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ABSTRACT 

An operator on formal power series of the form  S S  , where   is an invertible power series, and   is a 

series of the form  2t t  is called a unipotent substitution with pre-function. Such operators, denoted by a pair 

 ,  , form a group. The objective of this contribution is to show that it is possible to define a generalized powers for 

such operators, as for instance fractional powers  ,
a

b   for every 
a

b
 . 
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1. Substitution of Formal Power Series 

In this contribution we let   denote any field of 
characteristic zero. We recall some basic definitions from 
[1,2]. The algebra of formal power series in the variable 
t  is denoted by  t   . In what follows we sometimes  

use the notation  tS  for  tS      to mean that S   

is a formal power series of the variable t. We recall that 
any formal power series of the form tS    for  

   and  tS      is invertible with respect to  

the usual product of series. Its inverse is denoted by 1  
and has the form 1 tV   for some  tV     . In 
particular, the set of all series of the form 1 tT    
forms a group under multiplication, called the group of 
unipotent series. For a series of the form 2t t T   ,  
we may define for any other series 

0
tn

nn
S 


   an  

operation of substitution given by   0

n
nn

S   


 . A  

unipotent substitution is a series of the form 2t t T   . 
Such series form a group under the operation of 
substitution, called the group of unipotent substitutions 
(whenever 0  , a series 2t t T    is invertible 
under substitution, and the totality of such series forms a 
group under the operation of substitution called the 
group of substutions, and it is clear that the group of 
unipotent substitutions is a sub-group of this one). The 

inverse of   is then denoted by  1   and satisfies  
      1 1t      . Finally, it is possible to define a  

semi-direct product of groups by considering pairs 
 ,   where   is a unipotent series, and   is a 
unipotent substitution, and the operation  1 1,    

      2 2 1 2 2 1 2, ,       . The identity element is 

(1, t) . This group has been previously studied in [3-5], 
and is called the group of (unipotent) substitutions with 
pre-function. These substitutions with pre-function act on 

 t    as follows:    , S S      for every 
series S . In [3] is associated a doubly-infinite matrix 

 ,M    to each such operator which defines a matrix 
representation of the group of substitutions with pre- 
function, and it is proved that there exists a one- 
parameter sub-group  ,M 

    . Therefore, it sa-  

tisfies      , , ,M M M   
     
   for every ,   , and  

 ,M 
   is the usual  -th power of  ,M    whenever  

  is an integer. It amounts that for every  ,  ,M 
   is 

the matrix representation of a substitution with pre-  

function say  ,    so that    , ,M M
 


    . The  

authors of [3] then define    , ,


     . Actually 
in [3] no formal proof is given for the existence of such 
generalized powers for matrices or unipotent substitu- 
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tions with pre-function. 
In this contribution, we provide a combinatorial proof 

for the existence of these generalized powers for unipo- 
tent substitutions with pre-function, and we show that 
this even forms a one-parameter sub-group. To achieve 
this objective we use some ingredients well-known in 
combinatorics such as delta operators, Sheffer sequences 
and umbral composition which are briefly presented in 
what follows (Sections 2, 3, 4 and 5). The Section 6 con- 
tains the proof of our result. 

2. Differential and Delta Operators, and 
Their Associated Polynomial Sequences 

By operator we mean a linear endomorphism of the 
 -vector space of polynomials  x  (in one indeter- 
minate x ). The composition of operators is denoted by a 
simple juxtaposition. If  xp , then we sometimes 
write  xp  to mean that p  is a polynomial in the va- 
riable x . 

Let    0
xn n

p

   be a sequence of polynomials. 

It is called a polynomial sequence if  deg np n  for 
every 0n   (in particular, 0p  ). It is clear that a 
polynomial sequence is thus a basis for  x . 

An operator D  is called a differential operator (see 
[6]) if 

1) 0D   for every   . 
2)    deg deg 1Dp p   for every non-constant poly- 

nomial p . 
For instance, the usual derivation   of polynomials 

is a differential operator. Moreover, let   , and let 
us define the shift-invariant operator E  as the unique 
linear map such that    x x

nnE    for every 
0n  . Then, 1E id    is also a differential operator. 

