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Bent functions on a finite nonabelian group

Laurent Poinsot ∗

Université du Sud Toulon-Var
Institut des Sciences de l’Ingénieur de Toulon et du Var
Avenue G. Pompidou
BP 56, 83162 La Valette du Var cédex
France

Abstract

We introduce the notion of a bent function on a finite nonabelian group which is
a natural generalization of the well-known notion of bentness on a finite abelian group
due to Logachev, Salnikov and Yashchenko. Using the theory of linear representations and
noncommutative harmonic analysis of finite groups we obtain several properties of such
functions similar to the corresponding properties of traditional abelian bent functions.

Keywords and phrases : Bent functions, finite nonabelian groups, noncommutative harmonic

analysis, Fourier transform.

1. Introduction

The introduction of Boolean bent functions by Rothaus [9], and
Dillon [4] had important consequences in cryptology because this concept
displays the most resistant functions against the so called differential [1],
and linear [6] cryptanalysis. Allowing abelian groups to be more complex
than the simple abelian 2-groups, Logachev, Salnikov and Yashchenko
[5] generalized the notion of bentness. A function f from a finite abelian
group G to the unit circle of the complex field T is bent if for all σ ∈ G,

| f̂ (σ)|2 = |G| (1)

where f̂ is the (discrete) Fourier transform of f , |z| is the complex modulus
of z ∈ C and |G| is the cardinality of G.
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350 L. POINSOT

The objective of this paper is to present a generalization of the previ-
ous notion of bentness to the case of finite nonabelian groups. In terms
of harmonic analysis, noncommutativity implies to deal with higher-
dimensional complex vector spaces rather than the trivial one, C, the
complex field. In particular, the Fourier transform of a complex-valued
function is no more C-valued in this nonabelian context but its values are
some linear endomorphisms. This Fourier transform is based on the theory
of linear representations since the theory of characters is not sufficient
to describe all of the duality of a nonabelian group. It is possible to
introduce the concept of bentness on a finite nonabelian group in an
intuitive way. First, let us rewrite formula (1) as follows: ∀ σ ∈ G,

f̂ (σ) f̂ (σ) = |G| (2)

where z denotes the complex conjugate of z ∈ C.

Now let suppose G to be a finite nonabelian group. The discrete
Fourier transform f̂ must be replaced by the representation-based Fourier
transform denoted f̃ . This transform maps linear representations, i.e.,
group homomorphism ρ from G to the linear group of a finite dimensional
complex vector space V, on linear endomorphisms f̃ (ρ) of V. Since we
now deal with linear operators rather than complex numbers, the multi-
plication is replaced by maps composition and the complex conjugate by
the adjoint of endomorphisms. Thus in the nonabelian setting the formula
(2) becomes

f̃ (ρ) ◦ f̃ (ρ)∗ = |G|IdV (3)

where IdV is the identity endomorphism of V.

The functions that satisfy this relation correspond to traditional bent
functions but in the noncommutative case. In this paper are presented
several properties of such functions which generalize the classical ones.

Outline of the paper

This paper is organized in five sections. The first one is the current
introduction to this work. In Section 2 are given the most important
and general notations used in this document. The third section sum-
marizes some basics about the classical notion of commutative bentness
by Logachev, Salnikov and Yashchenko. Then in Section 4, we present
some harmonic analysis tools needed to develop a bentness notion in a
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BENT FUNCTIONS 351

nonabelian group. Finally in Section 5, we introduce the generalization
of bent functions in a finite nonabelian group and establish their main
properties.

2. General notations

If X is a finite set, then |X| is its cardinality. The symbol “◦” denotes
the composition of functions.

In this paper the letter “G” always stands for a finite group in a
multiplicative representation and eG denotes its identity. Moreover G∗ is
the set of nonidentity elements of G.

If z ∈ C then z (resp., |z|) is the complex conjugate (resp., complex
modulus) of z. The multiplicative group of complex roots of the unity is
denoted by T.

The dimension of a complex vector space V is designed by dimC(V),
its identity map by IdV and the vector space of all its endomorphisms is
End(V). The adjoint of U ∈ End(V) is U∗; U is called unitary if U ◦U∗ =
IdV . The set of all unitary operators of V is denoted T(V). Finally the trace
of operators is simply designed by “tr”.

