛
⊗1)𝑥

𝑛 and𝑇 = 𝑥+∑
𝑛≥2

(1⊗𝑥
𝑛
)𝑥

𝑛 gives
the coproduct Δ = ∑

𝑛≥2
(𝑥

𝑛
⊗ 1 + 1 ⊗ 𝑥

𝑛
+ ∑

𝑛−1

𝑘=2
(𝑥

𝑘
⊗

1)𝐵
𝑘
(1 ⊗ 𝑥

2
, . . . , 1 ⊗ 𝑥

𝑘
))𝑥

𝑛
or equivalently, Δ(𝑥

𝑛
) =

𝑥
𝑛

⊗ 1 + 1 ⊗ 𝑥
𝑛

+ ∑
𝑛−1

𝑘=2
(𝑥

𝑘
⊗ 1)𝐵

𝑘
(1 ⊗ 𝑥

2
, . . . , 1 ⊗ 𝑥

𝑘
) for

each 𝑛 ≥ 2. The counit is given by 𝜖(𝑥
𝑛
) = 0 for each

𝑛 ≥ 2. Let 𝑆 ∈ 𝐻(𝐴) and𝑇 be the inverse of 𝑆 in𝐻(𝐴).
For each 𝑛 ≥ 2, we have 0 = ⟨𝑆 ∘ 𝑇 | 𝑥

𝑛
⟩ = ∑

𝑛

𝑘=1
⟨𝑆 |

𝑥
𝑘
⟩ ∑

𝑖1+⋅⋅⋅+𝑖𝑘=𝑛
⟨𝑇 | 𝑥

𝑖1⟩ ⋅ ⋅ ⋅ ⟨𝑇 | 𝑥
𝑖𝑘⟩ = ⟨𝑇 | 𝑥

𝑛
⟩ +

∑
𝑛

𝑘=2
⟨𝑆 | 𝑥

𝑘
⟩ ∑

𝑖1+⋅⋅⋅+𝑖𝑘=𝑛
⟨𝑇 | 𝑥

𝑖1⟩ ⋅ ⋅ ⋅ ⟨𝑇 | 𝑥
𝑖𝑘⟩. Apply-

ing this formula to 𝑆 = 𝑥 + ∑
𝑛≥2

𝑥
𝑛
𝑥
𝑛

∈ 𝐻(𝑅[𝑥
𝑛

: 𝑛 ≥

2]) gives 𝑠(𝑥
𝑛
) = − ∑

𝑛

𝑘=2
𝑥
𝑘

∑
𝑖1+⋅⋅⋅+𝑖𝑘=𝑛

𝑠(𝑥
𝑖1
) ⋅ ⋅ ⋅ 𝑠(𝑥

𝑖𝑘
)

(where by convention we put 𝑠(𝑥
0
) = 0, 𝑠(𝑥

1
) = 1) for

each 𝑛 ≥ 2.

4. Categories, Semicategories, and
Their Total Algebra

Thebasic concepts from category theorymay be found in [10]
but are recalled hereafter. When viewed as algebraic objects,
the categories are always considered as small categories in the
sense that their classes of objects and arrows form usual sets
(in some given universe). The reader should refer to [10] for
this kind of size issues.

A semicategory, also called a taxonomy, see [17], (respec-
tively, category) 𝐶 is given by its class of objects Ob(𝐶), its
class of arrows or morphisms Arr(𝐶), two (non necessarily
surjective) maps 𝜕

0
, 𝜕

1
: Arr(𝐶) → Ob(𝐶) (and 𝜄 : Ob(𝐶) →

Arr(𝐶) such that 𝜕
𝑗

∘ 𝜄 = idOb(𝐶), 𝑗 = 1, 2, if 𝐶 is a
category), 𝜕

0
is the domain map, 𝜕

1
is the codomain map,

(and 𝜄 is the identity arrow map, if 𝐶 is a category), and
finally amap, called composition, 𝛾 : Arr(𝐶) × Ob(𝐶) Arr(𝐶) =

{(𝑓, 𝑔) : Arr(𝐶)
2

: 𝜕
0
(𝑓) = 𝜕

1
(𝑔)} → Arr(𝐶) such

that 𝜕
0
(𝛾(𝑓, 𝑔)) = 𝜕

0
(𝑔) and 𝜕

1
(𝛾(𝑓, 𝑔)) = 𝜕

1
(𝑓) for all

(𝑓, 𝑔) ∈ Arr(𝐶) × Ob(𝐶) Arr(𝐶), and that satisfies an axiom
of associativity: 𝛾(𝑓, 𝛾(𝑔, ℎ)) = 𝛾(𝛾(𝑓, 𝑔), ℎ) for all 𝑓, 𝑔, ℎ ∈

Arr(𝐶) such that 𝜕
0
(𝑓) = 𝜕

1
(𝑔) and 𝜕

0
(𝑔) = 𝜕

1
(ℎ), (and two

axioms of identity: 𝛾(𝑓, 𝜄(𝜕
0
(𝑓))) = 𝑓 and 𝛾(𝜄(𝜕

1
(𝑓)), 𝑓) = 𝑓

for every 𝑓 ∈ Arr(𝐶), if 𝐶 is a category). In general, 𝛾 is
denoted by ∘ and 𝛾(𝑓, 𝑔) = 𝑓 ∘ 𝑔, and 𝜄(𝑥) by id

𝑥
for each

𝑥 ∈ Ob(𝐶). The set Arr(𝐶)×Ob(𝐶)Arr(𝐶) is called the set of
composable arrows in 𝐶. More generally, for every 𝑛 ≥ 2,
Arr(𝐶)×Ob(𝐶) ⋅ ⋅ ⋅ ×Ob(𝐶)Arr(𝐶)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 factors

= {(𝑓
1
, . . . , 𝑓

𝑛
) ∈ Arr(𝐶)

𝑛
:

𝜕
1
(𝑓

𝑖+1
) = 𝜕

0
(𝑓

𝑖
), 𝑖 = 1, . . . , 𝑛 − 1} is the set of 𝑛-tuple

of composable arrows, and by associativity, 𝑓
1

∘ ⋅ ⋅ ⋅ ∘ 𝑓
𝑛
has

an obvious meaning whenever (𝑓
1
, . . . , 𝑓

𝑛
) is an 𝑛-tuple of

composable arrows. It is also clear that in this case 𝜕
0
(𝑓

1
∘

⋅ ⋅ ⋅ ∘ 𝑓
𝑛
) = 𝜕

0
(𝑓

𝑛
) and 𝜕

1
(𝑓

1
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝑛
) = 𝜕

1
(𝑓

1
). We may also

denote by 𝑓 : 𝑎
0

→ 𝑎
1
or by 𝑓 ∈ 𝐶(𝑎

0
, 𝑎

1
) the fact that

𝑓 ∈ Arr(𝐶) with 𝜕
𝑗
(𝑓) = 𝑎

𝑗
∈ Ob(𝐶), 𝑗 = 0, 1. Functors

between semicategories are the obvious ones.

Remark 3. If 𝐶 is a semicategory, then there is the possibility
that some objects do not correspond to domain or codomain
of arrows (this is a kind of isolated point in a graph), because
themap 𝜕

𝑗
is not assumed to be onto, while it is for a category.

Let 𝑅 be any commutative ring with a unit, and let 𝐴 be
a commutative 𝑅-algebra with a unit. We may define the 𝐴-
algebra of 𝐶, denoted by 𝐴⟨𝐶⟩, as the free 𝐴-module with
basisArr(𝐶) togetherwith the following constants of structure
(see [18]) that define an associative product:

𝑓 × 𝑔 = {
𝑓 ∘ 𝑔 if (𝑓, 𝑔) ∈ Arr (𝐶) ×Ob(𝐶) Arr (𝐶) ,

0 otherwise.
(2)

It becomes an 𝐴-algebra in an evident way. There is another
way, that will be useful, to define this algebra. A semigroup
(respectively,monoid)with zero is a usual semigroup (respec-
tively, monoid), say 𝑆, together with a two-sided absorbing
element 0

𝑆
, that is, for all 𝑥 ∈ 𝑆, 𝑥0

𝑆
= 0

𝑆
= 0

𝑆
𝑥. A

homomorphism between semigroups (respectively, monoid)
with zero is a usual homomorphismof semigroups (monoids)



4 Algebra

that preserves the zeroes. The contracted algebra 𝐴
0
[𝑆] (see

[19]) is then defined as the free 𝐴-module with basis 𝑆

together with the associative product given for every 𝑥, 𝑦 ∈ 𝑆

by

𝑥 × 𝑦 = {
𝑥𝑦 if 𝑥𝑦 ̸= 0

𝑆
,

0 if 𝑥𝑦 = 0
𝑆
.

(3)

We observe that it is a unital algebra when 𝑆 is a monoid
with zero. Now, the arrows of any semicategory (respectively,
category) 𝐶 together with a new element 0

𝐶
added form

a semigroup with zero with multiplication given for every
𝑓, 𝑔 ∈ Arr(𝐶) ⊔ {0

𝐶
} by 𝑓𝑔 = 𝑓 ∘ 𝑔 if, and only if,

(𝑓, 𝑔) ∈ Arr(𝐶) ×Ob(𝐶) Arr(𝐶), and 𝑓𝑔 = 0
𝐶
otherwise.