A polynomial sequence   0n n
p


 is said to be a normal 

family if 
1) 0 1p  . 
2)  0 0np   for every 0n  . 
Let D  be a differential operator. A normal family 

  0n n
p


 is said to be a basic family for D  if 

 1 1n nDp n p    

for every 0n  . It is proved in [6] that for any differen- 
tial operator admits is one and only one basic family, and, 
conversely, any normal family is the basic family of a 
unique differential operator. As an example, the normal 
family  

0

n

n
x


 is the basic family of  . 

Let L  be an operator such that for every non-zero 
polynomial  xp ,    deg degLp p  (in particu- 
lar,   0L    for every constant   ). Such an op- 
erator is called a lowering operator (see [7]). For in- 
stance any differential operator is a lowering operator. 
Then given a lowering operator L , we may consider the 
algebra of formal power series  L    of operators of 

the form 
0

n
nn
L

  where n   for every 0n  . 

The series 
0

n
nn
L

  converges to an operator of  

 x  in the topology of simple convergence (when   
has the discrete topology) since for every  xp , 
there exists pn   such that for all pn n , 

  0nL p  , so that we may define 

   
0 0

.
pn

n n
n n

n n

L p L p 
 

   
 
   

According to [6], if D  is a differential operator, then  

 D      if, and only if,   commutes with D , i.e., 

D D  . Moreover, if  0
n

nn
D D 


      , then  

  is also a differential operator if, and only if, 0 0   
and 1 0  . 

Following [1], let us define a sequence of polynomials  

0

x

n
n



  
  
  

 by 
x

0
0

 
 

 
 and 

   0

x 1
x

1 1 !
n

i
i

n n 

 
    

  

for every integer n . For   , we denote by 
n

 
 
 

 

the value of the polynomial 
x

n

 
 
 

 for x  . Let L  be  

a lowering operator, and let  U id L L       be its 
unipotent part. Then we may consider generalized power  

 0
n

n
U L L

n
 



 
     

 
   (in particular, this explains  

the notation E  for the shift operator). We observe that 
for every integer k , kU  really coincides to the k -th  

power 
factorsk

U U  of U . Moreover, U U U      for 

every ,   . We may also form  

       
1

1

1
log log

n

n
n

U id L L L
n






         

in such a way that for every   , 

  exp logU U   

where for every  0
n

nn
L L 


       with 0 0  , 

  0

1
exp

!
n

n n
 


   (it is a well-defined operator). This  

kind of generalized powers may be used to compute frac-  

tional power of the form 
a

bU  for every a , b   

(for instance, 
1

n nU U ). They satisfy the usual proper- 

ties of powers: 0U id , U U U     . The objective 
of this contribution is to provide a proof of the existence 
of such generalized powers for unipotent substitutions 
with pre-function. 



L. POINSOT 

Copyright © 2013 SciRes.                                                                                  AM 

14 

Following [8], we may consider the following sub-set 
of differential operators, called delta operators. A poly- 
nomial sequence   0n n

p


 is said to be of binomial-type 
if for every 0n  , 

       
=0

x y x y x, y .
n

n k n k
k

p p p      

An operator   is a shift-invariant operator if for 
every   , E E   . Now, a delta operator D  
is a shift invariant operator such that xD  . For in- 
stance, the usual derivation   of polynomials is a delta 
operator. It can be proved that a delta operator is a dif- 
ferential operator. The basic family (uniquely) associated 
to a delta operator is called its basic set. Moreover, the 
basic set of a delta operator is of binomial-type, and to 
any polynomial sequence of binomial-type is uniquely 
associated a delta operator. If D  is a delta operator, 
then there exists a unique  -algebra isomorphism from 

 t    to the ring of shift-invariant operators  D     

that maps 
0 !

n

nn

t
S s

n
   to   0 !

n

nn

D
S D s

n
  . In [8]  

is proved that given a delta operator D , and a series 

1
tn

nn
 


    0 0   with 1 0  , then  D  is 

also a delta operator. Conversely, if   is a shift-in- 
variant operator (so that  D     ), then if it is a 
delta operator, the unique series  

 0

t
t

!

n

nn n
 


       

such that  D   satisfies 0 0   and 1 0  . 

3. Sheffer Sequences 

In this section, we also briefly recall some definitions 
and results from [8]. 

Let   0n n
p


 be a sequence of polynomials in  x . 

We define the exponential generating function of 
  0n n

p


 as 

      
0

t
; t x t .