3. Bent functions on a finite abelian group: the classical approach

In [5] Logachev, Salnikov and Yashchenko described a generalization
of Boolean bentness to the case of T-valued functions defined on a finite
abelian group. We briefly summarize their results in this section, high-
lighting the properties we generalize in the noncommutative setting. Nev-
ertheless let us begin with some recalls about the theory of characters and
the duality of finite abelian groups.

Let G be a finite abelian group. A character of G is a group homomor-
phism from G to T. The set of all characters of G, when equipped with
point-wise multiplication, is a finite abelian group isomorphic to G itself;
it is called the dual group of G and denoted Ĝ. The image of σ ∈ G by such
an isomorphism from G to Ĝ is designed by χσ .

The (discrete) Fourier transform of a function f : G → C is defined by

f̂ : G → C
σ 7→ ∑

x∈G
f (x)χσ (x) . (4)
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352 L. POINSOT

This transform is a very powerful tool for the study of the properties of
functions f : G → C. The result given below clearly explains it. It can be
found in any books on Fourier analysis (e.g., see [7]).

Proposition 1 (Trivialization of the Convolutional Product [7]). Let G be
a finite abelian group and ( f , g) ∈ (CG)2. The convolutional product of f and g
is defined as

f ∗ g : G → C
σ 7→ ∑

x∈G
f (x)g(x−1σ) . (5)

Then for all σ ∈ G

(̂ f ∗ g)(σ) = f̂ (σ)ĝ(σ) . (6)

This Fourier transform plays an essential role in the definition of bentness.

Definition 1. Let G be a finite abelian group and f : G → T. The map f is
bent if ∀ σ ∈ G,

| f̂ (σ)|2 = |G| . (7)

An equivalent way to characterize this notion of bentness needs to use the
concepts of balancedness and derivative.

Definition 2. Let G be a finite abelian group and f : G → C. The map f is
called balanced if

∑
x∈G

f (x) = 0 . (8)

Definition 3. Let G be a finite group (not necessary abelian) and f : G→C.
The derivative of f in direction σ ∈ G is defined as

df
dσ

: G → C

x 7→ f (x) f (σx) . (9)

With these two notions it is possible to give to bentness a combinatorial
presentation.

Theorem 1 ([5]). Let G be a finite abelian group and f : G → T. The map f is

bent if and only if for all σ ∈ G∗,
d f
dσ

is balanced, i.e., ∀σ ∈ G∗, ∑
x∈G

df
dσ

(x) = 0.

D
ow

nl
oa

de
d 

by
 [

L
au

re
nt

 P
oi

ns
ot

] 
at

 0
5:

19
 0

3 
Ju

ne
 2

01
3 



BENT FUNCTIONS 353

Proof. We give here a slightly different proof than the one that can be
found in [5]. In particular we use the fact — easily checkable — that a
function g : G → C satisfies ĝ is constant if and only if g(x) = 0 for all
x ∈ G∗. We have

f is bent ⇔ ∀ σ ∈ G, | f̂ (σ)|2 = |G|
⇔ ∀ σ ∈ G, f̂ (σ) f̂ (σ) = |G|.

Moreover

f̂ (σ) = ∑
x∈G

f (x)χσ (x) = ∑
x∈G

f (x)χσ (x−1)

= ∑
y∈G

f (y−1)χσ (y) = f̂ ◦ iG(σ)

with for g : G → C, g : G → C is defined by g(x) = g(x) and

iG : G → G

x 7→ x−1.

So we have

f is bent ⇔ ∀ σ ∈ G, f̂ (σ) f̂ ◦ iG(σ) = |G|
⇔ ∀ σ ∈ G, ̂( f ∗ f ◦ iG)(σ) = |G|

(by the trivialization of the convolutional product)

⇔ ∀ σ ∈ G∗, ( f ∗ f ◦ iG)(σ) = 0

(according to the beginning of the proof.)