Moreover, any functor 𝜙 : 𝐶 → 𝐷 between two semi-
categories (respectively, categories) defines a homomorphism
of semigroups with zero 𝜙

0
: Arr(𝐶)⊔{0

𝐶
} → Arr(𝐷)⊔{0

𝐷
}

by extending 𝜙 with 𝜙
0
(0

𝐶
) = 0

𝐷
. This provides a functor

from the category of all semi-categories (respectively, cate-
gories) to the category of semigroups with zero. Moreover,
it is clear that 𝐴⟨𝐶⟩ ≅ 𝐴

0
[Arr(𝐶) ⊔ {0}] (as 𝐴- and 𝑅-

algebras).We observe that Arr(𝐶)⊔{0} is a monoid with zero
if, and only if, 𝐶 is a category with only one object, that is,
Arr(𝐶) is a usual monoid (under composition). In this case,
𝐴⟨𝐶⟩ is isomorphic to the usual (unital) algebra 𝐴[Arr(𝐶)]

of the monoid Arr(𝐶). If Ob(𝐶) is finite, then 𝐴⟨𝐶⟩ is a unital
algebra with identity ∑

𝑥∈Ob(𝐶) id𝑥.
A finite decomposition semigroup (respectively, monoid)

with zero 𝑆 is a semigroup (respectively, monoid) with zero
such that for all 𝑥 ∈ 𝑆 \ {0

𝑆
}, the set {(𝑦, 𝑧) ∈ 𝑆

2
: 𝑥 = 𝑦𝑧} is

finite (it is a generalization of the property (D) from [18]).This
makes it possible to consider a topological completion for the
contracted algebra 𝐴

0
[𝑆]. As module 𝐴

0
[𝑆] is isomorphic to

themodule𝐴
(𝑆\{0𝑆}) of all finitely supportedmaps from 𝑆\{0

𝑆
}

to 𝐴. Under this isomorphism, we may equip 𝐴
0
[𝑆] with the

product topology, with 𝐴 (and 𝑅) discrete, inherited from
the product 𝐴-module 𝐴

𝑆\{0𝑆}. Its topological completion is
𝐴

𝑆\{0𝑆} with its product topology. Any element 𝑓 of 𝐴
𝑆\{0𝑆}

may be represented in a unique way as a formal series

∑
𝑥∈𝑆\{0𝑆}

⟨𝑓 | 𝑥⟩𝑥 as in Section 2. Moreover, because 𝑆 is a
finite decomposition semigroup with zero, the multiplication
of 𝐴

0
[𝑆] may be uniquely extended by uniform continuity to

an associative and jointly continuousmultiplication on𝐴
𝑆\{0𝑆}

given by

( ∑

𝑥∈𝑆\{0𝑆}

⟨𝑓 | 𝑥⟩ 𝑥) ( ∑

𝑥∈𝑆\{0𝑆}

⟨𝑔 | 𝑥⟩ 𝑥)

= ∑

𝑥∈𝑆\{0𝑆}

( ∑

𝑦𝑧=𝑥

⟨𝑓 | 𝑦⟩ ⟨𝑔 | 𝑧⟩) 𝑥.

(4)

The module 𝐴
𝑆\{0𝑆} with this product is called the total

contracted algebra of 𝑆, and it is denoted by 𝐴
0
[[𝑆]]. It

satisfies the following universal problem. Let 𝑆 be a finite
decomposition semigroup (respectively, monoid) with zero,
let 𝐵 be a complete topological 𝑅-algebra (respectively, unital
𝑅-algebra), and let 𝜙 : 𝐴

0
[𝑆] → 𝐵 be a continuous

homomorphism of algebras (if 𝑆 is a monoid and 𝐵 is
unital, then we also assume that 𝜙(1

𝑆
) = 1

𝐵
), then there

exists a unique continuous homomorphism of algebras 𝜙 :

𝐴
0
[[𝑆]] → 𝐵 such that 𝜙(𝑓) = 𝜙(𝑓) for every 𝑓 ∈ 𝐴

0
[𝑆]

(in addition, if 𝑆 is a monoid, and 𝐵 is unital, then 𝜙 respects
the units). All the details of this construction may be found
in [20].

In a similar way, let us call a finite decomposition semi-
category (respectively, category) a semicategory (respectively,
category) 𝐶 such that for every 𝑓 ∈ Arr(𝐶), the set {(𝑔, ℎ) ∈

Arr(𝐶) ×Ob(𝐶) Arr(𝐶) : 𝑓 = 𝑔 ∘ ℎ} is finite (it is again a gen-
eralization of the property (D) from [18] that may be found
in [21–23]). Once more this allows us to define a topological
completion for 𝐴⟨𝐶⟩ given as the 𝐴-algebra 𝐴⟨⟨𝐶⟩⟩ (which
is 𝐴

Arr(𝐶) as an 𝐴-module) of all formal series ∑
𝑓∈Arr(𝐶)⟨𝑆 |

𝑓⟩𝑓, with product (∑
𝑓∈Arr(𝐶)⟨𝑆 | 𝑓⟩𝑓) × (∑

𝑓∈Arr(𝐶)⟨𝑇 |

𝑓⟩𝑓) = ∑
𝑓∈Arr(𝐶)(∑ (𝑔,ℎ)∈Arr(𝐶)×Ob(𝐶)Arr(𝐶); 𝑓=𝑔∘ℎ

⟨𝑆 | 𝑔⟩⟨𝑇 |

ℎ⟩)𝑓 = ∑
𝑓∈Arr(𝐶)(∑𝑔×ℎ=𝑓

⟨𝑆 | 𝑔⟩⟨𝑇 | ℎ⟩)𝑓.

Remark 4. Let 𝑆
1
, . . . , 𝑆

𝑛
∈ 𝐴⟨⟨𝐶⟩⟩. We have

𝑆
1

⋅ ⋅ ⋅ 𝑆
𝑛

= ∑

(𝑓1 ,...,𝑓𝑛)∈Arr (𝐶) ×Ob(𝐶) ⋅ ⋅ ⋅ ×Ob(𝐶) Arr (𝐶)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 factors

⟨𝑆
1

| 𝑓
1
⟩ ⋅ ⋅ ⋅ ⟨𝑆

𝑛
| 𝑓

𝑛
⟩ 𝑓

1
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝑛
.

(5)

It is not difficult to see that 𝐶 is a finite decomposition
semicategory (respectively, category) if, and only if, Arr(𝐶) ⊔

{0
𝐶
} is a finite decomposition semigroup, and in one of

these equivalent cases, 𝐴⟨⟨𝐶⟩⟩ ≅ 𝐴
0
[[Arr(𝐶) ⊔ {0

𝐶
}]]

(as topological 𝐴- and 𝑅-algebras). We observe that if 𝐶

is a category, then ∑
𝑥∈Ob(𝐶) id𝑥 is the two-sided identity

of 𝐴⟨⟨𝐶⟩⟩. The 𝑅-algebra 𝐴⟨⟨𝐶⟩⟩ satisfies the following
universal property: let 𝐵 be a complete topological 𝑅-algebra,
and let 𝜙 be a continuous homomorphism of algebras from
𝐴⟨𝐶⟩ (with the product topology inherited from 𝐴⟨⟨𝐶⟩⟩)
to 𝐵. Then, there is a unique continuous homomorphism of

𝑅-algebras 𝜙 : 𝐴⟨⟨𝐶⟩⟩ → 𝐵 such that 𝜙(𝑝) = 𝜙(𝑝) for
every 𝑝 ∈ 𝐴⟨𝐶⟩. Let 𝐶 be a semicategory (respectively, a
category). Let 𝜙 : Arr(𝐶) → 𝑅⟨⟨𝐶⟩⟩ such that if (𝑓, 𝑔) ∈

Arr(𝐶) ×Ob(𝐶) Arr(𝐶), then 𝜙(𝑓 ∘ 𝑔) = 𝜙(𝑓)𝜙(𝑔), (and if 𝐶

is a category, 𝜙(id
𝑥
) = id

𝑥
for every 𝑥 ∈ Ob(𝐶)). If 𝐶 is a

semicategory, then𝜙 is a functor between𝐶 and𝐴⟨⟨𝐶⟩⟩ (seen
as a semicategory with only one object). If 𝐶 is a category,
then this is no more a functor because it should be the case
that 𝜙(id

𝑥
) = ∑

𝑥∈Ob(𝐶) id𝑥 (the unit of 𝐴⟨⟨𝐶⟩⟩). In any case, it
is a homomorphism of semigroups with zero from Arr(𝐶) ⊔

{0} to 𝐴⟨⟨𝐶⟩⟩. Therefore, it may be extended uniquely to
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a homomorphism of algebras 𝜙 : 𝐴⟨𝐶⟩ → 𝐴⟨⟨𝐶⟩⟩ by
linearity. If it happens that it is continuous, then it may be
itself extended as a continuous endomorphism of algebra
𝜙 : 𝐴⟨⟨𝐶⟩⟩ → 𝐴⟨⟨𝐶⟩⟩. It satisfies 𝜙(∑

𝑓∈Arr(𝐶)⟨𝑆 | 𝑓⟩𝑓) =

∑
𝑓∈Arr(𝐶)⟨𝑆 | 𝑓⟩𝜙(𝑓). If 𝐶 is a category, then we observe that

𝜙(∑
𝑥∈Ob(𝐶) id𝑥) = ∑

𝑥
𝜙(id

𝑥
) = ∑

𝑥
id

𝑥
so that 𝜙 respects the

unit.
Let 𝐺 be a directed graph or quivers (see [24]), that is,

it is given by a set V(𝐺) of vertices, a set E(𝐺) of edges,
and two maps 𝑑

𝐺

0
and 𝑑

𝐺

1
(or simply 𝑑

0
, 𝑑

1
when there is no

risk of confusion) : E(𝐺) → V(𝐺). We may define the
free semicategory 𝐺

+ (respectively, category 𝐺
∗) generated

by 𝐺 as follows: Ob(𝐺
+
) = Ob(𝐺

∗
) = V(𝐺), Arr(𝐺

+
) =

{(𝑒
1
, . . . , 𝑒

𝑛
) : E(𝑉)

𝑛
: 𝑛 ≥ 1, 𝑑

0
(𝑒

𝑖+1
) = 𝑑

1
(𝑒

𝑖
), 𝑖 =

1, . . . , 𝑛 − 1} (in particular for 𝑛 = 1, (𝑒) ∈ Arr(𝐺
+
)

for all 𝑒 ∈ E(𝐺), and these 𝑛-tuples (𝑒
1
, . . . , 𝑒

𝑛
) are called

paths of length 𝑛), Arr(𝐺
∗
) = {(𝜖, 𝑥) : 𝑥 ∈ V(𝐺)} ⊔

Arr(𝐺
+
) (where 𝜖 denotes the empty word, and (𝜖, 𝑥) is a

path of length zero), 𝜕
0
(𝑒

1
, . . . , 𝑒

𝑛
) = 𝑑

0
(𝑒

𝑛
), 𝜕

1
(𝑒

1
, . . . , 𝑒

𝑛
) =

𝑑
1
(𝑒

1
), 𝜕

0
(𝜖, 𝑥) = 𝑥 = 𝜕

1
(𝜖, 𝑥), 𝜄(𝜖, 𝑥) = 𝑥, for every

(𝑒
1
, . . . , 𝑒

𝑚
), (𝑓

1
, . . . , 𝑓

𝑛
) ∈ Arr(𝐺

+
) such that𝑑

0
(𝑒

𝑚
)=𝑑

1
(𝑓

1
),

then (𝑒
1
, . . . , 𝑒

𝑚
) ∘ (𝑓

1
, . . . , 𝑓

𝑛
) = (𝑒

1
, . . . , 𝑒

𝑚
, 𝑓

1
, . . . , 𝑓

𝑛
),

(𝑒
1
, . . . , 𝑒

𝑚
) ∘ (𝜖, 𝑑

0
(𝑒

𝑚
)) = (𝑒

1
, . . . , 𝑒

𝑚
) = (𝜖, 𝑑

1
(𝑒

1
)) ∘

(𝑒
1
, . . . , 𝑒

𝑚
), and (𝜖, 𝑥) ∘ (𝜖, 𝑥) = (𝜖, 𝑥) for every 𝑥 ∈ V(𝐺).