!

n

n nn
n

EGF p p
n

       

Let D  be a delta operator and   0n n
p


 be its basic 

set. Let  t      with 0 0   and 1 0   such 
that   D   . Then from [8], 

      1x t; t e .n n
EGF p  

  

A polynomial sequence   0n n
s


 is said to be a Sheffer 

sequence (also called a polynomial sequence of type zero 
in [9] or a poweroid in [10]) if there exists a delta opera- 
tor D  such that 

1) 0s  , 

2)  1 1n nDs n s    for every n . 

Following [9], a polynomial sequence   0n n
s


 is a 

Sheffer sequence if, and only if, there exists a pair 

 ,   of formal power series in  t    with   in- 
vertible, and 0 0  , 1 0  , such that 

      x t; t t e .n n
EGF s   

Remark 1. The basic set of a delta operator D  is a 
Sheffer sequence. 

Let D  be a delta-operator with basic set   0n n
p


. 

Following [8], the following result holds.  
Proposition 1. A polynomial sequence   0n n

s


 is a 
Sheffer sequence if, and only if, there exists an invertible 
shift-invariant operator S  such that 1

n ns S p  for each 
0n  . Moreover, let S  be an invertible shift-invariant  

operator. Let  t      be the unique formal power  

series such that   S   . Then,   is invertible, and 

        11
1 x; t en n

EGF s  


  

where  n n
s  is the Sheffer sequence defined by 

1
n ns S p  for each 0n  , and  t      is the  

unique formal power series such that   D   . Finally 
we also have the following characterization. 
Proposition 2. Let  n n

s  be a polynomial sequence. It 
is a Sheffer sequence if, and only if, there exists a delta 
operator D  with basic set  n n

p  such that 

       
0

x y x y x, y .
n

n k n k
k

n
s s p

k 


 
   

 
   

4. Umbral Composition 

This section is based on [11]. 
Let  n n

p  be a fixed polynomial sequence. Let us 
define an operator   by  xn

np   for each 0n  .  
Since  n n

p  is a basis of  x , this means that   is  

a linear isomorphism of  x . When  n n
p  is the 

basic set of a delta operator, then   is referred to as an 
umbral operator, while if  n n

p  is a Sheffer sequence, 
then   is said to be a Sheffer operator. An umbral op-
erator maps basic sets to basic sets, while a Sheffer op-
erator maps Sheffer sequences to Sheffer sequences. 

Let  n n
p  be a polynomial sequence. For every n ,  

0
x x

n k k
n nk

p p


   where xkp  is the coefficient  

of xk  in the polynomial  xp . Let  n n
p  and 

 n n
q  be two polynomial sequences. Their umbral com- 

position is defined as the polynomial sequence  n n
r   

   #n nn n
p q  defined by 

0

x
n

k
n n k

k

r p q


   

for each 0n  . By simple computations, it may be 

proved that x x x
nk k

n nk
r p q


  


. The set of  

all polynomial sequences becomes a (non-commutative) 
monoid under #  with  xn

n
 as identity. We observe 
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that if T  is the operator defined by xn
nT q  for each  

0n  , then      #n n nn n n
p q Tp . More generally, we  

have       #
x

kk n
n nn

T q  where     # k

n n
q  is the  

k -th power of  n n
q  for the umbral composition (it is  

equal to a sequence say   n n
r k  and we denote  n

r k   

by  # k
nq ). Under umbral composition, the set of all 

Sheffer sequences is a (non-commutative) group, called 
the Sheffer group ([12]), and the set of all basic se- 
quences is a sub-group of the Sheffer group. 

From [8] we have the following result that combines 
delta operators, basis sets, Sheffer sequences and umbral 
composition.  

Theorem 1. Let Q  and P  be two delta operators 
with respective basic sets  n n

q  and  n n
p . Let S  

and T  be two invertible shift-invariant operators. Let 
 n n
s  and  n n

t  be the Sheffer sequences defined by 
1

n ns S q  and 1
n nt T p  for each n . Let ,   be 

two invertible series such that  S   ,  T   . 
Let ,   be two formal power series with 0 00   , 

1 10    such that  Q    and  P   . Then,  

      R T P        is a shift-invariant opera-  

tor,       is a delta operator with basic sequence  

     #n n nn n n
v q p . Finally, let  n n

r  be the Sheffer  

sequence given by      #n n nn n n
r s t . Then, 1

n nr R v   
for each n . 