This gives the conclusion since

( f ∗ f ◦ iG)(σ) = ∑
x∈G

f (x)( f ◦ iG)(x−1σ)

= ∑
x∈G

f (x) f (σ−1x)

= ∑
y∈G

f (σy) f (y)

(by the change of variables: y = σ−1x)

= ∑
y∈G

df
dσ

(y) . ¤

In the case of functions from a finite abelian group G to another one H
this combinatorial characterization leads to the important cryptographic
concept of perfect nonlinearity [2, 8].
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354 L. POINSOT

Another remarkable property concerning the theory of Logachev,
Salnikov and Yashchenko is the fact that the knowledge of a bent function
automatically leads to the existence (in a constructive way) of another one:
its dual.

Theorem 2 ([5]). Let G be a finite abelian group and f : G → T a bent function.

Let define ḟ : G → C by ḟ (x) =
1√|G| f̂ (x). Then ḟ , called dual of f , is

T-valued and bent.

Proof. Let us show that ∀ x ∈ G, ḟ (x) ∈ T.

| ḟ (x)|2 = ḟ (x) ḟ (x) =
1√|G| f̂ (x)

1√|G| f̂ (x)

=
1
|G| | f (x)|2 =

∣∣∣∣
G
G

∣∣∣∣ (since f is bent) = 1.

Now we prove that ḟ is bent. Let σ ∈ G.

̂̇f (σ) =
1√|G|

̂̂f (σ) =
|G|√|G| f (σ−1) =

√
|G| f (σ−1)

(it is easy to check that ̂̂f (σ) = |G| f (σ−1)). Then we have

|̂̇f (σ)|2 = ̂̇f (σ)̂̇f (σ) =
√
|G| f (σ−1)

√
|G| f (σ−1)

= |G|| f (σ−1)|2 = |G| (because f is T-valued). ¤

4. Noncommutative harmonic analysis

4.1 The theory of linear representations

Definition 4. Let V be a finite-dimensional complex vector space. A linear
representation of a finite group G on V is a group homomorphism from G
to GL(V) the linear group of V.

For each linear representation ρ : G → GL(V), it is possible to find
a basis of V in which for all x ∈ G, ρ(x) is a unitary operator of V, i.e.,
ρ : G → T(V). Indeed, we can check that for a linear representation ρ of
G on V, for each x ∈ G, ρ(x) leaves invariant the following inner-product
in V

〈u, v〉 = ∑
x∈G

〈ρ(x)(u), ρ(x)(v)〉V (10)
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BENT FUNCTIONS 355

where (u, v) ∈ V2 and 〈·, ·〉V denotes any inner-product of V (linear in the
first variable and anti-linear in the second). Then in the remainder, without
loss of generality, we only consider unitary representations.

The linear representations of G on C can be identified with the
characters of G since C∗ and GL(C) are isomorphic. Actually if G is a
finite abelian group then the notion of linear representation gives nothing
new because it is equivalent to the notion of characters.

Definition 5. A linear representation ρ of a finite group G on V is said
irreducible if there is no subspace W ⊂ V, other than {0V} and V, such that
∀ x ∈ G, ∀ w ∈ W, ρ(x)(w) ∈ W.

Definition 6. Two linear representations ρ and ρ′ of a finite group G
on respectively V and V′ are isomorphic if it exists a linear isomorphism
Φ : V → V’ such that for all x ∈ G,

Φ ◦ ρ(x) = ρ′(x) ◦Φ . (11)

The notion of isomorphism is an equivalence relation for linear represen-
tations.

Definition 7. For a finite group G, the dual of G, denoted G̃, is a set that
contains exactly one and only one representative of each equivalence class
of isomorphic irreducible representations of G.

By definition, if (ρ, ρ′) ∈ G̃2, ρ 6= ρ′ then ρ and ρ′ are nonisomorphic
irre-ducible representations of G. In the remainder, the notation

ρV ∈ G̃ (12)

means that ρV : G → T(V) is an irreducible representation of G.