It is easy to check that 𝐺
+ and 𝐺

∗ are indeed a semicategory
and a category, respectively. Moreover, 𝐺

∗ is obtained from
𝐺
+ by free adjunctions of units (𝜖, 𝑥) for each object 𝑥 (and

the obvious extensions of 𝜕
𝑗
, 𝑗 = 0, 1, and of the composition).

This means the following: let 𝐶 be a semicategory. We denote
by 𝐶

1 the category obtained from 𝐶 by adjunctions of the
identities on each object of 𝐶, the trivial extension of the
domain and codomain maps, and the composition.Then, for
every category 𝐷 seen as a semicategory in an evident way,
and any functor 𝜙 : 𝐶 → 𝐷 there is a unique functor
𝜙
1

: 𝐶
1

→ 𝐷 such that 𝜙
1
(𝑓) = 𝜙(𝑓) for every 𝑓 ∈ Arr(𝐶).

Amorphism of directed graph (𝜙
𝑉

, 𝜙
𝐸
) from𝐺

1
to𝐺

2
is a pair

of maps 𝜙
𝑉

: V(𝐺
1
) → V(𝐺

2
), 𝜙

𝐸
: E(𝐺

1
) → E(𝐺

2
) such

that 𝜙
𝑉

∘ 𝑑
𝐺1

𝑗
= 𝑑

𝐺2

𝑗
∘ 𝜙

𝐸
, 𝑗 = 0, 1. We observe that any semi-

category (respectively, category) is obviously also a directed
graph by forgetting some of its structure. Moreover, any
functor between semi-categories (respectively, categories) is
also a morphism between the underlying directed graphs.The
following universal property is satisfied. Let 𝐺 be a directed
graph, and let 𝐶 be a semicategory (respectively, category).
Let (𝜙

𝑉
, 𝜙

𝐸
) be a morphism between 𝐺 and 𝐶 seen as a

directed graph. Then, there is a unique functor 𝜙 from 𝐺
+

(respectively, 𝐺∗) to 𝐶 such that for every 𝑒 ∈ E(𝐺), 𝜙((𝑒)) =

𝜙
𝐸
(𝑒), and 𝜙(𝑥) = 𝜙

𝑉
(𝑥) for every 𝑥 ∈ V(𝐺).

Let 𝐺 be a directed graph. Let 𝑆 be a semigroup (respec-
tively, monoid) with zero. Any morphism of directed graphs
between𝐺 to 𝑆, seen as a directed graph with only one vertex,
is then given by a set-theoretic map 𝜙

𝐸
: E(𝐺) → 𝑆 without

any property to satisfy. Let 𝜙
𝐸

: E(𝐺) → 𝐴⟨⟨𝐺
∗
⟩⟩.This gives

rise to a map 𝜙 : Arr(𝐺
+
) → 𝐴⟨⟨𝐺

∗
⟩⟩ (respectively, 𝜙 :

Arr(𝐺
∗
) → 𝐴⟨⟨𝐺

∗
⟩⟩) by 𝜙(𝑒

1
, . . . , 𝑒

𝑛
) = 𝜙

𝐸
(𝑒

1
) ⋅ ⋅ ⋅ 𝜙

𝐸
(𝑒

𝑛
)

(and in addition, 𝜙(id
𝑥
) = id

𝑥
for each 𝑥 ∈ V(𝐺)) which is

shown to be a functor between semi-categories. It is unique
with the property that 𝜙((𝑒)) = 𝜙

𝐸
(𝑒) for every 𝑒 ∈ E(𝐺) (and

in addition, 𝜙(id
𝑥
) = id

𝑥
for each object 𝑥).

It is quite clear that𝐺
+ (respectively,𝐺∗) is a finite decom-

position semicategory (respectively, category), or equiva-
lently, Arr(𝐺

+
) ⊔ {0} (respectively, Arr(𝐺

∗
) ⊔ {0}) is a

finite decomposition semigroup with zero (and even a finite
decomposition monoid with zero if 𝐺 has only one vertex).
Moreover 𝐺

+ (respectively, 𝐺
∗) satisfies a stronger property.

It is a locally finite semicategory (respectively, category). Let𝐶
be a semicategory (respectively, a category). Let 𝑓 ∈ Arr(𝐶).
Any sequence (𝑓

1
, . . . , 𝑓

𝑛
) of composable arrows in 𝐶 (where

in addition we assume that 𝑓
𝑖
is not an identity for each

𝑖 = 1, . . . , 𝑛, if𝐶 is a category) is called a proper decomposition
of length 𝑛 of 𝑓, if, and only if, 𝑓 = 𝑓

1
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝑛
. A proper

decomposition of 𝑓 is then a proper decomposition of length
𝑛 of 𝑓 for some 𝑛. The set of all proper decompositions of
length 𝑛 of 𝑓 is denoted by 𝐷

𝑛
(𝑓), and the set of all proper

decompositions of 𝑓 is denoted by 𝐷(𝑓) = ⋃
𝑛≥0

𝐷
𝑛
(𝑓). We

assume that each identity arrow has only one decomposition,
which has length zero, the empty decomposition (if 𝐶 is a
category). We observe that for each 𝑥 ∈ Ob(𝐶) (if 𝐶 is a cate-
gory), 𝐷

0
(id

𝑥
) = {0}, and 𝐷

𝑛
(id

𝑥
) = 0 for every 𝑛 > 0, while

𝐷
0
(𝑓) = 0, 𝐷

1
(𝑓) = {𝑓} for every nonidentity arrow of 𝐶. A

semicategory (respectively, category) is said to be locally finite
[21–23] if for every arrow𝑓,𝐷(𝑓) is a finite set. A locally finite
semicategory (respectively, category)𝐶 is also a finite decom-
position semicategory (respectively, category) because 𝐷

2
(𝑓)

is assumed to be finite (and this suffices for the case of semi-
categories because 𝐷

2
(𝑓) = {(𝑔, ℎ) ∈ Arr(𝐶) ×Ob(𝐶) Arr(𝐶) :

𝑓 = 𝑔 ∘ ℎ}), and {(𝑔, ℎ) ∈ Arr(𝐶) ×Ob(𝐶) Arr(𝐶) : 𝑓 =

𝑔 ∘ ℎ} = 𝐷
2
(𝑓) ∪ {(id

𝜕1(𝑓)
, 𝑓), (𝑓, id

𝜕0(𝑓)
)} (if 𝐶 is a category).

In particular, in a locally finite category, no nonidentity
arrow may be left or right invertible. Indeed, if 𝑓 is right
invertible, then there is 𝑔 such that 𝑓 ∘ 𝑔 = id

𝜕0(𝑔)
(so

that 𝜕
1
(𝑓) = 𝜕

0
(𝑔)), and then (𝑓, 𝑔, 𝑓, 𝑔, 𝑓, 𝑔, . . . , 𝑓, 𝑔, 𝑓) is

a proper decomposition of 𝑓 of arbitrary length.
Equivalently, a semigroup (respectively, monoid) with

zero 𝑆 is said to be locally finite [20] if for every 𝑥 ̸= 0
𝑆
, for

all 𝑛, the set of all 𝑛-tuples (𝑥
1
, . . . , 𝑥

𝑛
), (𝑥

𝑖
̸= 1
𝑆
, 𝑖 = 1, . . . , 𝑛,

when 𝑆 is assumed to be a monoid), such that 𝑥
1

⋅ ⋅ ⋅ 𝑥
𝑛

= 𝑥

is finite. It is clear that a semicategory (respectively, category)
is locally finite, if, and only if, the semigroup (or monoid if
𝐶 has only one object since in this case Arr(𝐶) is actually a
monoid) with zero Arr(𝐶) ⊔ {0} is locally finite.

For a locally finite semicategory (respectively, category),
we define the length ℓ(𝑓) of an arrow 𝑓 as the supremum in
N of the lengths of decompositions of 𝑓. In particular, if 𝐶

is a locally finite category, ℓ(𝑓) = 0 if, and only if, 𝑓 is an
identity. For each free semicategory𝐺

+ (respectively, category
𝐺
∗) over a directed graph𝐺, the length of a path (𝑒

1
, . . . , 𝑒

𝑛
) ∈

Arr(𝐺
+
) is 𝑛, while the length of an identity (𝜖, 𝑥) ∈ Arr(𝐺

∗
)

is zero.
Let 𝐶 be a locally finite semicategory (respectively, cat-

egory). For every ℓ > 0 (respectively, ℓ ≥ 0), let us define
Arr(𝐶)

ℓ
= {𝑓 ∈ Arr(𝐶) : ℓ(𝑓) = ℓ}. In particular, in

a locally finite category, Arr(𝐶)
0

= {id
𝑥

: 𝑥 ∈ Ob(𝐶)}.
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It is clear that in a locally finite semicategory (respectively,
category), Arr(𝐶) = ⋃

ℓ>0
Arr(𝐶)

ℓ
(respectively, Arr(𝐶) =

⋃
ℓ≥0

Arr(𝐶)
ℓ
) which is a disjoint sum. According to [25],

we have ℓ(𝑓 ∘ 𝑔) ≥ ℓ(𝑓) + ℓ(𝑔) for every (𝑓, 𝑔) ∈

Arr(𝐶) ×Ob(𝐶) Arr(𝐶). This length is extended to an order
function𝜔 : 𝐴⟨⟨𝐶⟩⟩ → N∪{∞}defined by𝜔(𝑆) = inf{ℓ(𝑓) :

⟨𝑆 | 𝑓⟩ ̸= 0} (the infimum being taken in N ∪ {∞}). In partic-
ular, 𝜔(𝑆) = +∞ if, and only if, 𝑆 = 0. The following hold.

