
 
 
 

 
 

Proceedings of the 4th International Cryptology and Information Security Conference 2014 (CRYPTOLOGY2014) 
 

 
 

Harmonic Analysis and A Bentness-L ike Notion in Certain F inite Abelian G roups over 
Some F inite F ields 

 
1Laurent Poinsot and 2*Nadia E l M rabet 

1University Paris 13, Sorbonne Paris Cité, LIPN, CNRS (UMR 7030), F rance, 
 2University Paris 8, LIASD , F rance 

Email: 1 laurent.poinsot@lipn.univ-paris13.fr, 2elmrabet@ai.univ-paris8.fr 
Website: 1 http://lipn.univ-paris13.fr/poinsot/, 2http://www.ai.univ-paris8.fr/elmrabet/  

 
A BST R A C T 

It is well-known that degree two finite field extensions can be equipped with a Hermitian-like structure similar to the 
extension of the complex field over the reals. In this contribution, using this structure, we develop a modular character theory 
and the appropriate Fourier transform for some particular kind of finite Abelian groups. Moreover we introduce the notion of 
bent functions for finite field valued functions rather than usual complex-valued functions, and we study several of their 
properties 
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1. IN T R O DU C T I O N 

The most simple Hermitian structure is obtained from the degree two field extension of the 
complex numbers over the real numbers. It has many applications and in particular provides the usual 
theory of characters for finite Abelian groups and the existence of an associated Fourier transform.  Given 
a degree two extension  of , the Galois field with  elements where  is a prime 

 in a way similar to 
the relation . In particular this makes possible the definition of a unit circle  which is a 
cyclic group of order , subgroup of the multiplicative group  of invertible elements. The 
analogy with  is extended in this paper by the definition of -valued characters of finite 
Abelian groups  as group homomorphisms from  to . But  does obviously not 
contain a copy of each cyclic group. Nevertheless if  divides , then the cyclic group  of modulo 

 integers embeds as a subgroup of this particular unit circle. It forces our modular theory of characters to 
be applied only to direct products of cyclic groups whose order  divides . In addition we prove 
that these modular characters form an orthogonal basis (by respect to the Hermitian-like structure 

 over ). This decisive property makes it possible the definition of an appropriate notion of 
Fourier transform for -valued functions, rather than -valued ones, defined on , as their 
decompositions in the dual basis of characters. In this contribution we largely investigate several 
properties of this modular version of the Fourier transform similar to classical ones. As an illustration of 
our theory of modular characters one introduces and studies the corresponding cryptographic notion of 
bent functions in this setting.   

 

2. C H A R A C T E R T H E O R Y :  
T H E C L ASSI C A L APPR O A C H  

In this paper  always denotes a finite Abelian group (in additive representation),  is its identity 
element. Moreover for all groups ,  is the set obtained from  by removing its identity. As usual 

. 
 
The characters are the group homomorphisms from a finite Abelian group  to the unit circle 

 of the complex field. The set of all such characters of  together with point-wise multiplication is 
denoted by  and called the  dual group of . A classical result claims that  and its dual are isomorphic 
(essentially because  contains an isomorphic copy of all cyclic groups). The image in  of  by 
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such an isomorphism is denoted by . The complex vector space  of complex-valued functions 
defined on  can be equipped with an inner product defined for  by 
 

  
 
(1) 
 

where  denotes the complex conjugate of . With respect to this Hermitian structure,  is an 
orthogonal basis,  i.e. 
 

                                                         (2) 

 
for . We observe that in particular (replacing  by ), 
 

 
  

 
(3) 
 

 
Definition 1. Let  be a finite Abelian group and . The Fourier transform of  is defined as  
 
 

  
 
(4) 
 

 
The Fourier transform of a function  is its decomposition in the basis . This transform is invertible and 
one has an  inversion formula for , 
 
 

 
 
(5) 
 

 
for each . More precisely the Fourier transform is an algebra isomorphism from  to  

-wise multiplication of functions, and  is the convolution product 
defined by 
 
 

  
 
(6) 
 

 
Since the Fourier transform is an isomorphism between the two algebras, the  trivialization of the 
convolution product holds for each  and each , i.e., 
 

                                                   (7) 
 
Proposition 1. Let  be a finite Abelian group and . We have  
 

 
 

 
(8) 
 

 
 

 
(9) 
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where  is the complex modulus of .   