If G is a finite abelian group, then G̃ is equal to Ĝ (up to an iso-
morphism from GL(C) to C∗). If G is finite nonabelian group, the two
notions of duality become distinct (in particular, G̃ is not a group). By
abuse of notation, G̃∗ is defined as the set G̃ \ {ρ0} where ρ0 is the trivial
or principal representation of G, i.e., ∀ x ∈ G, ρ0(x) = IdC.

When dealing with linear representations, a major result, know as
Schur’s lemma, should be kept in mind.

Lemma 1 ([7]). Let G be a finite group. Let ρV ∈ G̃ and λ ∈ End(V). If ∀
x ∈ G, λ ◦ ρV(x) = ρV(x) ◦ λ then λ is a multiple of the identity i.e. it exists
k ∈ C such that λ = kIdV .
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356 L. POINSOT

As direct consequences of the Schur’s lemma, we can establish the
two following results that will be use in the sequel.

Lemma 2 ([7]). Let G be a finite group. For x ∈ G∗,

∑
ρV∈G̃

dimC(V)tr(ρV(x)) = 0 . (13)

Lemma 3. Let G be a finite group. Let ρV ∈ G̃∗. Then

∑
x∈G

ρV(x) = 0End(V) . (14)

Proof. Let λ ∈ End(V) defined as λ = ∑
x∈G

ρV(x). Let x0 ∈ G. We have

λ = ∑
x∈G

ρV(x) = ∑
x∈G

ρV(x0x)

= ρV(x0) ◦ ∑
x∈G

ρV(x) = ρV(x0) ◦ λ

but also

λ = ∑
x∈G

ρV(x) = ∑
x∈G

ρV(xx0)

=
(

∑
x∈G

ρV(x)
)
◦ ρV(x0) = λ ◦ ρV(x0) .

In particular λ ◦ ρV(x0) = ρV(x0) ◦ λ. As it is true for any x0 ∈ G, λ

commutes with all ρV(x). By the Schur’s lemma, λ is a multiple on the
identity: it exists k ∈ C such that λ = kIdV . Now let suppose λ 6= 0End(V),
then k ∈ C∗. Using the first part of the proof, we know that λ = ρV(x) ◦ λ

(for each x ∈ G). Then (IdV − ρV(x)) ◦ λ = 0End(V). As λ = kIdV , we have
(IdV − ρV(x)) ◦ (kIdV) = 0End(V). Since k 6= 0, we have IdV − ρV(x) =
0End(V) or also ρV(x) = IdV which is a contradiction with the assumption
that ρ is non trivial.

4.2 The representation-based Fourier transform

By substituting irreducible linear representations to characters, it is
possible to define a kind of Fourier transform for nonabelian groups. Let
G be any finite group.

Definition 8. Let φ : G → C. The (representation-based) Fourier transform of
f is defined for ρV ∈ G̃ as

φ̃(ρV) = ∑
x∈G

φ(x)ρV(x) ∈ End(V) . (15)
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BENT FUNCTIONS 357

This Fourier transform maps a function f ∈ CG on a function f̃ ∈
( ⊕

ρV∈G̃
End(V)

)G̃

where
⊕

denotes the (generalized) direct sum of vector

spaces.

Note that this transform is defined up to the choice of a system of
representatives of irreducible isomorphic linear representations. Actually
the transform is defined up to a linear isomorphism between complex
vector spaces, i.e., if ρV and ρV′ are two irreducible isomorphic linear
representations of G then it exists a linear isomorphism Φ : V → V′ such
that Φ−1 ◦ ρV′(x) ◦Φ = ρV(x) for all x ∈ G. Then for any f : G → C, we
have f̃ (ρV) = Φ−1 ◦ f̃ (ρV′) ◦Φ. Finally, up to linear isomorphisms, the
Fourier transform does not depend on the choice of the representatives.

This notion is a generalization of the classical discrete Fourier trans-
form. This transform is invertible so we have also an inversion formula.

Proposition 2 ([7]). Let φ : G → C. Then for all x ∈ G we have,

φ(x) =
1
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x−1) ◦ φ̃(ρV)) . (16)

A technical lemma is given below.