(1) 𝜔(id
𝑥
) = 0 for every object 𝑥 (if 𝐶 is a category).

(2) 𝜔(𝑆 + 𝑇) ≥ min{𝜔(𝑆), 𝜔(𝑇)}.
(3) 𝜔(𝑆𝑇) ≥ 𝜔(𝑆)𝜔(𝑇).

It is clear that the algebra 𝐴⟨⟨𝐶⟩⟩ of a locally finite semi-
category (respectively, category) 𝐶 is filtered by this order
function.Anotherway to define this filtration is the following.
Let us define M

≥𝑛
(𝐴) = {𝑆 ∈ 𝐴⟨⟨𝐶⟩⟩ | 𝜔(𝑆) ≥ 𝑛} for

each 𝑛 ≥ 0. Therefore, M
≥0

(𝐴) = 𝐴⟨⟨𝐶⟩⟩, and M
≥1

(𝐴) =

{𝑆 ∈ 𝐴⟨⟨𝐶⟩⟩ : ⟨𝑆 | id
𝑥
⟩ = 0, 𝑥 ∈ Ob(𝐶)} is a two-

sided ideal in 𝐴⟨⟨𝐶⟩⟩ (improper if 𝐶 is a semicategory).
It is clear that ⋂

𝑛≥0
M

≥𝑛
(𝐴) = (0) so that the filtration

is separated and decreasing. With this filtration, 𝐴⟨⟨𝐶⟩⟩

becomes a (Hausdorff) complete topological 𝐴-algebra (with
𝐴 and 𝑅 discrete) when (M

≥𝑛
(𝐴))

𝑛
is considered as a basis

of neighborhoods of zero (see [20, 26]). Observe that if there
is some ℓ such that Arr(𝐶)

ℓ
is infinite, then this topology is

strictly finer than the product topology (in any case, namely,
Arr(𝐶)

ℓ
is either finite or infinite for each ℓ, then it is finer

since the projections 𝑆 → ⟨𝑆 | 𝑓⟩ are continuous in the
topology induced by the filtration for all 𝑓). For instance, let
(𝑓

𝑛
)
𝑛≥0

be an infinite sequence of arrows such that𝑓
𝑚

̸= 𝑓
𝑛
for

each 𝑚 ̸= 𝑛, and ℓ(𝑓
𝑛
) = ℓ for each 𝑛. Let 𝑆

𝑛
= ∑

𝑛

𝑘=0
𝑓
𝑘
. Then,

(𝑆
𝑛
)
𝑛
converges to 𝑆 = ∑

𝑛≥0
𝑓
𝑛
in 𝐴⟨⟨𝐶⟩⟩ with the product

topology, but does not converge for the topology induced by
the filtration (since 𝜔(𝑆 − 𝑆

𝑛
) = ℓ for all 𝑛). Nevertheless

when for each ℓ, Arr(𝐶)
ℓ
is finite, then both topologies

coincide.

5. Substitution of Series without
Constant Terms

Let 𝑅 be a commutative ring with a unit, and let 𝐴 be a com-
mutative 𝑅-algebra with a unit. Let 𝐶 be any semicategory.
Forgetting the composition of arrows, we obtain a directed
graph 𝐶. Let 𝐶

+ (respectively, 𝐶
∗) be the free semicategory

(respectively, category) generated by𝐶. By universality of𝐶
+,

there exists a unique functor 𝜋 : 𝐶
+

→ 𝐶 such that 𝜋((𝑓)) =

𝑓 for every 𝑓 ∈ Arr(𝐶) = E(𝐶). This functor is obviously
onto on arrows (and the identity on objects). The paths in
Arr(𝐶

+
) are denoted by ⃗𝑓, and for each such path there is a

unique integer ℓ( ⃗𝑓) ≥ 1 and a unique sequence (𝑓
1
, . . . , 𝑓

ℓ( ⃗𝑓)
)

of composable arrows in 𝐶 such that ⃗𝑓 = (𝑓
1
, . . . , 𝑓

ℓ( ⃗𝑓)
).

The composition of paths will be denoted by juxtaposition
(we reserve ∘ for the composition in 𝐶). Let 𝑓 and 𝑔 be
two composable arrows in 𝐶, and ⃗𝑓, ⃗𝑔 ∈ Arr(𝐶

+
) such that

𝜋( ⃗𝑓) = 𝑓, 𝜋( ⃗𝑔) = 𝑔. Then, ⃗𝑓 and ⃗𝑔 are composable in 𝐶
+.

Indeed, 𝜕
0
( ⃗𝑓) = 𝜋(𝜕

0
( ⃗𝑓)) = 𝜕

0
(𝜋( ⃗𝑓)) = 𝜕

0
(𝑓) = 𝜕

1
(𝑔) =

𝜕
1
(𝜋( ⃗𝑔)) = 𝜋(𝜕

1
( ⃗𝑔)) = 𝜕

1
( ⃗𝑔). Because 𝜋 is a functor, we

have then 𝜋( ⃗𝑓 ⃗𝑔) = 𝑓 ∘ 𝑔 = 𝜋( ⃗𝑓) ∘ 𝜋( ⃗𝑔). More generally,
if (𝑓

(1)
, . . . , 𝑓

(𝑛)
) are composable in 𝐶 and for each 𝑖, ⃗𝑓

(𝑖)
∈

Arr(𝐶
+
) such that 𝜋( ⃗𝑓

(𝑖)
) = 𝑓

(𝑖), then ( ⃗𝑓
(1)

, . . . , ⃗𝑓
(𝑛)

) is an
𝑛-tuple of composable paths in 𝐶

+ and 𝜋( ⃗𝑓
(1)

, . . . , ⃗𝑓
(𝑛)

) =

𝑓
1

∘ ⋅ ⋅ ⋅ ∘ 𝑓
𝑛

= 𝜋( ⃗𝑓
(1)

) ∘ ⋅ ⋅ ⋅ ∘ 𝜋( ⃗𝑓
(𝑛)

). We also observe that
for every ℓ > 0, Arr(𝐶

∗
)
ℓ

= Arr(𝐶
+
)
ℓ
.

Let 𝑆 ∈ 𝐴⟨⟨𝐶
∗
⟩⟩ and 𝑓 ∈ Arr(𝐶). We define 𝑆

𝑓
=

∑ ⃗𝑓∈Arr(𝐶+),𝜋( ⃗𝑓)=𝑓
⟨𝑆 | ⃗𝑓⟩ ⃗𝑓 ∈ 𝑅⟨⟨𝐶

+
⟩⟩ ⊆ 𝑅⟨⟨𝐶

∗
⟩⟩. Let 𝜌

𝑆
:

𝐶 → 𝐴⟨⟨𝐶
∗
⟩⟩ be defined as the morphism of directed

graphs 𝜌
𝑆
(𝑓) = 𝑆

𝑓
(when 𝐴⟨⟨𝐶

∗
⟩⟩ is a directed graph with

only one vertex). Then, it is extended uniquely to a functor
𝜌
𝑆

: 𝐶
∗

→ 𝐴⟨⟨𝐶
∗
⟩⟩ by 𝜌

𝑆
( ⃗𝑓) = 𝜌

𝑆
(𝑓

1
) ⋅ ⋅ ⋅ 𝜌

𝑆
(𝑓

𝑛
), and

𝜌
𝑆
(𝜖, 𝑥) = (𝜖, 𝑥) for every object 𝑥 of 𝐶 (again, 𝐴⟨⟨𝐶

∗
⟩⟩

is seen as a semicategory with only one object). According
to the universal property of 𝐴⟨𝐶

∗
⟩, 𝜌

𝑆
is uniquely extended

by linearity to a homomorphism of algebras, again denoted
𝜌
𝑆
, from 𝐴⟨𝐶

∗
⟩ to 𝐴⟨⟨𝐶

∗
⟩⟩ (we observe that in general it

does not preserve the units since 𝐴⟨𝐶
∗
⟩ is unital only when

Ob(𝐶) is finite; however 𝜌
𝑆
(id

𝑥
) = id

𝑥
for each object 𝑥). We

have 𝜌
𝑆
(𝑝) = 𝜌

𝑆
(∑

𝑥∈Ob(𝐶)⟨𝑝 | id
𝑥
⟩id

𝑥
+ ∑ ⃗𝑓

⟨𝑝 | ⃗𝑓⟩ ⃗𝑓) =

∑
𝑥∈Ob(𝐶⟨𝑝 | id

𝑥
⟩𝜌

𝑆
(id

𝑥
) + ∑ ⃗𝑓

⟨𝑝 | ⃗𝑓⟩𝜌
𝑆
( ⃗𝑓) = ∑

𝑥
⟨𝑝 |

id
𝑥
⟩id

𝑥
+ ∑ ⃗𝑓

⟨𝑝 | ⃗𝑓⟩𝑆
𝑓1

⋅ ⋅ ⋅ 𝑆
𝑓
ℓ( ⃗𝑓)

for each 𝑝 ∈ 𝐴⟨𝐶
∗
⟩.

Lemma 5. The homomorphism 𝜌
𝑆
is continuous (for the

filtrations).

Proof. By linearity it is sufficient to prove that ⃗𝑔 → 𝜌
𝑆
( ⃗𝑔)

is continuous. We have 𝜔(𝜌
𝑆
( ⃗𝑔)) = 𝜔(𝑆

𝑔1
⋅ ⋅ ⋅ 𝑆

𝑔ℓ( ⃗𝑔)
) ≥

∑
ℓ( ⃗𝑔)

𝑖=1
𝜔(𝑆

𝑔𝑖
). Now, 𝑆

𝑔𝑖
= ∑

ℎ⃗
(𝑖)
,𝜋(ℎ⃗
(𝑖)
)=𝑔𝑖

⟨𝑆 | ℎ⃗
(𝑖)

⟩ℎ⃗
(𝑖), 𝑖 =

1, . . . , ℓ( ⃗𝑔). Therefore, 𝜔(𝑆
𝑔𝑖

) ≥ 𝜔(𝑆) for all 𝑖 = 1, . . . , ℓ( ⃗𝑔),
and then 𝜔(𝜌

𝑆
( ⃗𝑔)) ≥ ℓ(𝑔)𝜔(𝑆) so that 𝜌

𝑆
is continuous for the

filtrations.