3. H E R M I T I A N ST RU C T UR E  
O V E R F INI T E F I E L DS 

In this section we recall some results about an Hermitian structure in some kinds of finite fields. 
This section is directly inspired from (Dobbertin, et al., 2006) of which we follow the notations, and is 
generalized to any characteristic . 

Let  be a given prime number and  an even power of  ,  i.e., there is  such that , 
and in particular  is a square.  

 
Assumption 1. From now on the parameters  are fixed as introduced above.  

 
As usual  is the finite field of characteristic  with  elements and by construction  is a 
subfield of . The field , as an extension of degree  of , is also a vector space of 
dimension  over . This situation is similar to the one of  and . As  plays the role of , 
the Hermitian structure should be provided for it. Again according to the analogy , we then need to 
determine a corresponding conjugate. In order to do this we use the Frobenius automorphism  of 

  
 

                                                            (10) 

 
and one of its powers  
 

                                                       (11) 

 
In particular    
 
Definition 2. The conjugate of   over  is denoted by  and defined as  
 

                                                     (12) 
 

In particular, for every , . The field extension  has amazing similarities 
with the extension  over the real numbers in particular regarding the conjugate.   
 
Proposition 2. Let , then  
 

 
 
Proof. The three first equalities come from the fact that  is a field homomorphism of . The 
last point holds since for each , .  
The relative norm with respect to  is defined as 
 

                                                                                                 (13) 
 

for , and it maps  to . We observe that  because  
divides , and  if, and only if, . The unit circle of  is defined as the set  
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                                (14) 
 
of all elements having relative norm . By construction  is the group of -th roots of 
unity, and therefore it is a (multiplicative) cyclic group of order  since  is cyclic and 

 divides . In what follows,  will play exactly the same role as  in the classical 
theory of characters. 
 

4. C H A R A C T E RS O V E R A F INI T E F I E L D 

Before beginning some formal developments, one should warn the reader on the limitations of the 
expected character theory in finite fields. We claimed that  is a cyclic group of order . 
Then for each nonzero integer  that divides , there is a (cyclic) subgroup of  of order , 
and this is the unique kind of subgroups. As a character theory is essentially used to faithfully represent an 
abstract group as an isomorphic group of functions, a copy of such group must be contained in the 
corresponding unit circle. Then our character theory in  will only apply on groups for which all 
their factors in a representation as a product direct group of cyclic subgroups have orders that divide 

.  
 

Assumption 2. From now on  always denotes an element of  that divides .  
 
Definiton 3. (and proposition) The (cyclic) subgroup of  of order  is denoted by . 

In particular, . If  is a generator of  then  is a generator of 
.   

A  character of a finite Abelian group  with respect to  (or simply a  character) is a group 
homomorphism from  to . Since a character  is -valued, 

,  and  for each . By analogy with the traditional version, we denote 
by  the set of all characters of  that we call its  dual. When equipped with the point-wise multiplication, 

 is a finite Abelian group. One recall that this multiplication is defined as  
 

                                                                (15) 
 

As already mentioned in introduction, we focus on a very special kind of finite Abelian groups: the 
additive group of modulo  integers  which is identified with the subset  of .   

 
Theorem 1. The groups  and  are isomorphic.   
Proof. The parameter  has been chosen so that it divides . Then there is a unique (cyclic) 
subgroup  of  of order . Let  be a generator of this group. Then the elements of 

 have the form, for ,  
 

                                                                                      (16) 

 
Actually the characters are -valued since for each  and each character , 

 by definition, and satisfies  and then  is a -th root 
of the unity. Then to determine a character , we need to compute the value of  for 

, which gives 
 

                                                                                                       (17) 
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In this equality, we have denoted  by  for  since  is a -th root of the 
unity in . Then the character  belongs to . Conversely, we observe that for 

, the maps  are group homomorphisms from  to  so they are elements of 
. Let us define the following function.  