Lemma 4. Let φ : G → C. We have

1. φ(x) = 0 ∀ x ∈ G∗ if and only if ∀ ρV ∈ G̃, φ̃(ρV) = φ(eG)IdV ;

2. φ(ρV) = 0End(V) ∀ ρV ∈ G̃∗ if and only if φ is constant.

Proof. 1. ⇒) For ρV ∈ G̃, we have

φ̃(ρV) = ∑
x∈G

φ(x)ρV(x) (by definition)

= φ(eG)ρV(eG) (by assumption on φ)

= φ(eG)IdV (since ρV is a group homomorphism).

⇐) For x ∈ G, the inversion formula gives

φ(x) =
1
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x−1) ◦ φ̃(ρV))

=
1
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x−1) ◦φ(eG)IdV)

(by hypothesis)
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358 L. POINSOT

=
φ(eG)
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x−1))

=
φ(eG)
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x)−1)

(since ρV is a group homomorphism)

=
φ(eG)
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x)∗)

(since ρV(x) is unitary)

=
φ(eG)
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x))

=
φ(eG)
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x))

= 0 if x 6= eG (according to Lemma 2).

2. ⇒) By the inversion formula, ∀ x ∈ G,

φ(x) =
1
|G| ∑

ρV∈G̃

dimC(V)tr(ρV(x−1) ◦ φ̃(ρV))

=
1
|G| tr(φ̃(IdC)) (by hypothesis) .

⇐) Let ρV ∈ G̃, we have φ̃(ρV) = k ∑
x∈G

ρV(x) (with φ(x) = k ∀ x ∈ G).

According to Lemma 3, we deduce that φ̃(ρV) = 0End(V) for all

ρV ∈ G̃∗. ¤

This tools from harmonic analysis will have a significant interest in
the remainder of this paper for the establishment of a theory of bent
functions on a finite nonabelian group similar to the one of Logachev,
Salnikov and Yashchenko.

5. The main properties of bent functions

In the remainder of this section, G denotes a finite nonabelian group.

Definition 9. Let f : G → T. The map f is called bent if ∀ ρV ∈ G̃,

f̃ (ρV) ◦ f̃ (ρV)∗ = |G|IdV . (17)

This formula is very similar to the one of Logachev, Salnikov and
Yashchenko (formula (7)) up to the substitution of the discrete Fourier
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BENT FUNCTIONS 359

transform by its representation-based version, the complex multiplication
by the composition, the complex conjugate by the adjoint of operators and
the addition of the factor IdV .

The Fourier transform of bent functions are no more — up to a
multiplicative factor |G| − T-valued as in the commutative case but, again
up to the same factor |G|, T(V)-valued. This is the price to pay when
dealing with nonabelian groups: higher-dimensions are needed.

Using the trace of endomorphisms, we can easily check that if f :
G → T is bent then for all ρV ∈ G̃,

‖ f̃ (ρV)‖2
V = dimC(V)|G| (18)

where for U ∈ End(V), ‖U‖2
V = tr(U ◦U∗). Up to the factor dimC(V)

which reduces to 1 when V = C, this last formula seems identical to (7).
An interesting question, left open in this paper, is to know whether or not
the functions that satisfy (18) are bent.

5.1 Derivative and bent functions

Although the definition of noncommutative bentness seems to be
quite natural, we now show that it is actually legitimate. This is done by
using the notions of balancedness and derivative in a way similar to the
traditional abelian setting.

Lemma 5. Let f : G → C. The autocorrelation function of f is defined as

AC f : G → C

σ 7→ ∑
x∈G

df
dσ

(x) . (19)

Then we have for all ρV ∈ G̃,

ÃC f (ρV) = f̃ (ρV) ◦ f̃ (ρV)∗ . (20)

Proof. Let ρV ∈ G̃. We have

ÃC f (ρV) = ∑
x∈G

AC f (x)ρV(x)

= ∑
x∈G

∑
y∈G

df
dx

(y)ρV(x)

= ∑
x∈G

∑
y∈G

df
dx

(y)ρV(xyy−1)
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360 L. POINSOT

= ∑
x∈G

∑
y∈G

df
dx

(y)ρV(xy) ◦ ρV(y)∗

= ∑
y∈G

∑
x∈G

f (xy)ρV(xy) ◦ f (y)ρV(y)∗

= f̃ (ρV) ◦ f̃ (ρV)∗. ¤

Theorem 3. Let f : G → T. The map f is bent if and only if for all σ ∈ G̃∗,
d f
dσ

is balanced.