From now on let us assume that 𝐶 is finite, that is, the
sets Arr(𝐶) = E(𝐶) and Ob(𝐶) = V(𝐶) are finite (if 𝐶 is a
category, then it is sufficient to assume that Arr(𝐶) is finite,
because 𝜕

𝑗
is onto, 𝑗 = 0, 1, but when 𝐶 is a semicategory

that lacks identities, then we need in addition to assume that
Ob(𝐶) is finite, because 𝜕

𝑗
, 𝑗 = 0, 1, is not assumed to be

onto anymore). Then, for each ℓ ∈ N, there are only finitely
many elements in Arr(𝐶

∗
)
ℓ
(in particular, Arr(𝐶

∗
)
0

= {id
𝑥

:

𝑥 ∈ Ob(𝐶)}), so that the product topology and the filtration
coincide. According to Lemma 5, 𝜌

𝑆
is continuous for the

product topologies, and wemay extend it by continuity to the
completion 𝐴⟨⟨𝐶⟩⟩ of 𝐴⟨𝐶⟩ for the product topologies. We
obtain a continuous algebra endomorphism, again denoted
by 𝜌

𝑆
, of 𝐴⟨⟨𝐶⟩⟩ such that 𝜌

𝑆
(𝑇) = 𝜌

𝑆
(∑

𝑥∈Ob(𝐶)⟨𝑇 | id
𝑥
⟩id

𝑥
+

∑ ⃗𝑓
⟨𝑇 | ⃗𝑓⟩ ⃗𝑓) = ∑

𝑥∈Ob(𝐶)⟨𝑇 | id
𝑥
⟩id

𝑥
+ ∑ ⃗𝑓

⟨𝑇 | ⃗𝑓⟩𝜌
𝑆
( ⃗𝑓). In

particular, 𝜌
𝑆
(∑

𝑥∈Ob(𝐶) id𝑥) = ∑
𝑥∈Ob(𝐶) 𝜌

𝑆
(id

𝑥
) = ∑

𝑥∈Ob(𝐶) id𝑥,
so that both 𝜌

𝑆
: 𝐴⟨𝐶⟩ → 𝐴⟨⟨𝐶⟩⟩ and its continuous exten-

sion 𝜌
𝑆

: 𝐴⟨⟨𝐶⟩⟩ → 𝐴⟨⟨𝐶⟩⟩ respect the units (∑
𝑥∈Ob(𝐶) id𝑥 ∈

𝐴⟨𝐶⟩ because Ob(𝐶) is finite).
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Lemma 6. The series 𝜌
𝑆
(𝑇) is given by the following.

(1) ⟨𝜌
𝑆
(𝑇) | id

𝑥
⟩ = ⟨𝑇 | id

𝑥
⟩ for every 𝑥 ∈ Ob(𝐶).

(2) ⟨𝜌
𝑆
(𝑇) | ⃗𝑓⟩ = ∑

ℓ( ⃗𝑓)

ℓ=1
∑

( ⃗𝑓
(1)
,..., ⃗𝑓
(ℓ)
)∈𝐷𝑘(

⃗𝑓)
⟨𝑇 |

(𝜋( ⃗𝑓
(1)

), . . ., 𝜋( ⃗𝑓
(ℓ)

))⟩⟨𝑆 | ⃗𝑓
(1)

⟩ ⋅ ⋅ ⋅ ⟨𝑆 | ⃗𝑓
(ℓ)

⟩ for every
⃗𝑓 ∈ Arr(𝐶

+
).

Proof. We have

𝜌
𝑆

(𝑇) = ∑

𝑥∈Ob(𝐶)

⟨𝑇 | id
𝑥
⟩id

𝑥
+ ∑

ℓ≥1

∑

⃗𝑓∈Arr(𝐶∗)ℓ

⟨𝑇 | ⃗𝑓⟩

× ( ∑

⃗𝑓
(1)
∈Arr(𝐶

+
)

𝜋( ⃗𝑓
(1)
)=𝑓1

⟨𝑆 | ⃗𝑓
(1)

⟩ ⃗𝑓
(1)

)

⋅ ⋅ ⋅ ( ∑

⃗𝑓
(ℓ)
∈Arr(𝐶

+
)

𝜋( ⃗𝑓
(ℓ)
)=𝑓ℓ

⟨𝑆 | ⃗𝑓
(ℓ)

⟩ ⃗𝑓
(ℓ)

) .

(6)

(1) Let 𝑥 ∈ Ob(𝐶). We have ⟨𝜌
𝑆
(𝑇) | id

𝑥
⟩ = ⟨𝑇 | id

𝑥
⟩ +

∑ ⃗𝑓
⟨𝑇 | ⃗𝑓⟩⟨𝜌

𝑆
( ⃗𝑓) | id

𝑥
⟩. We have ⟨𝜌

𝑆
( ⃗𝑓) | id

𝑥
⟩ =

⟨𝜌
𝑆
(𝑓

1
) ⋅ ⋅ ⋅ 𝜌

𝑆
(𝑓

ℓ( ⃗𝑓)
) | id

𝑥
⟩ = ∑

ℎ⃗1 ,...,ℎ⃗ℓ( ⃗𝑓)
, 𝜋(ℎ⃗𝑖)=𝑓𝑖

⟨𝑆 |

ℎ⃗
1
⟩ ⋅ ⋅ ⋅ ⟨𝑆 | ℎ⃗

ℓ( ⃗𝑓)
⟩⟨ℎ⃗

1
⋅ ⋅ ⋅ ℎ⃗

ℓ( ⃗𝑓)
| id

𝑥
⟩ = 0.

(2) Let ⃗𝑓 ∈ Arr(𝐶
+
) (that is, ℓ( ⃗𝑓) > 0). Each proper

decomposition of ⃗𝑓 of the form ⃗𝑓 = ⃗𝑓
(1)

⋅ ⋅ ⋅ ⃗𝑓
(ℓ),

1 ≤ ℓ ≤ ℓ( ⃗𝑓), occurs in the sum (6) with coefficient
given by

⟨𝑇 | (𝑓
1
, . . . , 𝑓

ℓ
)⟩ ⟨𝑆 | ⃗𝑓

(1)
⟩ ⋅ ⋅ ⋅ ⟨𝑆 | ⃗𝑓

(ℓ)
⟩ , (7)

where 𝜋( ⃗𝑓
(𝑖)

) = 𝑓
𝑖
. Collecting all these coefficients

yields the expected result for the coefficient of ⃗𝑓 in
𝜌
𝑆
(𝑇).

We observe that 𝜌
𝑆
maps 𝐴⟨⟨𝐶

+
⟩⟩ to itself according to

the first point of Lemma 6. Let 𝐼 = ∑
𝑓∈Arr(𝐶)(𝑓). For every

𝑓 ∈ Arr(𝐶) = E(𝐶), 𝜌
𝐼
((𝑓)) = (𝑓), then for each ⃗𝑓 =

(𝑓
1
, . . . , 𝑓

ℓ( ⃗𝑓)
), 𝜌

𝐼
( ⃗𝑓) = ⃗𝑓. Therefore, 𝜌

𝐼
(𝑝) = 𝑝 for every 𝑝 ∈

𝐴⟨𝐶
∗
⟩ (since we also have 𝜌

𝐼
(id

𝑥
) = id

𝑥
). Therefore, 𝜌

𝐼
is the

identity on 𝐴⟨⟨𝐶
∗
⟩⟩ (since 𝐴⟨𝐶

∗
⟩ is dense in 𝐴⟨⟨𝐶

∗
⟩⟩, and

𝜌
𝐼
is continuous). Moreover, we have Arr(𝐶

∗
) = Arr(𝐶

+
) ⊔

{id
𝑥

: 𝑥 ∈ Ob(𝐶)} = ⨆
𝑓∈Arr(𝐶) 𝜋

−1
({𝑓}) ⊔ {id

𝑥
: 𝑥 ∈ Ob(𝐶)}.

For every 𝑓 ∈ Arr(𝐶), then 𝜌
𝑆
(𝑓) = ∑ ⃗𝑓∈𝜋

−1
({𝑓})

⟨𝑆 | ⃗𝑓⟩ ⃗𝑓,
so that 𝜌

𝑆
(𝐼) = ∑

𝑓∈Arr(𝐶) ∑ ⃗𝑓∈𝜋
−1
({𝑓})

⟨𝑆 | ⃗𝑓⟩ ⃗𝑓. But the family
(⟨𝑆 | ⃗𝑓⟩) ⃗𝑓

is summable, and by associativity of summable
families,∑ ⃗𝑓

⟨𝑆 | ⃗𝑓⟩ ⃗𝑓 = ∑
𝑓∈Arr(𝐶) ∑ ⃗𝑓∈𝜋

−1
({𝑓})

⟨𝑆 | ⃗𝑓⟩ ⃗𝑓. Finally

for similar reasons, 𝑆 = ∑
𝐹∈Arr(𝐶∗)⟨𝑆 | 𝐹⟩𝐹 = ∑

𝑥∈Ob(𝐶)⟨𝑆 |

id
𝑥
⟩id

𝑥
+ ∑ ⃗𝑓

⟨𝑆 | ⃗𝑓⟩ ⃗𝑓 = ∑
𝑥∈Ob(𝐶)⟨𝑆 | id

𝑥
⟩id

𝑥
+ 𝜌

𝑆
(𝐼), so that

𝜌
𝑆
(𝐼) = 𝑆 − ∑

𝑥∈Ob(𝐶)⟨𝑆 | id
𝑥
⟩id

𝑥
. This means that 𝐼 acts as

a two-sided identity for the operation (𝑆, 𝑇) ∈ 𝐴⟨⟨𝐶
+
⟩⟩

2
→

𝜌
𝑆
(𝑇) ∈ 𝐴⟨⟨𝐶

+
⟩⟩.