It may be proved that if  n n
s  is the Sheffer sequence 

obtained from the delta operator  D    with basic 
set  n n

p  and the invertible shift-invariant operator 

 S   , i.e., 1
n ns S p  for each n , then the inverse 

 n n
q  of  n n

p  with respect to the umbral composition 

is the basic set of the delta operator    1   , the inverse 

 n n
t  of  n n

s  with respect to the umbral composition 

is the Sheffer sequence     1
n nt q    . 

5. Unipotent Sequences 

The basic set  n n
p  of a delta operator D  is said to be 

unipotent if the unique series   such that  D    
satisfies 1 1   (and, obviously, 0 0  ), i.e.,   is a 
unipotent substitution. A Sheffer sequence  n n

s  asso-
ciated to a delta operator  D    (with 0 0  , 

1 0  ) and an invertible shift-invariant operator 
 S    (with   invertible), i.e., 1

n ns S p  for 
every n  where  n n

p  is the basic set of D , is said to  
be unipotent if  n n

p  is unipotent, and if   is unipo-  

tent, i.e., 0 1  . It is also clear from the previous sec-
tion (theorem 4) that the (umbral) inverse of a unipotent 
basic set is unipotent, and the (umbral) inverse of a 

Sheffer sequence is also unipotent. 
It is clear from theorem 4 that the group of basic sets 

under umbral composition is isomorphic to the group of 
substitutions. Moreover, the group of unipotent basic sets 
also is isomorphic to the group of unipotent substitutions. 
Likewise, the group of (unipotent) Sheffer sequences is 
isomorphic to the group of (unipotent) substitutions with 
pre-function (see also [12]). 

Lemma 1. Let  ,   be a substitution with pre-  

function, and let     ,n nn n
s p  be the Sheffer sequence  

and the basic set associated to the delta operator     
and the invertible shift-invariant operator     (this  
means that  n n

p  is the basic set of    , and 

   1

n ns p


   for each n ). Then,  ,   is a uni-

potent substitution with pre-function if, and only if, 

x 1 xn n
n np s   for every n . 

Proof. Let us first assume that  ,   is a unipotent 
substitution with prefunction. We have 0 1p   for every  
basic set, so that 0 1 1p  . Let n . We have  

  2
k

kk
 


     . Then,    1 1n np n p     is  

equivalent to 

    1

10 =0
x 1 x

n nk k
n nk k

p n p 


    . 

By identification of the coefficient of xn  on both sides, 

we obtain    1
11 x 1 xn n

n nn p n p
    

(since   is assumed to be a unipotent substitution), and, 
by induction, 1

1 x 1n
np 
  . Besides, we have 

   1

n ns p


   for each n . But     1 1 
     

(because there is a ring isomorphism between  t     

and     ), and 1 1 t    , where  t     . 

Then, by identification of the coefficient of xn , we have  

x x 1n n
n ns p   for every n . Conversely, let us  

assume that     ,n nn n
s p  is the Sheffer sequence and  

the basic set associated to the delta operator     and 
the invertible shift-invariant operator     with 

x 1 xn n
n np s   for every n . By construction we  

have    1
1 11 x 1 xn n

n nn p n p 
    so that 1 1  . 

Likewise, 0 x xn n
n ns p  , so that 0 1  . □ 

6. Generalized Powers of Unipotent 
Substitutions with Pre-Function 

The purpose of this section is to define  ,
   for any 

  and any unipotent substitution with pre-function 
 ,  , and to prove that it is also a unipotent substitu- 
tion with pre-function. Moreover we show that 
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 ,
    is a one-parameter sub-group, i.e., 

     , , ,
            for every ,   , and 

   0
, 1, t   . 

Let  ,   be a unipotent substitution with pre-  

function of  t   . Let  n n
p  be the unipotent basic 

set of the (unipotent) delta operator    . Let  n n
s   

be the unipotent Sheffer sequence associated to      

and the (unipotent) invertible shift-invariant operator    . 
Let R  be the umbral operator given by xn

nR p  for 
all n , and let T  be the Sheffer operator defined by 

xn
nT s  for all n . It is easily checked that for every  

integer k ,    # xk k n
np R  and    # xk k n

ns T . In par-  

ticular, for each n ,   1

0
x x x x

nn n n k
n nk

T s s



     

(by Lemma 5). Therefore, T id L  , where  
1

0
x x x

nn n k
nk

L s



   for each n . The operator L  is  

actually a lowering operator. Then according to section 2, 

it is possible to define  0
k

k
T L L

k
 



 
     

 
   for  

every  . Moreover, we have   exp logT T  .  