Proof. ∀ σ ∈ G∗,
df
dσ

is balanced ⇔ ∀ σ ∈ G∗, ∑
x∈G

df
dσ

(x) = 0

⇔ ∀ σ ∈ G∗, AC f (σ) = 0

⇔ ∀ ρV ∈ G̃, ÃC f (ρV) = AC f (eG)IdV

(according to Lemma 4)

⇔ ∀ ρV ∈ G̃, f̃ (ρV) ◦ f̃ (ρV)∗ = |G|IdV .

The last equivalence comes from Lemma 5 and the fact that f is
T-valued. ¤

The result above is exactly the same as the one given in Section 3
but because it is established in the noncommutative setting we should be
careful not to identify left and right multiplications. In other terms, we
should prove a similar result concerning a right-derivative of f : G → T;
let σ ∈ G,

df
dσ

: G → T

x 7→ f (x) f (xσ) . (21)

However, although left and right multiplication are different, they
are actually isomorphic. So the right case leads to results symmetric to the
ones obtained in the left case.

5.2 Dual bent function

This subsection is dedicated to the question of the existence of a dual
noncommutative bent function as it is the case in the abelian situation. The
answer to this question needs the development of an original concept of
bentness for functions φ : G̃ → ⊕

ρV∈G̃
End(V). In the sequel we suppose
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BENT FUNCTIONS 361

these functions to be defined up to a linear isomorphism between vector
spaces.

Definition 10. Let φ : G̃ → ⊕
ρV∈G̃

End(V). We define the Fourier transform

of φ as

φ̆ : G → C
σ 7→ ∑

ρV∈G̃

dimC(V)tr(ρV(σ) ◦φ(ρV)) . (22)

This Fourier transform is essentially the inverse Fourier transform of a
function f : G → C. It is an invertible transform and the corresponding
inversion formula is given in the following lemma.

Lemma 6 (Inversion formula). Let φ : G̃→ ⊕
ρV∈G̃

End(V). Then for all ρV ∈ G̃

φ(ρV) =
1
|G| ∑

x∈G
φ̆(x)ρV(x)∗. (23)

Proof. The representation-based Fourier transform is a bijective map.
Then it exists one and only one f : G → C such that f̃ = φ. Then for
σ ∈ G, φ̆(σ) = ∑

ρV∈G̃
dimC(V)tr(ρV(σ) ◦ f̃ (ρV)) = |G| f (σ−1) according to

the inversion formula of the representation-based Fourier transform. Thus

for each σ ∈ G, f (σ) =
1
|G|φ̆(σ−1). Finally for ρV ∈ G̃,

φ(ρV) = f̃ (ρV) = ∑
x∈G

f (x)ρV(x)

=
1
|G| ∑

x∈G
φ̆(x−1)ρV(x) =

1
|G| ∑

y∈G
φ̆(y)ρV(y)∗.

Let us also give another technical lemma useful in the sequel.

Lemma 7. Let φ : G̃ → ⊕
ρV∈G̃

End(V). We have for all ρV ∈ G̃,

˜̆φ(ρV) = |G|φ(ρ∗V) . (24)

Proof. The representation based Fourier transform is a bijective map.
Then it exists one and only one f : G → C such that f̃ = φ. As in the
previous proof we can find that for all σ ∈ G,

φ̆(σ) = |G| f (σ−1) = |G|( f ◦ iG)(σ)
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362 L. POINSOT

where iG(x) = x−1 for each x ∈ G. Then for ρV ∈ G̃,
˜̆φ(ρV) = |G|( f̃ ◦ iG)(ρV) = |G| ∑

x∈G
f (x−1)ρV(x)

= |G| ∑
x∈G

f (x)ρV(x)∗

= |G|φ(ρ∗V) .