Example 7. (1)Let𝐶 be the semicategorywith only one object
and one arrow 𝑥. Then, 𝐶+

≅ N \ {0}, and 𝐶
∗

≅ N. Moreover,
𝑅⟨⟨𝐶

∗
⟩⟩ ≅ 𝑅[[𝑥]]. Finally, 𝜌

𝑆
(𝑇) = 𝑇 ∘ (𝑆 − ⟨𝑆 | 1⟩1), where ∘

denotes the usual substitution of formal power series (see for
instance [27]), and 1 = 𝑥

0 is the unit of 𝑅[[𝑥]].
(2) Let 𝑆 be a finite semigroup. Then, 𝑆

+
≅ 𝑆

+ (the
free semigroup on 𝑆), and 𝑆

∗
≅ 𝑆

∗ (the free monoid on
𝑆, with identity the empty word 𝜖). Therefore, 𝑅⟨⟨𝑆

∗
⟩⟩ ≅

𝑅[[𝑆
∗
]] (the large algebra of 𝑆

∗). We have 𝜌
𝑆
(𝑇) = ⟨𝑇 |

𝜖⟩𝜖 + ∑
𝑛≥1

∑
𝑥1 ⋅⋅⋅𝑥𝑛∈𝑆

+
,𝑥𝑖∈𝑆

⟨𝑇 | 𝑥
1

⋅ ⋅ ⋅ 𝑥
𝑛
⟩(∑

𝜋(�⃗�
(1)
)=𝑥1

⟨𝑆 |

�⃗�
(1)

⟩�⃗�
(1)

) ⋅ ⋅ ⋅ (∑
𝜋(�⃗�
(𝑛)
)=𝑥𝑛

⟨𝑆 | �⃗�
(𝑛)

⟩�⃗�
(𝑛)

).
(3) Let (𝑃, ≤) be a finite poset. We define a semicategory

𝐶(𝑃, <), where < is the strict partial order associated to ≤.
Its set of objects is 𝑃. We have an arrow between 𝑥 and 𝑦

if, and only if, 𝑦 < 𝑥. The composition is the obvious one.
Now,𝐶(𝑃, <)

∗ consists of the identities 𝑥 for every 𝑥 ∈ 𝑃, and
all the chains 𝑥

1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
. Because 𝑃 is finite, it is clear that

Arr(𝐶(𝑃, <)
∗
) is finite.Moreover 𝜋(𝑥

1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
) = 𝑥

1
< 𝑥

𝑛
.

We have 𝜌
𝑆
(𝑥 < 𝑦) = ∑

𝑥<⋅⋅⋅<𝑦
⟨𝑆 | 𝑥 < ⋅ ⋅ ⋅ < 𝑦⟩𝑥 < ⋅ ⋅ ⋅ < 𝑦.

In particular, if 𝑦 covers 𝑥, then 𝜌
𝑆
(𝑥 < 𝑦) = ⟨𝑆 | 𝑥 < 𝑦⟩𝑥 <

𝑦. We have 𝜌
𝑆
(𝑇) = ∑

𝑥∈𝑃
⟨𝑇 | 𝑥⟩𝑥 + ∑

𝑛≥1
∑

𝑥1<⋅⋅⋅<𝑥𝑛
⟨𝑇 |

𝑥
1

< ⋅ ⋅ ⋅ < 𝑥
𝑛
⟩(∑

𝑥1<⋅⋅⋅<𝑥2
⟨𝑆 | 𝑥

1
< ⋅ ⋅ ⋅ < 𝑥

2
⟩𝑥

1
< ⋅ ⋅ ⋅ <

𝑥
2
) ⋅ ⋅ ⋅ (∑

𝑥𝑛−1<⋅⋅⋅<𝑥𝑛
⟨𝑆 | 𝑥

𝑛−1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
⟩𝑥

𝑛−1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
).

We now denote 𝜌
𝑆
(𝑇) by 𝑇 ∘ 𝑆, and call it the substitution.

We also define M(𝐴) = {𝑆 ∈ M
≥1

(𝐴) : ∀𝑓 ∈ Arr(𝐶), ⟨𝑆 |

(𝑓)⟩ ̸= 0}.

Lemma 8. (1) The set 𝐴⟨⟨𝐶
+
⟩⟩ is a monoid under ∘.

(2) Let 𝑆 ∈ 𝐴⟨⟨𝐶
+
⟩⟩ be left (respectively, right) invertible

(with respect to ∘). Then, for every 𝑓 ∈ A, ⟨𝑆 | (𝑓)⟩ is left
(respectively, right) invertible in 𝐴, and so it is invertible since
𝐴 is commutative. In particular, 𝑆 ∈ M(𝐴).

(3) Let 𝑆 ∈ 𝐴⟨⟨𝐶
+
⟩⟩ such that for every 𝑓 ∈ C, ⟨𝑆 | (𝑓)⟩ is

invertible in 𝐴 (in particular, 𝑆 ∈ M(𝐴)). Then, 𝑆 is invertible
(with respect to ∘), its inverse 𝑇, denoted by 𝑆

∘−1, is an element
of M(𝐴) such that for every 𝑓 ∈ Arr(𝐶), ⟨𝑇 | (𝑓)⟩ is the
inverse of ⟨𝑆 | (𝑓)⟩. In particular, if ⟨𝑆 | (𝑓)⟩ = 1

𝐴
for every

𝑓 ∈ Arr(𝐶), then 𝑆 is invertible, and its inverse 𝑇 satisfies ⟨𝑇 |

(𝑓)⟩ = 1
𝐴
for every 𝑓 ∈ Arr(𝐶).

(4) If 𝐴 is a field say K, thenM(𝐴) is a group under ∘.

Proof. (1) It is already known that ∘ is a binary operation
for 𝐴⟨⟨𝐶

+
⟩⟩, with unit given by 𝐼. It remains to prove asso-

ciativity. Actually we can prove the following. Let 𝑆, 𝑇, 𝑈 ∈

𝑅⟨⟨𝐶
∗
⟩⟩. For every 𝑥 ∈ Ob(𝐶), ⟨(𝑆 ∘ 𝑇) ∘ 𝑈 | id

𝑥
⟩ =

⟨𝑆 ∘ 𝑇 | id
𝑥
⟩ = ⟨𝑆 | id

𝑥
⟩ = ⟨𝑆 ∘ (𝑇 ∘ 𝑈) | id

𝑥
⟩. Now,

let ⃗𝑓 with ℓ( ⃗𝑓) > 0. The computation of 𝑆 ∘ (𝑇 ∘ 𝑈) at
⃗𝑓 involves all proper decompositions ⃗𝑓 = ⃗𝑓

(1)
⋅ ⋅ ⋅ ⃗𝑓

(𝑘) into
nontrivial paths, and then all the proper decompositions of
each factor ⃗𝑓

(1)
= ⃗𝑓

(1,1)
⋅ ⋅ ⋅ ⃗𝑓

(1,ℓ1), . . . , ⃗𝑓
(𝑘)

= ⃗𝑓
(𝑘,1)

⋅ ⋅ ⋅ ⃗𝑓
(𝑘,ℓ𝑘).
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It is equivalent to sum first over all the proper decompo-
sitions ⃗𝑓 = ⃗𝑓

(1,1)
⋅ ⋅ ⋅ ⃗𝑓

(𝑘,ℓ𝑘) and then to consider all manners
of regrouping adjacent factors ( ⃗𝑓

(1,1)
⋅ ⋅ ⋅ ⃗𝑓

(1,ℓ1)) ⋅ ⋅ ⋅ ( ⃗𝑓
(𝑘,1)

⋅ ⋅ ⋅

⃗𝑓
(𝑘,ℓ𝑘)), which yields to the value of (𝑆 ∘ 𝑇) ∘ 𝑈 at ⃗𝑓.

(2) Let 𝑆 ∈ 𝑅⟨⟨𝐶
+
⟩⟩ be left (respectively, right) invertible.

Therefore there exists some 𝑇 ∈ 𝑅⟨⟨𝐶
+
⟩⟩ such that 𝑇 ∘ 𝑆 = 𝐼

(respectively, 𝑆 ∘ 𝑇 = 𝐼). In particular, for every 𝑓 ∈ Arr(𝐶),
⟨𝑇 | (𝑓)⟩⟨𝑆 | (𝑓)⟩ = ⟨𝑇 ∘ 𝑆 | (𝑓)⟩ = 1 (respectively, ⟨𝑆 |

(𝑓)⟩⟨𝑇 | (𝑓)⟩ = ⟨𝑆 ∘ 𝑇 | (𝑓)⟩ = 1), according to Lemma 6.
(3) Let 𝑆 ∈ 𝑅⟨⟨𝐶

+
⟩⟩ such that for every 𝑓 ∈ Arr(𝐶),

⟨𝑆 | (𝑓)⟩ is invertible in 𝐴. For every 𝑥 ∈ Ob(𝐶), let
us define 𝑇

(𝑥)
= 0. For every 𝑓 ∈ Arr(𝐶), let us define

𝑇
(𝑓)

= ⟨𝑆 | (𝑓)⟩
−1. Now, suppose that ⃗𝑓 ∈ Arr(𝐶

+
) such

that ℓ( ⃗𝑓) > 1. By induction on ℓ( ⃗𝑓), we define 𝑇
( ⃗𝑓)

=

−⟨𝑆 | (𝜋( ⃗𝑓))⟩
−1

∑
ℓ( ⃗𝑓)

𝑘=2
∑

( ⃗𝑓
(1)
,..., ⃗𝑓
(𝑘)
)∈𝐷𝑘(

⃗𝑓)
⟨𝑆 | 𝜋( ⃗𝑓

(1)
) ⋅ ⋅ ⋅

𝜋( ⃗𝑓
(𝑘)

)⟩𝑇
( ⃗𝑓
(1)
)
⋅ ⋅ ⋅ 𝑇

( ⃗𝑓
(𝑘)
)
. We define 𝑇 = ∑ ⃗𝑓∈Arr(𝐶∗)

𝑇
( ⃗𝑓)

⃗𝑓. It is
clear that 𝑇 ∈ M(𝐴), and that ⟨𝑇 | (𝑓)⟩ = ⟨𝑆 | (𝑓)⟩

−1 for
every 𝑓 ∈ Arr(𝐶). It is easy to see that 𝑆 ∘ 𝑇 = 𝐼 (because 𝑇 is
built to satisfy this property), so that 𝑆 is left invertible. Since
for every 𝑓 ∈ Arr(𝐶), ⟨𝑇 | (𝑓)⟩ = ⟨𝑆 | (𝑓)⟩

−1 is invertible
in 𝐴, it follows that 𝑇 also is left invertible. Therefore there
is 𝑆

 such that 𝑇 ∘ 𝑆


= 𝐼, then 𝑆 = 𝑆 ∘ 𝐼 = 𝑆 ∘ 𝑇 ∘ 𝑆


= 𝑆


so that 𝑆 is invertible with (two-sided) inverse 𝑇. The second
fact becomes obvious.