For each  , let us define    xn
ns T    for  

every n . When k   , we have  ns k   

   #x kk n
nT s . So that in this case,   n n

s k  is the  

unipotent Sheffer sequence associated to  ,
k  . This 

means that if    , ,
k

k k    , and  n n
q  is the uni-  

potent basic set of the (unipotent) delta operator  k  ,  

then    # 1k
n k ns q   for each n . Similarly, let 

1

0
x x x x

nn n k k
n nk

R p p



    for every n . There-  

fore, R id N  , where 
1

0
x x x

nn k k
nk

N p



   is a  

lowering operator. Again for every  , we define 

    0
exp log k

k
R R N N

k
 




 
      

 
  . For each  

 , we define   xn
np R   for each n . In particular  

for k   ,    # k
n np k p , so that it is the basic set  

of the unipotent delta operator    k  . Clearly, 
     1

n k ns k p k   for each n . Thus for every 
k , we have 

        

   
0

0

x y x y

x y ,

n

n i n i
i

n
k i k n i

i

n
p k p k p k

i

n
R R

i








 
   

 
 

  
 




     (1) 

        

   
0

0

x y x y

x y ,

n

n i n i
i

n
k i k n i

i

n
s k s k p k

i

n
T R

i








 
   

 
 

  
 




     (2) 

Now, let z  be a variable commuting with x  and y , 
and let us define  

     0 0

z z
z x x x,z

ni n i n
n i i

s L L
i i 

    
      

    
    

and similarly,  

     0 0

z z
z x x x,z

ni n i n
n i i

p N N
i i 

    
      

    
   , 

for each n . As polynomials in the variable z , their 
degrees are at most n . As polynomials in the variable 
z ,   z x yns  ,   z x ynp  ,  

     0
z x z y

n

i n ii

n
p p

i 

 
 
 

  

and 

     0
z x z y

n
i n ii

n
s p

i 

 
 
 

  

have also a degree at most n . Because the equations (1) 
and (2) hold for every integer k , the polynomials (in the 
variable z ) 

          0
z x y z x z y

n
n i n ii

n
p p p

i 

 
   

 
  

and 

           0
z x y z x z y

n

n i n ii

n
s s p

i 

 
   

 
  

are identically zero, and the above equations hold for  

every  . Therefore,   n n
p   is a polynomial  

sequence of binomial-type, and   n n
s   is a Sheffer 

sequence for every  . Moreover, for every 
,   , we have  

      
      
   

=0

=0

x x

x x

x

n n
n

n k k
n nk

n k
n kk

p R R R

R p p R

p p

   

 

 

 

 

  

 






 

so that         #n n nn n n
p p q     . Similarly,  

        #n n nn n n
s s s      for every ,   . 

Moreover,  

             0 00 x x x 0n n n
n nn nnn n

p R T q    . 

Therefore,   n n
p    and   n n

s    



L. POINSOT 

Copyright © 2013 SciRes.                                                                                  AM 

17

are one-parameter sub-groups. It follows that  

        # 1

n nn n
p p 


   

and 

        # 1

n nn n
s s 


   

(inverses under umbral operation). 
We define  ,

   as the pair of formal power series 
 ,    such that   is the substitution that defines 
the delta operator     with basic sequence   n n

p  , 
and   is the invertible series such that  

      1

n ns p  


   

for each  . Since   n n
p   and   n n

s   are 
unipotent sequences, it is clear that   is unipotent, and 

  is a unipotent substitution. It is also clear that  

whenever k   , then    , ,
k

k k    . Let us  

check that  ,      is a one-parameter sub- 
group of the group of unipotent substitutions with pre- 
function. This means that for every ,   , 

     
    

, , ,

,

       

    

     

    

  




 

First of all, by definition,     is the unipotent sub- 
stitution associated to the basic set  

        #n n nn n n
p p p     , 

and therefore         . In a similar way, the se- 
ries     is uniquely associated to the Sheffer sequence  

        #n n nn n n
s s s      and to the basic set  

        #n n nn n n
p p p     . Again this means  

that           . Therefore, we obtain the ex-  

pected result. It is also clear that    0 0, 1, t   .  
Remark 2. In particular, since   is a field of 

characteristic zero, for every q , we may define 

fractional powers  ,
q   such as for instance  ,n    

for each integer n . 
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