 

                                                                                             (18)  

 
We have already seen that it is onto. Moreover, it is also one-to-one (it is sufficient to evaluate 

 at ) and it is obviously a group homomorphism. It is then an isomorphism, so that  is 
isomorphic to .  

 
Proposition 3.  and  are isomorphic.   
Proof. The proof is easy since it is sufficient to remark that  and  are isomorphic. 
We recall that  and  are both assumed to divide , thus  and  exist and are isomorphic to 

 and  respectively. Let  be the first canonical injection of  and  the second (when 
 is seen as a direct sum). The following map  

 

                                                (19)  

 
is a group isomorphism. It is obviously one-to-one and for , the map 

 is an element of  and . Then  is 
isomorphic to  since  and  are isomorphic (for ).  
 

From proposition 3 it follows in particular that  is isomorphic to . This result also 
provides a specific form to the characters of  as follows. We define a dot product, which is a -
bilinear map from  to , by  

 
 

 
 
(20) 
 

 
for . Then the character that corresponds to  can be defined by 
 

                                                                                                                                          (21) 

 
where  is a generator of . In particular for each , . The following 
result is obvious.   
 
Corollary 1. Let  be a finite Abelian group for which each integer  divides . Then 

 and  are isomorphic.    
If  satisfies the assumption of the corollary 1, then for  one has 
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(22) 

where for each ,  is a generator of . In particular for each , we also 
have .  
 
Assumption 3.  F rom now on, each finite Abelian group  considered is assumed to be of a specific 
form  where for each ,  divides , so that we have at our disposal a 
specific isomorphism given by the formula (22) between  and .  
 

The dual  of  is constructed and is shown to be isomorphic to . We may also be interested into 
the bidual  of , namely the dual of . Similarly to the usual situation of complex-valued characters, we 
prove that  and its bidual are canonically isomorphic. It is already clear that  (because  and 

). But this isomorphism is far from being canonical since it depends on a decomposition of , and 
of , and choices for generators of each cyclic factor in the given decomposition. We observe that the 
map  defined by  for every ,  is a group homomorphism. To prove 
that it is an isomorphism it suffices to check that  is one-to-one (since  and  have the same order). Let 

. Then, for all , . Let us fix an isomorphism  as in the formula 
(22). Then, for every ,  so that . Thus we have obtained an appropriate 
version of Pontryagin-van Kampen duality (see (Hewitt & Ross, 1994)). Let us recall that according to the 
structure theorem of finite Abelian groups, for any finite Abelian group , there is a unique finite 
sequence of positive integers, called the invariants of ,  such that  divides  for each 

. Let us denote by  the category of all finite Abelian groups  such that  divides , 
with usual homomorphisms of groups as arrows. From the previous results, if  is an object of , 
then . Moreover,  defines a contravariant functor (see (McLane, 1998)) from  to itself. 
Indeed, if  is a homomorphism of groups (where  belongs to ), then  
defined by  is a homomorphism of groups. Then, we have the following duality theorem. 
 
Theorem 2 (Duality). The covariant (endo-)functor  is a (functorial) isomorphism 
(this means in particular that ). 
 

5. O R T H O G O N A L I T Y RE L A T I O NS 

The characters satisfy a certain kind of orthogonality relation. In order to establish it we introduce 
 on any finite field  of characteristic  as  for 

. This is nothing else than the fact that the underlying Abelian group structure of  is a -
module. In particular one has for each ,  
1. ,  and ,  
2.  and then ,  
3. , ,  and if , then .  

In the remainder we identify  with  or in other terms we make explicit the identification of 
 and .   
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Lemma 1. Let  be a finite Abelian group. For ,  
 

 
 
(23) 
 

              
Proof. If , then  since the characteristic of  is equal to . Let us suppose 
that . Let  such that . Then we have  
 
 

 
 
(24) 
 

so that  and thus  (because ).  
 