(4) It is clear thatM(𝐴) is a submonoid of (𝐴⟨⟨𝐶
+
⟩⟩, ∘, 𝐼)

(since 𝐼 ∈ M(𝐴), and for every ⃗𝑓 such that ℓ( ⃗𝑓) = 1, ⟨𝑆 ∘ 𝑇 |

⃗𝑓⟩ = ⟨𝑆 | ⃗𝑓⟩⟨𝑇 | ⃗𝑓⟩ ̸= 0 whenever 𝑆, 𝑇 ∈ M(𝐴)). To prove
thatM(𝐴) is a group under ∘ (if 𝐴 is the fieldK), it suffices to
prove that any element ofM(𝐴) is invertible (with respect to
∘) which is clear according to the previous point.

6. Coordinate Hopf Algebras for
Groups of Invertible Series with respect to
Multiplication and Substitution

In this section we define two 𝑅-groups of series over a
category, and we use the result from Section 3 to introduce
their coordinate Hopf algebras.

6.1. Group of (Unipotent) Invertible Series. Let𝐴 be a commu-
tative 𝑅-algebra with a unit. Let 𝐶 be a finite decomposition
category. Let Arr(𝐶)

+
= Arr(𝐶) \ {id

𝑥
: 𝑥 ∈ Ob(𝐶)}, and let

1
𝐴⟨⟨𝐶⟩⟩

= ∑
𝑥∈Ob(𝐶) id𝑥. Let us define

I (𝐴) =
{

{

{

𝑆 ∈ 𝐴⟨⟨𝐶⟩⟩ : 𝑆 = 1
𝐴⟨⟨𝐶⟩⟩

+ ∑

𝑓∈Arr(𝐶)+

⟨𝑆 | 𝑓⟩𝑓
}

}

}

.

(8)

Remark 9. We observe that in general for an arbitrary
category𝐶,I(𝐴) is not closed under ∘. Indeed, let us consider
the finite category (actually, groupoid)𝐶with two objects𝑥, 𝑦

and two nonidentity arrows 𝑓 : 𝑥 → 𝑦, 𝑔 : 𝑦 → 𝑥 with
𝑓 ∘ 𝑔 = id

𝑦
. It is obviously a finite decomposition category

(since it is a finite category). Let 𝑆 = id
𝑥

+ id
𝑦

− 𝑓 and
𝑇 = id

𝑥
+ id

𝑦
+𝑔.Then, 𝑆𝑇 = id

𝑥
+𝑔−𝑓 ∉ I(𝐴).This cannot

happen anymore if 𝐶 is locally finite (because no nonidentity
arrows may be left or right invertible in such categories).

Lemma 10. Let one assumes that 𝐶 is a locally finite category.
Then, I(𝐴) is a group under multiplication with identity
1
𝐴⟨⟨𝐶⟩⟩

. Actually, I is an 𝑅-group.

Proof. Let us first check that I(𝐴) is a monoid. Let 𝑆, 𝑇 ∈

I(𝐴). Because𝐶 is locally finite, we have for every 𝑥 ∈ Ob(𝐶),
⟨𝑆𝑇 | id

𝑥
⟩ = ⟨𝑆 | id

𝑥
⟩⟨𝑇 | id

𝑥
⟩ = 1

𝐴
so that 𝑆𝑇 ∈ I(𝐴).

Moreover, it is clear that 1
𝐴⟨⟨𝐶⟩⟩

is a two-sided identity of
I(𝐴) which turns to be a monoid. Now, let 𝑆 ∈ I(𝐴). Let
us define a collection of scalars (𝑇

𝑓
)
𝑓∈Arr(𝐶) by induction

on the length of 𝑓. First, 𝑇id𝑥 = 1
𝐴
for every 𝑥 ∈ Ob(𝐶).

Let 𝑓 ∈ Arr(𝐶) with ℓ(𝑓) = 1. Then, we define 𝑇
𝑓

=

−⟨𝑆 | 𝑓⟩. By induction, we define for 𝑓 with ℓ(𝑓) = 𝑛 + 1,
𝑇
𝑓

= − ∑𝑔ℎ=𝑓; 𝑔 ̸= id𝜕1(𝑓)
⟨𝑆 | 𝑔⟩𝑇

ℎ
. Let us define 𝑇 = ∑

𝑓
𝑇
𝑓
𝑓.

Then, 𝑇 ∈ I(𝐴), and 𝑆𝑇 = 1
𝐴⟨⟨𝐶⟩⟩

(as 𝑇 is built to satisfy
this property). By the same reasoning, 𝑇 admits itself a right
inverse say 𝑆


∈ I(𝐴). Then, 𝑆 = 𝑆1

𝐴⟨⟨𝐶⟩⟩
= 𝑆(𝑇𝑆


) = 𝑆

 so
that 𝑆 admits 𝑇 as a two-sided inverse. The fact that I is an
𝑅-group is obvious.

Remark 11. We observe that if we consider any locally finite
monoid 𝑀 as a category with only one object, then I(𝐴) is
the group of invertible series of the form 1 + 𝑇 (where 𝑇 is
a series without constant terms) in the large monoid algebra
𝐴[[𝑀]] (see, e.g., [20]). In particular, if 𝑀 is N, thenI is the
𝑅-group 𝐺 of invertible series of Example 2.

For the remainder of this subsection, 𝐶 is assumed to be
a locally finite category. The set Arr(𝐶)

+
= ⋃

ℓ≥1
Arr(𝐶)

ℓ

obviously forms the coordinate system of I (see Section 3).
Consequently, the polynomial algebra 𝑅[Arr(𝐶)

+
] is the

coordinate Hopf algebra that represents I. Again as in
Section 3, its coproduct Δ is computed through the product
in I(𝑅[Arr(𝐶)

+
] ⊗

𝑅
𝑅[Arr(𝐶)

+
]) of the series 𝑆 = 1

𝐴⟨⟨𝐶⟩⟩
+

∑
𝑓∈Arr(𝐶)+

(𝑓⊗1)𝑓 and𝑇 = 1
𝐴⟨⟨𝐶⟩⟩

+∑
𝑓∈Arr(𝐶)+

(1⊗𝑓)𝑓 (where
𝐴 = 𝑅[Arr(𝐶)

+
] ⊗

𝑅
𝑅[Arr(𝐶)

+
]). Thus, Δ = ∑

𝑓∈Arr(𝐶)+
(𝑓 ⊗

1 + 1 ⊗ 𝑓 + ∑
𝑔∘ℎ=𝑓

(𝑔 ⊗ ℎ))𝑓, and consequently, Δ(𝑓) =

𝑓⊗1+1⊗𝑓+∑
𝑔∘ℎ=𝑓

(𝑔 ⊗ ℎ) for every𝑓 ∈ Arr(𝐶)
+
.The counit

is given by 𝜖(𝑓) = 0 for every 𝑓 ∈ Arr(𝐶)
+
. To determine

its antipode 𝑠, we need to compute the inverse of the series
𝑆 = 1+∑

𝑓∈Arr(𝐶)+
𝑓𝑓 ∈ I(𝑅[Arr(𝐶)

+
]). By recurrence on the

length of𝑓, we thus obtain that 𝑠(𝑓) = −𝑓−∑
(𝑔,ℎ)∈𝐷2(𝑓)

𝑔𝑠(ℎ)

for every 𝑓 ∈ 𝑓 ∈ Arr(𝐶)
+
.

Remark 12. As in Remark 11, let us consider a locally finite
monoid 𝑀 seen as a one-object category. In this case the set
𝑀

+ of nonidentity elements of 𝑀 is the coordinate system of
I. The coproduct on 𝑅[𝑀

+
] is then given by Δ(𝑥) = 𝑥 ⊗ 1 +

1 ⊗ 𝑥 + ∑
𝑦𝑧=𝑥;𝑦,𝑧∈𝑀

+ 𝑦 ⊗ 𝑧. In particular, for 𝑀 = N, then
𝑅[N+

] is similar to the usual divided power Hopf algebra (see
for instance [5]).

6.2. Group of (Unipotent) Reversible Series. Let 𝐴 be a
commutative 𝑅-algebra with a unit. Let 𝐶 be a finite semi-
category. From Section 5, the free category 𝐶

∗ generated by
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the underlying graph 𝐶 of 𝐶 is a locally finite category, and
by Lemma 8, M(𝐴) = {𝑆 ∈ M

≥1
: ∀𝑓 ∈ Arr(𝐶), ⟨𝑆 |

(𝑓)⟩ ̸= 0} = {𝑆 ∈ 𝑅⟨⟨𝐶
∗
⟩⟩ : ∀𝑥 ∈ Ob(𝐶), ⟨𝑆 | id

𝑥
⟩ =

0, ∀𝑓 ∈ Arr(𝐶), ⟨𝑆 | (𝑓)⟩ ̸= 0} is a group under substitution
∘, when 𝐴 is a field. We consider M

1
(𝐴) = {𝑆 ∈ 𝑅⟨⟨𝐶

∗
⟩⟩ :

∀𝑥 ∈ Ob(𝐶), ⟨𝑆 | id
𝑥
⟩ = 0, ∀𝑓 ∈ Arr(𝐶), ⟨𝑆 | (𝑓)⟩ =

1
𝐴

} ⊆ M(𝐴).Therefore, 𝑆 ∈ M
1
(𝐴) if, and only if, there exists

𝑇 ∈ M
≥2

(𝐴) such that 𝑆 = 𝐼 + 𝑇, where we recall that 𝐼 =

∑
𝑓∈Arr(𝐶)(𝑓) and M

≥𝑛
(𝐴) = {𝑆 ∈ 𝑅⟨⟨𝐶

∗
⟩⟩ : 𝜔(𝑆) ≥ 𝑛} (see

Section 4). According to the point (3) of Lemma 8, M
1
(𝐴)

is closed under inversion, and since ⟨𝑆 ∘ 𝑇 | (𝑓)⟩ = ⟨𝑆 |

(𝑓)⟩⟨𝑇
𝑓

| (𝑓)⟩ = ⟨𝑇
𝑓

| (𝑓)⟩ = ⟨∑ ⃗𝑓, 𝜋( ⃗𝑓)=𝑓
⟨𝑇 | ⃗𝑓⟩ ⃗𝑓 | 𝑓⟩ =

⟨𝑇 | (𝑓)⟩ = 1, M
1
(𝐴) forms a monoid under ∘, and thus a

group. It is clearly an 𝑅-group.