Note that ρ∗V is (isomorphic to) an element of G̃. ¤

Definition 11. A function φ : G̃ → ⊕
ρV∈G̃

T(V) is said bent if for all σ ∈ G,

|φ̆(σ)|2 = |G| . (25)

This “unnatural” definition allows us to introduce dual bentness in the
nonabelian setting.

Theorem 4. Let f : G → T. Let define ḟ : G̃ → ⊕
ρV∈G̃

End(V) by ḟ (ρV) =

1√|G| f̃ (ρV) for ρV ∈ G̃. Then ḟ , called dual of f , is
⊕

ρV∈G̃
T(V)-valued and

bent.

Proof. First let us show that ∀ ρV ∈ G̃, ḟ (ρV) ∈ T(V).

ḟ (ρV) ◦ ḟ (ρV)∗ =
1√|G| f̃ (ρV) ◦ 1√|G| f̃ (ρV)∗

=
1
|G| f̃ (ρV) ◦ f̃ (ρV)∗

= IdV

because f is bent.

Let us prove that ḟ is bent, i.e., ∀ σ ∈ G, | ˘̇f (σ)|2 = |G|.
We have

˘̇f (σ) = ∑
ρV∈G̃

dimC(V)tr(ρV(σ) ◦ ḟ (ρV))

=
1√|G| ∑

ρV∈G̃

dimC(V)tr(ρV(σ) ◦ f̃ (ρV))

=
|G|√|G| f (σ−1) (by the inversion formula)

=
√
|G| f (σ−1).
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BENT FUNCTIONS 363

Then

| ˘̇f (σ)|2 = ˘̇f (σ) ˘̇f (σ)

=
√
|G| f (σ−1)

√
|G| f (σ−1)

= |G| | f (σ−1)|2 = |G|
because f is T-valued. ¤

We can establish a symmetric result.

Proposition 3. Let φ : G̃ → ⊕
ρV∈G̃

T(V) a bent function. Let define φ̇ : G → C

by φ̇(σ) =
1√|G|φ̆(σ) for σ ∈ G. Then φ̇, called dual of φ, is T-valued and

bent.

Proof. Is φ̇ T-valued? Let σ ∈ G.

|φ̇(σ)|2 = φ̇(σ) φ̇(σ) =
1
|G|φ̆(σ) φ̆(σ)

=
1
|G| |φ̆(σ)|2 = 1

because φ is bent.

Is φ̇ bent? Let ρV ∈ G̃. We have

˜̇φ(ρV) =
1√|G|

˜̆φ(ρV) =
√
|G|φ(ρ∗V)

according to Lemma 7.

Then for all ρV ∈ G̃,

˜̇φ(ρV) ◦ ˜̇φ(ρV)∗ = |G|φ(ρ∗V) ◦φ(ρ∗V)∗ = |G|IdV

because ∀ ρV ∈ G̃, φ(ρV) ∈ T(V). ¤

6. Hadamard construction

We exhibit an example of a nonabelian bent function. In order to do
this, we use some combinatorial objects called Hadamard difference sets. We
do not go into details but definitions and results can be found in [3] for
instance.

Let G be a finite nonabelian group that contains a Hadamard differ-
ence set D. Let define f : G → {±1} ⊂ T as f (x) = (−1)iD(x) where
iD is the indicator function of D. We can check that f is a nonabelian bent
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364 L. POINSOT

function. Indeed let compute f̃ (ρV) for ρV ∈ G̃∗.

f̃ (ρV) = ∑
x∈G

(−1)iD(x)ρV(x)

= − ∑
x∈D

ρV(x) + ∑
x∈G\D

ρV(x)

= −2 ∑
x∈D

ρV(x) + ∑
x∈G

ρV(x)

︸ ︷︷ ︸
= 0End(V) because ρV is nontrivial

.

We now put ρV(D) = ∑
x∈D

ρV(x). Then we have f̃ (ρV) ◦ f̃ (ρV)∗ =

4ρV(D) ◦ ρV(D)∗ = |G|IdV (refer to [3] for the last equality). Therefore

f is nonabelian bent. By Theorem 4, its dual ḟ (ρV) = − 2√|G| ∑
x∈D

ρV(x) is

also bent.
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