Definition 4. Let  be a finite Abelian group. Let  and 

 by  
 

 
 
(25) 
 

 
The above definition does not ensure that  implies that  as it holds for a true inner product. 
Indeed, take , and let  be the constant map with value . Then, . Thus, 
contrary to a usual Hermitian dot product, an orthogonal family (with respect to ) of  is not 
necessarily -linearly independent. Let  be a finite Abelian group. For all  then the 
orthogonality relations holds 
 

                                   (26) 

   
Proof. Let us denote . We have:  
 
 

 
 
(27) 
 

 
If , then  and if , then . The proof is obtained by using the previous lemma 1.  

 
Remark 1. The term orthogonality would be abusive if , because then  for all 

. Nevertheless from the assumption 3 all the . In particular, 
 and therefore  is co-prime to , and the above situation cannot occur, so  is 

invertible modulo . 
 

6. F O URI E R T R A NSF O R M  
O V E R A F INI T E F I E L D 

There is already a Fourier transform with values in some finite field called Mattson-Solomon 
transform (Blahut, 1983) but it is not useful in our setting. Let  be a generator of . Let  be a 
finite Abelian group and . We define the following function.  
 

  
 
(28) 
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Since , we define, by the isomorphism between  and its dual,  
 

  

 
(29) 
 

 
Let us compute . Let . We have 
 
 

  

 

(30) 

 
The last equality holds since  
 
 

 

 
Now if we assume that , then it follows that the function  is non invertible but this 
situation cannot occur since from the assumption 3,  is invertible modulo . Therefore we can claim 
that the function  that maps  to  is invertible. It is referred to as the  Fourier 
transform of  (with respect to ) and it admits an  inversion formula: for  and for each 

, 
 
 

 
 
(31) 
 

 
where  is the multiplicative inverse of  in  (this inverse exists according to the 
choice of ). This Fourier transform shares many properties with the classical discrete Fourier transform.   
 
Definition 5. Let  be a finite Abelian group. Let . For each , we define the 
convolution product of  and  at  by  
 
 

 
 
(32) 
 

 
Proposition 5 (T rivialization of the convolution product). Let . For each ,  

                           (33) 
Proof. Let . We have 
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(34) 

  

  
 

The group-algebra  of  over  is the -vector space  equipped with 
convolution. The Fourier transform  is an algebra isomorphism from the group-algebra  to 

 with the point-wise product. Moreover, let  be the canonical basis of  (as a 
-vector space). It is easy to see that . Because  is an isomorphism, this means that 

 is a basis of  over , and it turns that the Fourier transform  of  is the 
decomposition of  into the basis of characters (even if a family of elements of  is orthogonal with 
respect to the inner-product  of  this does not ensure linear independence because  is not 
positive-definite). 

 
Proposition 6 (Plancherel formula). Let . Then, 
 

 
 
(35) 
 

Proof. Let us define the following functions with ,  

                                                                   (36) 

Then . By the inversion formula:  
 

  

 
(37) 
 

Let us compute  for .  
 

  
 

=   
 
 
 
 
 
(38) 

 =  

 =  

 =  

 =  

 = 
 

 =  
 

Then we obtain the equality that ensures the correct result 
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(39) 

 
Corollary 2 (Parseval equation). Let . Then  
 
 

 
 
(40) 
 

 
In particular, if  is -valued, then 
 

 
 
(41) 
 

7. B E N T F UN C T I O NS  
O V E R A F INI T E F I E L D 

In the traditional setting, i.e., for complex-valued functions defined on any finite Abelian group , 
bent functions ( (Carlet and Ding, 2004), (Dillon, 1974), (Logachev, Salnikov, and Yashchenko, 1997), 
(Nyberg, 1990) (Rothaus, 1976)) are those maps  such that for each ,  

 
                                                                          (42) 

 
This notion is closely related to some famous cryptanalysis namely the differential (Biham and Shamir, 
1991) and linear (Matsui, 1994) attacks on secret-key cryptosystems. We translate this concept in the 
current finite-field setting as follows.   
Definition 6. The map  is called bent if for all ,  
 
 

                                                      (43) 
   

7.1 Der ivative and bentness 

Propositon 7. (Logachev, Salnikov, and Yashchenko, 1997) Let . The function  is bent if, 
and only if, for all ,  
 

 
 
(44) 
 

Now let . For each , we define the  derivative of   in direction  as  

                                             (45)  

Lemma 2. Let . We have   
1. ,   , .  
2. ,    is constant.  