Remark 13. When 𝐶 is the semicategory with one object
and one arrow as in Example 7, then M

1
(𝐴) is the group

of reversible formal power series in one variable of the form
𝑥 + O(𝑥

2
).

The set Arr(𝐶
∗
)
≥2

= ⋃
ℓ≥2

Arr(𝐶
∗
)
ℓ
, where we

recall that Arr(𝐶
∗
)
ℓ
is the set of all arrows of 𝐶

∗ of
length ℓ, is a coordinate system of the group M

1
(𝐴).

Let us determine the coproduct Δ, counit 𝜖, and
antipode 𝑠 of the coordinate algebra 𝑅[Arr(𝐶

∗
)
≥2

].
Let 𝑆 = 𝐼 + ∑ ⃗𝑓

( ⃗𝑓 ⊗ 1) ⃗𝑓 and 𝑇 = 𝐼 + ∑ ⃗𝑓
(1 ⊗ ⃗𝑓) ⃗𝑓

be two series in M
1
(𝑅[Arr(𝐶

∗
)
≥2

] ⊗
𝑅

𝑅[Arr(𝐶
∗
)
≥2

]).
According to Lemma 6, ⟨𝑆 ∘ 𝑇(𝑓

1
, . . . , 𝑓

𝑛
)⟩ =

(𝑓
1
, . . . , 𝑓

𝑛
) ⊗ 1 + 1 ⊗ (𝑓

1
, . . . , 𝑓

𝑛
) +

∑
𝑛−1

ℓ=2
∑

( ⃗𝑓
(1)
,..., ⃗𝑓
(ℓ)
)∈𝐷ℓ(𝑓1 ,...,𝑓𝑛)

(𝜋( ⃗𝑓
(1)

), . . . , 𝜋( ⃗𝑓
(ℓ)

)) ⊗ ⃗𝑓
(1)

⋅ ⋅ ⋅ ⃗𝑓
(ℓ)

for every 𝑛 ≥ 2, and every arrow (𝑓
1
, . . . , 𝑓

𝑛
). It amounts to

say that Δ((𝑓
1
, . . . , 𝑓

𝑛
)) = (𝑓

1
, . . . , 𝑓

𝑛
) ⊗ 1 + 1 ⊗ (𝑓

1
, . . . , 𝑓

𝑛
) +

∑
𝑛−1

ℓ=2
∑

( ⃗𝑓
(1)
,..., ⃗𝑓
(ℓ)
)∈𝐷ℓ(𝑓1 ,...,𝑓𝑛)

(𝜋( ⃗𝑓
(1)

), . . . , 𝜋( ⃗𝑓
(ℓ)

))⊗ ⃗𝑓
(1)

⋅ ⋅ ⋅ ⃗𝑓
(ℓ).

As usual the counit is given by 𝜖( ⃗𝑓) = 0 for every
⃗𝑓 ∈ Arr(𝐶

∗
)
≥2
. It remains to determine the antipode 𝑠

from the inverse series of 𝐼 + ∑ ⃗𝑓

⃗𝑓 ⃗𝑓 ∈ M
1
(𝑅[Arr(𝐶

∗
)
≥2

]).
It is easily seen to be given by

𝑠 ((𝑓
1
, . . . , 𝑓

𝑛
))

= − (𝑓
1
, . . . , 𝑓

𝑛
)

−

𝑛−1

∑

ℓ=2

∑

( ⃗𝑓
(1)
,..., ⃗𝑓
(ℓ)
)∈𝐷ℓ(𝑓1 ,...,𝑓𝑛)

(𝜋 ( ⃗𝑓
(1)

) , . . . , 𝜋 ( ⃗𝑓
(ℓ)

))

× 𝑠 ( ⃗𝑓
(1)

) ⋅ ⋅ ⋅ 𝑠 ( ⃗𝑓
(ℓ)

) ,

(9)
for every arrow (𝑓

1
, . . . , 𝑓

𝑛
), 𝑛 ≥ 2.

Remark 14. As in Remark 13, if 𝐶 is the semicategory with
a single object and a single arrow, then the coordinate Hopf
algebra of M

1
is the usual Faà di Bruno Hopf algebra (see

[11, 15]).

6.3. Interaction between both Hopf Algebras. The notion of
smash coproduct may be found in [28–30], for instance.

Let K be a field. Let 𝐻 and 𝐶 be two Hopf algebras over
K. According to [29], if 𝐻 is commutative and 𝐶 is an 𝐻-
comodule bialgebra, then the tensor algebra 𝐶 ⊗K 𝐻 admits a
structure of Hopf algebra, called the smash coproduct, and is
denoted by 𝐶#𝐻. An affine group on a fieldKwill be referred
to as a proaffine algebraic group.

Example 15 (see [29, 30]). Let 𝑁 and 𝐾 be two proaffine
algebraic groups, represented by the coordinateHopf algebras
O(𝑁) and O(𝐾). Let us assume that we have a semidi-
rect product 𝑁 ⋊

𝜏
𝐾 of proaffine algebraic groups, that is,

𝜏 : 𝐾 × 𝑁 → 𝑁 is a natural transformation that
induces a group action from 𝐾 on 𝑁 by proaffine algebraic
group automorphisms.Then, according to Yoneda’s lemma, 𝜏
induces an algebra map O(𝑁) → O(𝐾) ⊗K O(𝑁) that turns
O(𝑁) into a O(𝐾)-comodule bialgebra. Thus, O(𝑁) #O(𝐾)

is a Hopf algebra that can be shown to be isomorphic to
O(𝑁 ⋊

𝜏
𝐾).

Example 15 may be applied on the two affine groups of
series over a category previously introduced. Let 𝑅 be a
commutative ring with a unit and let 𝐶 be a finite semicat-
egory. We consider the group-valued functors of series I
andM

1
over the locally finite category 𝐶

∗ so that the results
of Sections 6.1 and 6.2 hold. Let 𝐴 be any commutative 𝑅-
algebra with a unit. For every 𝑆 ∈ I(𝐴) and 𝑇 ∈ M

1
(𝐴),

𝑆 ∘ 𝑇 ∈ I(𝐴) (by Lemma 6). Moreover, 𝜌
𝑇

: I → I(𝐴)

is invertible with inverse 𝜌
𝑇
∘−1 . Actually, it defines a group

antihomomorphism 𝜌 : M
1
(𝐴) → Aut(I(𝐴)) by 𝜌(𝑇) =

𝜌
𝑇
. Therefore, we obtain a structure of semidirect product

I(𝐴) ⋊ M
op
1

(𝐴) on I(𝐴) × M
1
(𝐴) by (𝑆

1
, 𝑇

1
) ⋊ (𝑆

2
, 𝑇

2
) =

(𝑆
1
(𝑆

2
∘ 𝑇

1
), 𝑇

2
∘ 𝑇

1
) and with (1K⟨⟨𝐶∗⟩⟩, 𝐼) as identity (where

𝐺
op denotes the opposite group of a group 𝐺). The inverse of

(𝑆, 𝑇) is given by (𝑆
−1

∘ 𝑇
∘−1

, 𝑇
∘−1

). This construction is easily
seen to be natural in 𝐴 so that we have a semidirect 𝑅-group
functorI ⋊ M

op
1
.

Remark 16. This situation generalizes the case of formal
power series in one-variable 𝑥 where we have a semidi-
rect product 𝐺 ⋊ 𝐻 (using the notations from Example 2)
given by exactly the same formula (𝑆

1
, 𝑇

1
) ⋊ (𝑆

2
, 𝑇

2
) =

(𝑆
1
(𝑆

2
∘ 𝑇

1
), 𝑇

2
∘ 𝑇

1
) and with (1, 𝑥) as unit element. See for

instance [31].

Now, let us assume that 𝑅 is a field K (in order to
apply the results from [29, 30]). According to Example 15,
we have a structure of Hopf algebra given by the smash
coproduct O(I)#O(M

op
1

) ≅ O(I ⋊ M
op
1

). It is clear that
O(M

op
1

) is isomorphic to the Hopf algebra K[Arr(𝐶
∗
)
≥2

]
op

(which is the algebra K[Arr(𝐶
∗
)
≥2

] with opposite coproduct
Δ
op

= 𝜏 ∘ Δ, where 𝜏 : K[Arr(𝐶
∗
)
≥2

] ⊗K K[Arr(𝐶
∗
)
≥2

] →

K[Arr(𝐶
∗
)
≥2

] ⊗K K[Arr(𝐶
∗
)
≥2

] is the usual flip). Therefore,
O(I ⋊ M

op
1

) ≅ K[Arr(𝐶
∗
)
+
] #K[Arr(𝐶

∗
)
≥2

]
op. Moreover,

a set-valued functor I ⋊ M
op
1

is isomorphic to I × M
op
1

so
that its coordinate algebra isK[Arr(𝐶

∗
)
+

⊔ Arr(𝐶
∗
)
≥2

] (thus
Theorem 1 is proved).

Remark 17. In the paper [32], the authors described a similar
interaction between two Hopf algebras of functions on the
so-called B-series [33, 34].
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Elsevier, New York, NY, USA, 1970.

[8] G. Hochschild and G. D. Mostow, “Pro-affine algebraic groups,”
American Journal of Mathematics, vol. 91, no. 4, pp. 1127–1140,
1969.

[9] J. S. Milne, Basic Theory of Affine Group Schemes, Version 1. 00,
On-line course material, 2012.

[10] S. MacLane, Categories for the Working Mathematician, vol. 5
of Graduate Texts in Mathematics, Springer, Berlin, Germany,
1998.

[11] H. Figueroa, J. M. Gracia-Bondı́a, and J. C. Várilly, “Faà di
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