Proof.   
1.  ,  

 According to the inversion formula,  
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(46) 

2. , 
 for all .  

Lemma 3. Let . We define the autocorrelation function of  as  
 
 

 

 

(47) 

 

Then, for all , .   
Proof. Let .  
 

 

 

(48) 

 

 
Theorem 3. The function  is bent if, and only if, for all , .  
Proof.  

  
  

(according to lemma 2) 
  

(according to lemma 3) 
  
  

(because  is -valued.)  
 
7.2 Dual bent function 

 Again by analogy to the traditional notion (Carlet and Dubuc, 2001; Kumar, Scholtz, and Welch, 
1985), it is also possible to define a dual bent function from a given bent function. Actually, as we see it 
below,  must be a square in  to ensure the well-definition of a dual bent. So by using the law of 
quadratic reciprocity, we can add the following requirement (only needed for proposition 8).  
Assumption 4. If the prime number  is , then  must also satisfy . If the prime 
number , then there is no other assumptions on  (than those already made).  
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According to assumption 4,  is a square in , then there is at least one  with 
. If , then . If , then we choose for  the element . Indeed 

it is a square root of  since  
 

  

  
 

 
In all cases we denote by  the chosen square root of . Since , then 
it is clear that this square root also is non-zero. Its inverse is denoted by . Finally it is 
clear that .   
 
Proposition 8. Let  be a bent function, then the following function , called  dual of , 
is bent.  
 

                                         (49) 

   
Proof. Let us first check that  is -valued. Let . We have  
 

               (50) 

 
Let us check that the bentness property holds for . Let . We have 

 (by (30)). Then  
 

     (51) 

 
7.3 Construction of bent functions 

 We present a simple version of the well-known Maiorana-McFarland construction ( (Dillon, 
1974), (McFarland, 1973)) for our bent functions. 
Let  be any function. Let  be the following function.  
 

                                                          (52) 

 
Then  is bent. We observe that the fact that  is -valued is obvious by construction. So let us 
prove that  is indeed bent. We use the combinatorial characterization obtained in theorem 3. Let 

.  
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(53) 

 

because . 
So for , we obtain  
 

  

 

 

(54) 

 

The sum  is equal to  if  and  if  (according to lemma 1). Then the 
right member of the equality (54) is equal to  if  and 

 if . So when , . Now let us assume that , then 
because , , we have 
 

 

 
 
 
(55) 

 
So we have checked that for all   and then according 
to theorem 3 this implies that  is bent. 
 

8. C O N C L USI O N A ND PE RSPE C T I V ES 

There is a close analogy between any quadratic extension of a finite field and the extension of the 
complex numbers over the field of real numbers. Indeed in both cases it is possible to define an Hermitian 
structure on the field extension based on a conjugation operation. As in the usual case this structure makes 
it possible to an introduce a notion of finite field valued characters of (some) finite Abelian groups. These 
characters form a basis (orthogonal in a certain sense) of the algebra of the group over the base finite 
field. With this characters in hand it is then possible to introduce a Fourier transform that shares the same 
properties as the usual one. The study of the Hermitian structure on a quadratic extension and of its 
consequences was the main objective of this contribution. Because the cryptographic notion of bent 
functions (particular highly non linear functions) is directly based on the Fourier transform it makes sense 
also to study this kind of functions in this new setting. This was the second objective of this contribution, 
achieved by providing two constructions of (finite field valued) bent functions.  As an immediate 
perspective of our work is the analysis of the connections between the usual notion of bent functions and 
that introduced in the contribution. The relations between the two kinds of bent functions, if any, were 
outside the scope of this paper but should be the main goal of our future researches on this subject.   
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